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Introduction. The sums formed from the set of non-negative powers
of 2 are just the non-negative integers. It is easy to obtain “abelian”
results to the effect that if a set is distributed like the powers of 2, then
the sum set will be distributed like the non-negative integers. We will
be concerned here with converse; or “Tauberian” results. The main theme
of this paper is the following question: if the set of sums formed from
a given set of positive real numbers resembles an arithmetic progres-
sion, how much must the original set resemble a set of constant mul-
tiples of powers of 22

If we denote the given set by k,, &y, ks, ..., arranged in ascending
order, and let §(z) count the number of those sums of distinet %; that
do not exceed x, our problem is, roughly, that of showing that k, is close
to 2™ if §(x) is close to . Our first result gives sharp bounds for liminf
and limsup of 2"/k, in ferms of liminf and limsup of S(z)/z. In the
next section, we show that if S(z)— 2 is bounded, then %,— 2" is bounded,
and furthermore, }'|k,—2"] < oo, so that if the %, are integers, then
ks = 2™ for all large n. We extend the method in the succeeding section
to obtain estimates for k,—2" and ) |k,—2"| in terms of suitable bounds

nN
for S(z)—x, even if S(x)—= is unbounded. Finally, on a slightly dif-
ferent note, we show that it is not possible for 8(z) to behave too much
like 2® if a < 1.

1. Asymptotic behavior. Let K =k, %y, kay.ooy 0 < kg <k <k
<..., be any sequence of positive real numbers. Let S(z) denote the
number of choices of &, ¢, &, ... such that for each j =0,1,2,...,
either ¢ =0 or & =1, and such that eky+e k... <z. Let

A = limint 8 (z) /@, a = liminf2"/k,,
ZT—00 700

B = limsup 8 (z) /=, B = limsup2”/k,.-
Z—00 N—s00

* Alfred P. Sloan Fellow.
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A gimple estimate shows that

a<d and p=B.

1)
‘We now give sharp inequalities in the opposite direction.
THEOREM 1. o = A and

a a2
() B>p’(2ﬁ 52)'
Inequality (2) 4s best possible in the sense that, given any a and f with § <
< aff <1, there ewists a sequence K for which equality holds, and given
any A and B with < A[B <1, there exisis a sequence K for which equal-
ity holds.
Remarks. It follows immediately from the theorem that

then lim2"/k, = 6.

N-r00

if lm8(x)jz =00,
E->00

This result was proved by a different method in [1]. The question was
raised in [1] whether the statement remains true for 6 = 0. The answer
is no, as the following example shows. Let &y = 2”", and let kpn_, = kyn
for 0 <r<2™'. It is easy to see that S(z) = o(»). On the other
hand, 2"/k, = 1 for infinitely many n. It is easy to modify the exam-
ple so that the k, are distinct, but it seems difficult to satisfy the
additional condition, deseribed in [1], that the sums of the k, are all
distinet.

It seems likely that our methods, if carried out in greater detail,
would yield an estimate similar to (2), but taking account of the inte-
gral part of log,f/a, and that such an estimate would be best possible
for any range of o/, and not merely for a/f > }. Finally, if we permit
&g =0,1,...,N—1, then it seems likely that our methods will yield
analogous results for the limsup and liminf of N"/k,.

Proof of the estimates. First, S(k,—1)< 2", since if gk,+
ekt enkpt ... <k,—1, then ¢, =¢,,; =... = 0, so that there
are at most 2" suitable choices of {¢}. Hence

8{k,—1) 2* Pk,
Bp—1  kp—1 Ry kp—1’

and on letting #» — oo, we get 4 < a.

To obtain the estimate (2), we may suppose that @ > 0, since if ¢ = 0
then (2) is trivially true. We now choose any a > 1/a, so that &, < 2"a
for all sufficiently large n. Without loss of generality, we shall suppose
that k, <2 for all n =0,1,2,..., because for any two sequences
K and K’ with k, = k, for n > n,, it is easy to show that 4 = A, B =
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=B',a=a',f = p'. And given any b with b > 1/8 we will have &, < 27
for infinitely many n.

‘We now choose # large, with %, < 2"b, and estimate §(2"a). Clear-
ly, S(2"a) > N,-+N,, where N, is the number of choices of {g},
j=0,1,...,n—1, such that

(3) Skt en 1k < 2%
and N, is the number of choices of {¢}, j = 0,1,...,n—1, such that
4) gokot ...t en_1kn_ 14k, < 2.

But if y2% ...+ &, ;2" 'a <2, then (3) holds, and therefore N, > 2°.
And if £2%+...4+ 12" "0 <2"(a—Db), then (4) holds, so that

oo Y-

8(2%) 1( b)_l

Hence

on, > n ney 1 Al .
8(2%) > 2"+-2"(1—bla)—1, 2 . S

2% a
On letting n — oo through a suitable sequence, we get
A TR
a a a
‘We may now let @ — 1/a and b — 1/ to obtain (2).

The estimate is best possible. To show that (2) is best possible, we
prove the first part, that given any « and g with § < a/f <1, there
exists. a K such that B = §(2a¢/8—o*/f%). The second part then follows
since ¢(B) = B(24/8—A*/F) is a continuous function of g, with g(4) = A4
and p(24) = 34 /2, so that if we are given 4 and B with 1 < B/4 < 3/2,
we may apply the first part with « = 4 and g such that ¢(8) = B. For
the construction of K, let n,, be a sequence of positive integers that in-
creases very rapidly to oo. Let ¢ = 1/a and b = 1/8 and define %, by
%, = 2"a unless #n = n,, for some m, and k, = 2"b it n = n,, for some m.
The point of the restriction o/f > 4 now appears; for the sequence K
to be suitably defined, we need 2" > 2" 'a, or bja > %.

A simple argument now shows that B = limsupB,, where B, is

N>00

defined as follows. Let K" be the sequence {k;}, j = 0,1,2, ..., where
kyj=2a for j#n and k =2 it j =n. Let S,(») = S(x:K" and
let B, = sup(S,(x)/x), where the supremum is over all values of
@ > %,(n), where x,(n) is a function of » that tends very slowly to +oo
a8 n tends to +oo.

To determine S,(x), we must count those {g} for which

(5) e2lat ...t en 12" a4 6, 2"+ 602" At < @
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We now define f,(f) as the number of choices of {g} for which

(6) g2+ 62 e 2" e 2" L <0

Now, considering in (5) the two cases &, = 0 and &, = 1, we see that
s x 2—2"b

(7) w@) = fu( o) Hal=——):

If we write 4y = »/a, then from (7) we get

®) Sulay) _ i{fnw) A b/a},
ay a Yy 9
so that
®) B, = lsup{fﬂwﬁ—fﬂ(y—z b/a) }’
@ y

where the supremum is over the range ¥y >y,, where y, = y,(n) =
@y(n)fa. A computation shows that, writing [¢] for the integral part
of t,

(10) fa(t) = 2”[—2,,t—+1]+min(2", 14 [¢]—2™+! [2,f+1]) for t>0,

and, of course, f,(t) = 0 for ¢ < 0. For we may write ¢t = k2"+'4s,
where k& is a non-negative integer, and 0 <s < 2"%. And £2°+ 2+
+...+£,_,2""" may be any non-negative integer p < 2", while g,,, 2"+
+ 522" ... may be any number 2**'¢, where ¢ is any non-negative
integer. Thus, we may rewrite (6) as

(11) p+2"g <B4

and f,(t) = f,(k2"**+5) is the number of choices of p and ¢ that make
(11) valid. Now for ¢ =0,1,2, ..., k—1 there are exactly 2" choices
of p that make (11) hold. So far we have accounted for %-2" choices.
Forg =k+1,%k+2, ..., there are no acceptable values of p. For q=k,
if § > 2"—1 then there are 2" choices of p, while if s < 2" —1, then there
are [s-1] choices of p. Thus, we have

(12) fu(k-2"' 4 5) = 2"k +min (2", [s41]),

which is equivalent to (10).
Now, writing y = 2"*'k+s, with % a non-negative integer and
0 <s < 2™ ag before, we get

(13) fa(y) = 2°k+min(2", [s]+1),
(14) fu(y—2"/a) = max{0, 2"k+ 2"« ]+ min(2", [s— 2"b ja]+1 —2" [ #])},
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s—2"/a
(15) * = Tgnt 2

and we remark that [*] =0 or —1 according as s> 2"b/a or s < 2"/a,
respectively.
‘We now let

(16) 9() = ga(y) = 2"k+min (2", 5),

A7) h(y) = ha(y) = max{0, 2"%-+2"[* ]+ min (2", s—2"b fa— 2" [« ])},
and let

(18) B, = z sup »(y)
& y>yy(n)
where
n hﬂ:
19 $(y) = paly) = LD T
2

Since |B,—B,| < T we see that B =limsup B,,. We now compute Bj,.

I’/o(’n N—00

Case 1. s <2"/a. Here [+]= —1, g(y) =2"%k-+s, and h(y) =
=max {0, 2"k—2"-+min(2", s—2"/a+2"*")}, but 2" ts—2"b/a =
2™ —9"pja = 2™(2—bja) > 2" since bfa = a/f <1, so that h(y) = 2"k,
and sup;p(y) = (@""'%+8)/(2""'k+s) = 1. There are three more cases,
in all of which [+] =0 since s > 2"/a.

Case 2. 2"bja <s <2". Here g(y) = 2"k-+s and h(y) = 2"k+
+min(2”, s—2"bfa) = 2"k+s—2"bja since s—2"hja < 2". Hence

2"k 425 —2"b o

p(y) = W’

and an elementary computation shows that

_9EO+REY b

sups 9 (y) o e

Case 3. 2" <s <2"+2"/a. Here, g(y) = 2"%k+2" and h(y) =
2"k + min (2™, s—2"b[a) = 2"k+s—2"b/a, and hence

242" 15— 2" a 2"—2"b[a
y(y) = AT =1+ 705 )
2" k48 2" -8
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and an elementary ecomputation shows that

2"+ h(2" b
sups(¥) =g_(——)—2n_£—)_ =2——.

Case 4. 2"4+-2"/a < s < 2", Here g¢(y) = 2"k+2" and h(y) =
2"+ min (2", s —2"b/a) = 2"k 2" so that
2n+1k+2n+1

YO =gy

and an elementary computation shows that

2"+ 2"b h(2"+2" 2
supypty) = LETDLIEROETD 1+bja "

2" 1 2"

So we must compare the three numbers 2—bfa, 1, 2(1-+b/a)".
Now each of them is >1, and 2—bfa > 2(L+b/a)"", as an elementary
estimate shows. Hence B, = (2—b/a)fa = f(2a/8—d*/8%), and the result
follows, on letting n — oo.

2. Bounded error terms.

TevoREM 2. If there are constamis ¢, and ¢, so that for all > 0
we have

(20) ) r—6 < 8(v) <240y,

then

(21) k, <2"4-¢, for all m

and

(22) kn = 2" — (01 + 02) ﬁf 2”’1 > ncl-l- Cy.

Finally, we have

(23) Dl—2" < oo ‘

so that if the k, are integers, then &, = 2™ for all sufficiently large m.

Proof. As hefore, if < k,, then §() <2". Thus %,—e, < 2"
and (21) iz established. Now let

Ky =ky+Fy+.o 4Ty
Then

(24) Koty > 8(K,) > 2"
We next prove that
2k, > K,
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for all n satisfying 2"'—mne,— e, > 0. For suppose that 2%, < K,. Then
for each choice of &, ...,&,_;, at least one of the sums

n—1 n—1
Tt ) ety or et Y (1—e)ky
b= i=o
is less than K,, so that in this case we would have S(K,) > 2"4-2" %
According to (21) and (23), we would have
(25) 2" met ey > Kotoy = 8(K,) > 2"+2"7,

and the assertion is proved. Under the hypothesis of (22), we have 2k, > K,,.
Now for each y with

we have
(26) Enty+o > 8(E,+y) 22" +8(En+y—En),
where the second term on the right counts the number of &,..., 8,
for which s
kot D) ek < Koty
Hence =
@) K, +y+e = 2"+ K+ y—ko—or,

and (22) is established.
Now we choose p so that 277 >¢,-+¢,. Then
(28) E, <9"tK,

For, assume that » is so large that (22) holds, that » >p, and that
Kno1 > 2", Then if (28) fails, there would exist at least 2” choices of
€9y €1y +++y En_y fOr Wwhich

for all large n.

n—1

Z &k; > 27,

j=0
namely all choices with e, = ... =¢,.; = 1. Since there are at most
8(c;+¢,) sums not exceeding 2" in which one of the summands is %,
and no such sums in which one of the summands is k,,, or larger, we
obtain

(29) 2"—c, <8@RM K 2"—27+8(e1+6) < 2"— 2o+t 6y
which is contrary to the hypothesis that 27 > 2¢,+2¢,.
If }|k,—2"| = oo, then according to (24),

(30) D) (ky—2") = oo.

p>2"
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Thus, we could choose m; <<my < ... < n, with n, so large that (22)
and (28) hold for » > n,, with

Ky > Ky+e+e, and knj > 2"
and such that
r r
(31) A= Yln,> Y2 +04+1 = B1+o,.
i=1 j=1

‘We now show that

22’”“1' > B  implies

kai>A.

This is obvious if {n;} is a subset of {m,}. If not, let n, be the largest n
not contained in {m,}. It follows that

8
(32) Doy = At Tongr— 3 by > At Fip s — K1+ Ko
j=1

> A+ 2"s+1—cl—cr2"«ffr1_1irz,+Kn1 >A.

Hence S(4) is no greater than the number of sums of powers of 2 that
do not exceed B, and this number is at most B-+1. Hence S(4) £ B+
+1 < A—e¢;, contrary to hypothesis.

COROLLARY. If —e¢; < S(w)— Az < ey for some positive constant A
and all >0, then )

(83) by <A7'2%f0,  for all m,

(34) ko 24772"—(e)40)  of  AT'2" ! > mey—e,,
and

(35) 2 [By—2712" < oo,

This result follows by applying Theorem 2 to the sequence {ik,}.

COROLLARY. If the k, are integers, then the only constants A that can
ocour above have the form A = 2V [ M, where N > 0 and M > 0 are integers,
and then k, = 272" for all sufficiently large n.

The proof ig a simple application of (35), and we omit it.

3. Unbounded error terms. The methods of the preceding section
can be extended to the case where S(z)—x is unbounded.

TuBOREM 3. Suppose that
a—f1(@) <8(@) <a+fi(z)  for ol 2 >0,

where the f; are continuous, positive, mon-decreasing Junctions, not both

icm®
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bounded, such that f;(z)/z — 0 as z — oo, and such that x—f, (@) and s+ fy(z)
are strictly increasing. Let ¢, and @, be the imverse fumctions defined by

2 =y—f[{y) >y =a+n=),
2 =g+ +f4) Sy = 2—p:(@),

so that the @; are nonm-decreasing, g,(®)[x — 0 as x — oo, and 2+ ¢, (@),
—@, (1) are strictly increasing for sufficiently large ». Then

(37) by <2+ (2% for all m,
(38) fn = 2"—@y(2™)  for all Targe n.
Let o, be the inverse function defined by

2 =y+fH) EDY = a—ps(2).

Then

(39) K, >2"—@ (2" for all n
and

(40) . K, <2 Fo, 2"  for all large n,
where

@4(2) = 2f1(2)+ 2f, (%) + 29, ().
Finally, if we set
(@) = max[f,(2°7), gs(2%) + 95 (2°) + 4 (27},

N
(41) D on—2" = O(p(IV).
0

then

Tor example, if f,(z) and f,(x) are both 2® for large %, then the ¢;(w)
are each asymptotic to a suitable constant multiple of 2°

To prove (37), use the inequality S(z) < 2" if @ < k,, as before.
To prove (39), use the inequality

E,+f(K,) = 8(K,) = 2%

also as before. By a method entirely analogous to that of the preceding
section, it follows that 2k, > K, for all sufficiently large n. And for
such n, proceeding again as before, we have, for each y with 0 <y

< 2k—K,,
(42) Kot y+fo(Enty) 2 8(Enty) > 2"+ 8(Epty— k)

>
> 2"+ Kty — b —fi( Kty —Fon)s
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go that
by = 28— (Tt y— k) —fo (Bu+y) = 28— f1 (k) —fo (k)

which implies (38).
In order to prove (40), we suppose that

K,>2"+K,,

where » is so large that k,,, > 2" and %, > 2"'. Then, as in the proof
of Theorem 2, we get

P —f(2") < 8(2") < 2"— 242" —T)
<

P22 —2" 4y (2") £, (2)
or

(43) 2° <fi2")+ 52"+ (27)

o that in view of (37), we have
(44) K, <2"+K, <2"+ 27 <24 2f,(2")+ 2£,(2") + 20 (2")

for all sufficiently large n.
Now assume that

N
lim sup Yk, —2"/p(N) = oo.
k=0
In view of (39), this implies that
N
limsup 3" (ky—2")* [p(N) = oo,
. k=0

where
’ (kp—2™)" = max (0, k,—2").

We first prove that if (V) = log(ga(2")+ps(2")+4(2%)), then

(45) (Fn—2"* [(p(M)+1) < 1.
AN)<n<N
For, let ny, ny, ..., n, be the values of n for which
B >2" g(N)<m<m<..<n <N,
Let

4=, > 2 014y +1 = By(W)+1.

Then, a8 in the proof of Theorem 2, ¥'2™ > B implies that kaj >4

icm
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This is obvious if {n;} is a subset of {m;}. If not, let n, be the largest ele-
ment of {n;} not contained in {m,}, so that

2 ij = A+ kns+1_Kn,+1+KnI
> A4 2" — gy (2" ) — 2"t (2" ) - 2™ — g, (2™)
> A+ 22— g, (27) — g5 (27) — s (27) > 4.

Hence S(4) is no greater than the number of sums of powers of 2 that
do not exceed B, so that §(4) < B+1. It follows that

A—fi(4) <8(4) < B+1< A—y(N),

which leads to a contradiction, since 4 < Ky < 2¥*! for all large N.
Now we have 1-4u(x) < 32° for all & > x,, and therefore, from

(45), if we let
() =N

and gy (V) = z(xn(N)),

then, provided ym :(N)>2,, we have

(o — 2" < 14p(xm () < 3220,
Tm+ 1) <<t ()
But
22 <y (gm1 (V)

go that if ym,,(N) > z,, we have

n 1
(46) (2" < v ().
*m+1N)<n<tm(N)

On adding the inequalities (46) for all suitable m, we get

N
D, (a—2"* < 29(N)+0(1),

N=0
which proves (41) by contradiction.

4. Irregularity of S(v). We say that a function f is slowly oscillai-
ing to mean that for each positive constant a, f(az)/f(x) —1 as 2 — oo.

THEOREM 4. It is impossible to have S(z) ~ a°f(w), where 0 < a < 1,
and f(m) is a continuous positive slowly oscillating function such that *f (x)
is strictly increasing.

Proof. Define the inverse function g by

y = a'f(m) &> o =y (y).
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Then g is also a continuous positive slowly oscillating funetion. From
S(k,—) < 2", we get
by < (L46)2"g(2™)

for any &> 0 and all sufficiently large n, so that

2 T < (1+2) Z o™ing (9™),

m=0
On the other hand, we have S(K,) > 2", so that
K, > (1—e)2™"g(2"),

om-n)a g(2™)
1+ . < 2 IeR)

for all sufficiently large n. We show now that (47) is impossible for small e.
We use the result [2] that there is a function h(z) with A (z)~ cg(w)
a8 @ — oo, where ¢ is a positive constant, such that h(») has the repre-
sentation

and hence

(47~)

(48) h(w) = exp f B(3) ¢ dt
where '
(49) Bty =0(1) as - oo.

It follows from (49) that h(z) > o~° for any & > 0, for all sufficiently
large @, and the same inequality consequently holds for g. It follows
that the values of g(x) when « is small do not affect the inequality (47)
for large m, and that to contradict (47), it is emough to contradict
the corresponding inequality for h, which by (48) may be written as

1—e _ ”2‘ =1 o
e < o= [ {g+o0)g).
Mm=0 am
If we now choose y so that 1 < y < 1/a, then for all sufficiently large ¢,

1ja+B(t) >y,

and by the above remarks, there is no loss in assuming this for all f. We

then have
1
ym—n) __ w
1—|—e < 22 22 < —1!

r=1

(50)

(51)

which is a contradiction if ¢ is small enough, and the theorem is proved.
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On the other hand, it is possible, for each positive integer a, to have
8(z) ~ cx®, where ¢ is any positive constant. For example, if we let K
consist of a copies of {2"}, n = 0,1, ..., then a simple computation shows
that 8(z) ~ c,2®. Perhaps, then, it is impossible to have S(z) ~ f(z)2*,
where a >0, f(z) is slowly oscillating, and 2°f(#) is strictly increasing,
unless a is an integer. We outline here a proof of a partial resulf in this
direction, namely that if 1 < a < ay, for a certain ¢, (with 1 < a, < 2)
then 8(x) ~ f(z)a® is impossible. We treat the case f(z) =1 for all x;
the general case iz similar.

In this case, we apply arguments like those above to get (2— 8)k, > K,
for some 6 >0 and infinitely many #. But then we have

83+ Ky) =2"—8(F— o) Ka),
provided only that e is chosen so small that

kn > (3+6) Ka,

since for every sum
n—1

D, ek < (3—e)Kn,

iz
we have

n—1
D (A—e)ki > (3+2) Ky
im0
But the asymptotic relation
(+erK, ~2"—(}—e)°Ks
cannot hold identieally in £ unless « = 1, which is excluded, and the result
is proved.
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