(iv) The series $\sum_{n=1}^{\infty} a_n(1-xe^{2\pi in})^{-1}$, where $|x| < 1$ and a are real, obviously converges if $\sum |a_n|$ converges. Can one give a less stringent condition? See [194].

(v) A non-homogeneous cubic congruence $f(x, y, z) \equiv 0 \pmod{p}$ has $p^3+O(p)$ solutions, apart from certain exceptions. (This has been substantially proved by Davenport and Lewis, using a result of Dwork; see Quart. J. of Math. (2), 14 (1963), 154-159.)

Reçu par la Réduction le 23. 5. 1963

Publications of L. J. Mordell

4. *The inversion of the integral $u = \int \frac{ydx - ady}{\sqrt{V(a, b, e, d, e)(x, y)}}$*, Messenger of Math. 44 (1914), pp. 138-141.
10. *On the solutions of $x^2+y^2+z^2+t^2 = 4m_1m_2$*, Messenger of Math. 47 (1917), pp. 142-144.
18. The value of the definite integral \(\int_{-\infty}^{\infty} \frac{e^{it^2+bt}}{e^{t+d}} dt \), Quart. J. of Pure and Applied Math. 48 (1920), pp. 329-342.

19. On the generating function of the series \(2F(u)q^n \), where \(F(u) \) is the number of uneven classes of binary quadratics of determinant \(-u \), Messenger of Math. 50 (1920), pp. 113-128.

20. On a simple summation of the series \(\sum_{n=1}^{\infty} e^{x^{2n}/n} \), Messenger of Math. 48 (1918), pp. 54-56.

21. On some series whose \(n \)-th term involves the number of classes of binary quadratics of determinant \(-u \), Messenger of Math. 49 (1919), pp. 65-72.

27. Note on the integer solutions of the equation \(ay^2 = Ax^3 + Bx^2 + Cx + D \), Messenger of Math. 51 (1922), pp. 169-171.

32. On the number of solutions in positive integers of the equation \(yz + zx + + xy = n \), American J. of Math. 45 (1923), pp. 1-4.

38. The present state of some problems in the theory of numbers, Nature 121 (1928), pp. 138-140.

40. The magnitude of the derivative of a function, J. London Math. Soc. 3 (1928), pp. 119-121.

41. The convergence of series summable \((C, r) \), J. London Math. Soc. 3 (1928), pp. 170-172.

78. An application of quaternions to the representation of a binary quadratic form as a sum of four linear squares, Quart. J. Math. 8 (1937), pp. 58-61.
83. The definite quadratic forms in eight variables with determinant unity, Journal de math. 17 (1938), pp. 41-46.
87. Reviews of three books on elementary number theory (Dickson, Uspensky and Heilbronn, and Wright), Math. Gazette 24 (1940), pp. 295-298.
89. The product of homogeneous linear forms, J. London Math. Soc. 16 (1941), pp. 4-12.
93. Some results in the geometry of numbers for non-convex regions, J. London Math. Soc. 16 (1941), pp. 149-151.
94. Lattice points in the region \(|Ax^2 + By^2| < 1 \), J. London Math. Soc. 16 (1941), pp. 152-156.
98. The product of \(n \) homogeneous forms, Recueil mathématique, Moscow, 12 (54) (1943), pp. 273-276.

100. On the sums of three cubes, J. London Math. Soc. 17 (1942), pp. 139-144.

111. A mathematical price. Correspondence, The Engineer, 1943.

114. Lattice points in the region \(|ax^2 + y^2| \leq 1 \), J. London Math. Soc. 19 (1944), pp. 92-99.

121. On some diophantine equations \(y^2 = x^2 + k \) with no rational solutions, Archiv for Mat. og Naturvid. 49 (1947), pp. 143-150.

131. The reciprocity formula for Dedekind sums, American J. of Math. 73 (1951), pp. 593-598.

133. On the equation \(ax^2 + by^2 - cz^2 = 0 \), Monatshefte für Math. 55 (1951), pp. 323-327.

137. The congruence \(ax^2 + by^2 + c \equiv 0 \mod{xy} \) and integer solutions of cubic equations in three variables, Acta Math. 88 (1952), pp. 77-83.

139. On the integer solutions of the equation \(x^2 + y^2 + z^2 + 2xyz = n \), J. London Math. Soc. 28 (1953), pp. 500-510.

148. Note on the integer solutions of \(x^2 - k^2 = ax^2 + by^2 \), Ganita 5 (1954-5), pp. 103-104.
149. The minimum of an inhomogeneous quadratic polynomial in \(n \) variables, Math. Zeitschrift 63 (1956), pp. 525-528.
152. The Diophantine equation \(x^2 + y^2 + z^2 + kxyz = 0 \), Colloque sur la théorie des nombres, Brussels 1956, pp. 67-76.
156. Corrigendum to: Integer solutions of the equation \(x^2 + y^2 + z^2 + 2xyz = n \), J. London Math. Soc. 22 (1957), pp. 383.
160. On the inequality \(\sum x_i (x_{i+1} + x_{i+2}) \geq \frac{1}{2} n \) and some others, Abh. Math. Sem. Hamburg 22 (1958), pp. 229-241.
172. On a Pellian equation conjecture, Acta Arithm. 6 (1960), pp. 137-144.
179. The congruence \(\left(\frac{p-1}{2} \right) = \pm 1 \pmod{p} \), American Math. Monthly 68 (1961), pp. 145-146.
185. The Diophantine equation \(2^n = x^2 + 7 \), Arkiv för Mat. 4 (1962), pp. 435-460.
Further developments in the comparative prime-number theory I

by

S. KNAPOWSKI (Poznań) and P. TURÁN (Budapest)

1. In a report dated from June 19, 1871, which was written to support the designation of Chebyshev as foreign member of the Academy in Berlin and signed among others by Kronecker, Kummer, and Weierstrass, one reads the following passage (see [1]).

"...Endlich ist Herr Tschebyscheff der erste Mathematiker, welcher für die Anzahl der Primzahlen bis zu einer hohen Grenze den Ueberschluss der Primzahlen der Form $4n+3$ über diejenigen von der Form $4n+1$ constatirt und für den asymptotischen Ausdruck $\sqrt{x}/\log x$ angegeben hat."

What was behind these lines? Chebyshev wrote in a letter in 1853, i.e. a few years after Dirichlet proved that for $(k, l_1) = (k, l_2) = 1$ in a weak sense the number of primes $= l(\mod k)$ is asymptotically equal to that of the primes $= l_1(\mod k)$, that he is in possession of a theorem which can be popularly expressed so that there are more primes of the form $4n+3$ than of $4n+1$. He meant by that (according to his letter, which is printed in [2]) that

$$\lim_{x \to +\infty} \sum_{p \leq x} (-1)^{(p-1)/2} e^{-px} = -\infty$$

where p denotes always primes and stated also the existence of a sequence

$$x_1 < x_2 < \ldots \to \infty$$

such that for $\nu \to \infty$

$$\frac{n(x_4, 4, 3) - n(x_1, 4, 1)}{(\nu x/\log x)} \to 1.$$

(Here and later $n(x, k, l)$ stands for the number of primes not exceeding x which are $\equiv l(\mod k)$, $(k, l) = 1$, c_1, c_2, \ldots positive, explicitly calculable constants.) Most probably in Germany nobody read the original