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1. I give in this note the complete solution in rational integers of
the cubic Diophantine equation

1) a(@’+9°) = b(w' )

where ¢ and b are given coprime integers which may be assumed posi-
tive. The case @ = b = 1 is of course classical but so far as I am aware
the complete solution in rational integers has not been given in the man-
ner described below. For a brief account reference may be made to Hardy
and Wright [2].

The method applies also to such equations as

@) ol (@, y)Q (%, y) = bL"(u, v)Q(u, v)

wherein (i) L is an integral linear form, (i) @ is an integral quadratic form
and (iii) » is any integer other than —2. The method can also be used
for such equations as )

(3) plz, “)Q(wy y) = !1(-707 u)Q(“) D)

where p and ¢ are integers which depend on « and ». A linear transforma-
tion reduces the solution of (3) to that of a ternary guadratic Diophan-
tine equation and two congruences.

It will be plain also that the same method can be applied if L and
Q are forms in more than two variables.

A brief account of the method was presented at the International
Congress of Mathematicians, Stockholm, 1962.

2. We dispose first of trivial solutions of (1). These are of two kinds,
those for which z+y = 0 (and so ¥+ == 0) and those such that a(z+ y)
= b{u+v)*. The second set can occur only if a and b are perfect cubes,
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a and B. We arrive at the following trivial solutions

r=—y, U= —0,
x=>bym, Y=>"bm, w=am, v=amn,
& ="bym, Y =>0byn, u=qan, v = aym,

for any integers m and w. The reason for the exclusion of the second set
of solutions will appear below.

3. The trivial solutions being excluded, we can write
(4) (x+y,u+v)=Fk>=1, o4+y==F,
(Ayu)=1, JAus0,
The crux of the method now lies in the linear equations
g(m—y) = eA+bfs?,
g(u—0v) = eu-+af??,
which determine unique integers g, e,f such that
(6) g21, (g,6,f)=1

since aA®— by’ 7 0. (It is for this reason that solutions if any such that
a(z+y)* = b(u+v)* are excluded.)
Now use the elementary algebraic identity

u4v = ky,
ar®—bu® #0.

{8)

(1 46" {a(@+ )= b(w’ +0°)} = k(a2 — bp) {(gh)* + 3¢ — 3abiuf’}.

It follows therefore that if (z,w,u,o) is & non-trivial solution of
(1) then the integers gk, e, f satisfy the ternary quadratic Diophantine
equation

(8) (gk)*+ 36— 3abAuf = 0.

Suppose now that (z,¥, u,v) is a primitive admissible set, i.e. co-
prime integers giving a non-trivial solution of (1). Then the greatest
common divisor, i, of gk, e, f is either 1 or 2.

The proof is simple. If an odd prime p divides i, then p divides each
of k, ¢, f but not g (since g, ¢, are coprime). Hence p divides each of
z+y, 2—y, u+7v, u—v; p divides each of 2, 2y, 2u, 2v which con-
tradicts primitivity.

Similarly if 4 divides ¢, then 4 divides each of 2w, 2y, 2u, 20 5o that
2 divides each of z,¥, u,v; again a contradiction.

Thus t =1 or {=2. We define unique integers e, 8, ¥ (coprime,
a >1) by the relations
(9) ta = gk,

if=e, ty =f.
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To sum up: a primitive admissible set which satisfies (1) leads by the
process described to unique integers («, 5, y) (coprime, a > 1) such that
(10) a4+ 38— Babluy® = 0
where (A, u) =1, Au+#0, al®—bu® 0.

Implicit in this statement must be the solvability of the ternary
quadratic Diophantine equation (10) in o, 8, y: this (general) problem
was solved by Legendre (see, e.g. Dickson [1]). Application of this the-
orem shows that abAx must be expressible in form m?4-3»n* or, to put
the matter in another way, that any prime p which divides the positive
integer abiu to an odd power must be either 3 or congruent to 1 mo-
dulo 6.

A pair of integers (1, u) satisfying such conditions (as well as (4, g) =1,
Ap # 0, aA3—bu® 5= 0) will be called admissible.

Thus an admissible quartet (z,y, ,») which satisfies (1) leads to
a unique admissible pair (1, ) and to a unique set (a, §,y) (eoprime,
« > 1) which satisfies (10).

4. The converse is also true as the following arguments show. Begin
with an admissible pair (4, u): take any primitive solution (a,f, y)
(with a > 1) of (10). Compute the four integers

X = aA-pAt+byut, U = au-+Bu+ayi?,

() Y = ad—pi—bypt, V = au—Pu—ayi’.

Let @ =(X,Y,U,V) and define (%,y,u,v) by the relations
(12) Ge=X, Gy=Y, Gu=U, Gv=7V.

Then (z,y,u,v) is a primitive admissible set which satisfies
(13) a(@®+37) =b(u'+0"), p(et+y)=Ai(uto).

Moreover the parameters 4, u, a, f, y belong to (z,y,%,?v) as
described in the section above.
The brief table below for x3-4y® = u®+o* illustrates the process:

A oa B oy o youwo G Fop
1 7 9 1 2 6 -5 4 3 18 342
1 7 7T —10 13 6 —5 3 4 114 342
1 4 63 11 19 6 —4 5 3 63 63
1 4 3 —~1 1 6 —4 3 5 3 63
1 3 39 —9 14 6 —3 4 b 26 26
1 3 3 0 1 6 —3 5 4 2 26
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Tt will be observed that G| (22°—24%) and that g | (F*— %) as well
as @ | 2a. In all cases naturally a is a multiple of 3 but it seems preferable
to leave (10) as it is.

We can of course derive without difficulty from (10) and (11) the
standard rational solution of Euler (as given in Hardy and Wright [2])
but it seems to me better to leave the connections in the form stated
rather than bring in parametric solutions of (10).

5. Instead of giving in detail the general equation (2) I state without
proof the results for the special case connected with equal sums of two
cubes,

(14)
given by the equation

(13) (m49)"(2" — 2y +y*) = (w0)" (1 — uo 497

w3+y3 — ’[1;3+’U3,

for any odd integer n or for any even integer n other than —2.
If (4, #) runs through all admissible pairs for (14), i.e. if 1 and u
are coprime, both positive or both negative and if the equation

(16) a* 4362 —32uy* =0

is solvable in coprime integers (a, §, y) with « > 1, then every integral
quartet (z,y,w,v) which satisfies (15) is proportional to the four inte-
gers

(17) U}-m+lﬂmi(ﬁlm+]ﬂm+yﬂn+l), almﬂm-}-l:‘:(ﬂlm#ﬂb{-l_i_yln—l-l)

if »=2m-+1, m >1, or to the four integers
(18)  aBW L (BT A ), T (BT A Y

if »=1-2s, s >1, for appropriate primitive solutions of (16).
The parameters A, u, e, f, y are given uniquely by the correspond-
ing admissible quartet (z, vy, u, v).
Ag before the case A"*?— "2 =0 iy excluded.
One curious result may be noted; the solutions of

19) (X4+Y) "X —XY4+Y) = (U+V) "YU TV +V?)
are connected with those of (15) by the relation
(20) X:Y:U:V =2u:: gl gy

where (as usual) A:u = (#+¥): (v+2). And of course conversely.
The case n =1 has special interest.
As an example beginning with

20° 4+ (—14)P =173+ 78

icm
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Lo
|3V
L>13

we find that (1, u) = (1,4), (a,8,y) = (3,1,1) and so arrive at
(4, —1, 10, 2), primitive solution for n = —1,
(272, —248, 65, 31), primitive solution for n = 3,
(17,7, 320, —224), primitive solution for n = 5,
(5,1, 32, —8), primitive solution for » = —3.
For (15) when n ig an even integer (other than —2) there is no re-
striction on (4, u) other than A"**— u"** £ 0 (i.e. 4 % +p) and of course
A, w coprime.

If n = 2m (m > 1), primitive integral quartets which satisfy (15)
are proportional to the four integers

(21) alm«]-llumi ('B}Jn{- l’um+ y‘uzm—;—l) , uzmﬂm——l j: (ﬁlmlum =1 € 7’;'2711—:'- 1)

for appropriate primitive integral solutions (a,f,y) (¢ 3> 1) of the
equation

(22) @ +35 =3y = 0

which now replaces (16). Equation (22) has the following complete para-
metric solution (subject to conditions stated)

(23) a = bpg, B= ZIZ(qu—pi%
(p, q arbitrary integers of ‘different parity, (p,3¢)=1, p =1, ¢ = 1),

y = +(8¢+p"

(24) a=3pg, p=+3B¢~pY), y==3B¢+p)
(p,q arbitrary odd integers, (p,3¢q)=1, p =1, ¢>=1).
If n = —2m (m = 2,3,...) the solutions of (15) are given by ra-

tional multiples of the four integers,
(25) (l}-l,‘+l/lallbﬂ: ([ﬁ;m —l[um,_qT_ )1)_2"'+1#) , u/—-.mlumfli (ﬂzmlum'ﬂ _+A yz#z:wlvl)

where (a, p, ) runs through the primitive solutions of (22) with « > 1.
Here too must be excluded the cases 4 = - u.
6. I conclude with the reduction of equation (3),
(26) plr, W)@ (e, y) = q(r, W)@ (u, v),
to a ternary quadratic equation and two congruences.
Suppose that a solution (x,y,u,?) of (20) exists such that
(27) 2p(a, u)—u'g(e, u) = 0.
Let Q(x,y) = 40"+ Bry+Cy’; use the linear transformation
ay = pr+yqu,
av = fu-+yper,
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which determines unique integers (a, 3,y), coprime with « = 1. Then
29)  {pQ(z, y)—9Qu, )}’ = (p2”— qu) {4’ + Bap+Op*— Opgy*}.
Thus a solution of (26) which satisfies (27) gives rise to a unique set of
coprime integers (ea, f,y) (¢« = 1) such that
(30) Ao+ Baf+C0B—0Opgy® = 0.

For special values of z and « it may happen that (30) is properly
solvable. But the solutions «, #, y must also be such that
(31) pr+vqu =0 (mod a),
(32) fu-+yqr=0 (mod a).

I, for appropriate & and u, equation (30) and the two congruences
(31) and (32) can be solved, we reach solutions of (26). This method is
often useful in proving the existence of infinitely many solutions of equa-
tions of the form (26).
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1. Courbes unicursales. Il est bien connu que la solution compléte
de Déquation diophantienne
1) Popyi—F =0
dans un corps quelconque ©Q est donnée par les formules

)s

les paramétres t, t,, t, parcourant tous les nombres du corps 2, indépen-
damment entre eux; voir p. ex. Nagell [1](2), p. 217. Ainsi la solution
compléte de (1) en 2 est donnée par une idendité.

Ce résultat n’est qu'un cas particulier de la proposition plus géné-
rale (voir p.ex. Nagell [1], p. 216):

Soit C(r,y,2) = 0 Uéquation dune conique en coordonnbes homoge-
nes i, y, z & coefficients appartenant au corps Q. Si celle-ci admet un point
(&,9,8), o &,%,C appartiennent & Q, toutes les solutions de Uéquation
C(x,y,z) =0 en nombres r,y,z appartenant & Q sont données par un
systéme de formules

5

(2 ©=1tH—1%G), y=2t, z=1tH+
!

r = t(at} 4 bt t, +cf3),
(3) ¥ =tati+ bt el),
2 = t(ayti+ Dot b+ e3),

I

ot a, b, e, ay, by, ¢, ay, by, ¢, sont des nombres de Q, et o les paramétres
t, 1y, 1y parcourent tous les nombres de £2, indépendamment entre eux. Ainst
la solution compléte en 2 est donnée par wne identité.

(1) Les numéros figurant entre crochets renvoient 3 la bibliographie placée
4 la fin de ce travail.
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