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If the minimum condition is satistied by the subgroups of a group
@, then a fortiori

(1) the minimum condition is satisfied by the normal subgroups of G;

and it is fairly obvious that the converse of this statement is false. A fur-
ther immediate consequence of the minimum condition for subgroups
of @ is the following condition:

(2) if H 1 is an epimorphic image of @, then there exists a normal
subgroup N # 1 of H such that the minimum condition is satisfied
by the subgroups of the group of automorphisms, induced in N
by H.

Tt is, however, not diffieult to construct examples of groups &, meeting
requirements (1) and (2), whereas the minimum condition is not satisfied
by the subgroups of G. Thus there arises the problem to complete these
conditions (1) and (2) into a criterion for the validity of the minimum
condition for subgroups; and solutions of this problem are offered in our
Corollary 8.3. It is an open problem whether groups with minimum con-
dition always possess an abelian subgroup of finite index. It is therefore
of interest to characterize the groups with minimum condition and an
abelian subgroup of finite index among the groups, meeting requirements
(1) and (2); and such characterizations are given in Theorem 4.2. The
investigation leading to Corollary 3.3 and Theorem 4.2 is conducted
within a general framework leading to our prineipal eriterion: the The-
orem 3.2. Of this criterion Corollary 3.3 and Theorem 4.2 are more or less
obvious special cases.
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Notations.

3G = center of G;

HG = hypercenter of G = intersection of all normal subgroups X
of G with 3(G/X)=1;

¢X = ¢pX = centralizer of the subgroup X of Y [in YJ;

woy = oy oy = o '".
The group @ is

nilpotent, if ¢ = HG

an m-group, if the minimum condition is satisfied by its sub-
groups;

an mn-group, if the minimum condition is satisfied by its normal
subgroups; :

an aa- [or almost abelian] group, if it possesses an abelian sub-
group of finite index;

of finite rank, if there exists a positive integer » such that every fi-
nitely generated subgroup of @ may be generated by n [or fewer] ele-
ments.

The prime p is G-relevant, if the group & contains elements of order p.

1. The following probably well-known criterion will prove useful
in the sequel.

Lemma 1.1. The subgroup U of the torsion group G is part of the cen-
ter 3G of G if and only if

(a) U is a normal subgroup of @,

(b) U = G and

(e) G[cU 1is free of finite epimorphic images = 1.

Terminological notes. The hypercenter HG of the group @ is the
intersection of all the normal subgroups X of G with 3(6¢//X) = 1.

¢U = ¢gU is for every subset U of G the centralizer of U in G. If
in particular U happens to be a normal subgroup of @, then cU ig like-
wise a normal subgroup of ¢ and G/cU is essentially the same ag the
group of automorphisms, induced in U by the elements in @.

Proof. If U is part of the center of @, then U < 3@ < bG and
@ = ¢U, putting into evidence the necessity of our conditions (a)-(e).

We assume conversely the validity of our conditions (a)-(c); and we
assume by way of contradiction that U & 3G. Then U-3@ /3G is a nor-
mal subgroup, not 1, of ¢3¢ which is a part of HG /3G = H(G/3G). Appli-
cation of the well-known properties of the hypercenter shows

1 # 3(G 3N (T 36 /30);

c'f., for instance, Specht [7], p. 327, Satz 14. Since G is a tor-
sion group, johere exists a subgroup V /3¢ of 3(G/3)n(U-3G/3G) whose
order is & prime p. It is clear that ¥ is a normal subgroup of @ and that
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the group I' of automorphisms, induced by @ in V, induces the 1-auto-
morphism both in 3@ and in V /3G and is consequently part of the group
of stability of the normal subgroup 3G of V. Application of Specht (p. 88,
Satz 19) shows the commutativity of I

If » is an element in V and g an element in @, then 2 belongs to V
and both +* and vog belong to 3@ Hence

7 = (o) = () = [p(vog)]’ = 2" (vog)’

50 that (vog)” = 1. Since vog belongs to 3¢, we deduce inductively from
o’ = v(vog) the validity of

o = v(vog)i for every positive integer 4.

Hence, in particular,

gP

v’ =uv(wog)? =v for every v in ¥V and every g in G;

and thus we have shown that I' is an elementary abelian p-group.

Now, I" is essentially the same as G/c¥V; and from V < U-3G¢ we
deduce ¢ < ¢V. Thus the elementary abelian p-group I"is an epimorphie
image of G/cU. Elementary abelian p-groups, not 1, possess finite epi-
*morphic images, not 1. Application of condition (c) shows consequently
I' =1; and this is equivalent to the desired contradiction 3¢ < V < 3¢.

Lemma 1.2. If @ is a nilpotent torsion group of finite rank and if the
number of G-relevant primes is finile, then there evists an abelian subgroup
of finite index in G and the minimum condition is satisfied by the subgroups
of G.

Terminological notes. Here we term — following Specht —
a group nilpotent, if its epimorphic images, not 1, possess centers, not 1.
Thus the group G is nilpotent if and only if ¢ = §G.— The rank of G is
finite, if there exists a positive integer » such that every finitely gener-
ated subgroup of @ may be generated by n [or fewer] elements.— The
prime p is G-relevamt, if G contains elements of order p.

Proof. Denote by J the intersection of all the subgroups X of &
with finite index [G: X1. Tt is clear that J is a characteristic subgroup
of @ so that we may form the epimorphic image H = @/[J of &. Denote
by § the totality of elements of squarefree order in the center 3H of H.
This is an abelian characteristic subgroup of H; and it follows from our
hypotheses that the rank of § and the number of S-relevant primes are
finite. Consequently S is the direct product of finitely many primary
elementary abelian groups and these primary components are finite so
that § itself is finite.

The intersection of all the subgroups of finite index in H is 1, a8
follows from our definition of J and H = G[J. To every element x £ 1
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in § there exists consequently a subgroup 2’ of H with finite [H : ']
which does not contain z. As 2’ possesses but a finite number of con-
jugates in H, there exists a normal subgroup %'’ of H with 2" < &' and
finite H [z"'. Clearly # is not contained in #'* either. If L is the intersec-
tion of all the mormal subgroups '’ for @ = 1 in 8, then L is a normal
subgroup of H and H/L is finite, since S is finite. Furthermore Lng = 1.
If L1, then LngH # 1, since the epimorphic image H of G is nilpo-
tent (ef. for instance Baer [3], p. 192, Lemma 2.1). But H is a torsion group.
Hence L n3H = 1 contains elements of order a prime; and this impliés

is finite.

From the finiteness of ¢/J and the construction of J we deduce
that J is free of finite epimorphic images, not 1. The subgroup J of the
nilpotent group @ is likewise nilpotent; (cf. Baer [3], p. 192, Lemma 2.2).
Application of Lemma 1.1 shows the commutativity of ..

Clearly J is an abelian torsion group and its subgroup of elements
of squarefree order is finite, since the rank of J and the number of J-rele-
vant primes is finite. It follows that the minimum condition is satisfied
by the subgroups of J (cf. Fuchs [6], pp. 68, 19). From the finiteness

of G/J we deduce finally that the minimum condition is satisfied by

the subgroups of G.

,Remaj.r?& 1.3. It is worth noting that nilpotent groups with mini-
mum condition always possess an abelian subgroup of finite index (cf.
Baer [4], p. 7/8, Satz 2.1).

‘ '2. It will be convenient to term the group @ an m-group, if the
minimum condition is satisfied by the subgroups of ¢; and we Shi,hll terni
G an mn-group, if the minimum condition is satisfied by the normal
supgroups of @.— If ¢ is any group theoretical property, then the group
Gf i termed an em-group, if it is both an e-group and an m-group; aﬁd
similarly we term @ an emn-group, if @ is at the same time an e-é"mu-p
and an mn-group. ‘

The properties ¢ that we admit to our discussion will be subject to
[some or all of] the following requirements:
I. Subgroups and epimorphic images of e-groups are e-groups.
IL. Direct products of two e-groups are e-groups.

III. Extensions of em-groups by finite ¥
henoe o gaenne) groups by ¢ groups are e-groups [and

IV. Extensions of finite
groups by em-gr are e-gr g [0
hence em-groups]. D8 by groups are e-groups [and

. giong of belia; o ] Y = P8 @ -,
oups by em groumps are e-groups
V. Central exten abelian m grou £ DS & group
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If the property ¢ meets requirements I-V, then by V every abelian
m-group is an e-group; and it is a consequence of IIT that every m-group
possessing an abelian subgroup of finite index fthe so-called almost abe-
lian m-groups] are em-groups. It seems to be an open question whether
there exist any further m-groups; and thus it is conceivable that in every
cage all m-groups are e-groups.

If ¢ is any group theoretical property, then r@ is for any group @
the intersection of all normal subgroups X of G such that G/X is an g-group.
Clearly this is a group theoretical functor which attaches to every group
@ a characteristic subgroup tG. Furthermore we term the group H an
t*-group, if every epimorphie image, not 1, of H possesses a normal sub-
group, not 1, in which an r-group of automorphisms is induced by H.
This derived group theoretical property t* and the derived group the-
oretical functor r are connected by the following relations.

LeEMMA 2.1. If the group theoretical property t s inherited by subgroups
and epimorphic images, then

(a) t* s inherited by subgroups and epémorphic images;

(b) to every mormal subgroup N #1 of an t*-group @, there exists
a normal subgroup J of G with 1= J = N and t-quotient group @fed;

(e) tG 4s milpotent for every t*-group G.

For proofs cf. Baer [3], p. 192/193, Lemmata 2.1, 2.2 and 2.5.

LevmA 2.2. If the group theoretical property t meets TequUirements
I and IL, then

(a) G/t@ is an t-group for every wn-group G;

(b) the mu-group & is an t*-group if and only if rG is nelpotent.

Proof. If G is an wmn-group, then there exists among the normal
subgroups X of G with g-quotient group G/X a minimal one, say M.
Olearly 1G < M. If X is any normal subgroup of ¢ with g-quotient group
G/X, then G/(MnX) is isomorphic to a subgroup of the direct product
of the g-groups G/M and G/X so that ¢/(MnX) is by I and IT itself an
t-group. Application of the minimality of M shows M = MnX = X,
proving M < tG and (a).— (b) i8 & fairly immediate consequence of (a)
and Baer [3], p. 194, Satz 2.6.

PROPOSITION 2.3. If the group theoretical property ¢ meeis the require-
ments L-V, then the group G is an em-group if and only if

(a) G is an ewtension of an em-group by an em-group and

(b) & s an e*-group.

Proof. Only the sufficiency of the conditions (a), (b) needs veri-
fieation: by (a) there exists a normal subgroup N of @ such that N and
G/N are em-groups. As extensions of m-groups by m-groups are m-groups,
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we find that
(1) G is an m-group.

Application of Lemma 2.2 [and (1)] shows that
(2) ¢@ is nilpotent and G/e@ is an e-group.

Since @/N is an e-group, we have ¢e@ < N; and since N is an e-group,
we deduce from I that

(3) eG is an e-group.

Because of (1) and Lemma 2.2, (a) there exists a subgroup M of
¢G with the property:

The subgroup S of eG contains M if and only if [eG: 8] dis finite.

It follows that M is the intersection of all the subgroups of finite
index in ¢@; and as such M is a characteristic subgroup of the character-
istic subgroup eG of G and hence a characteristic subgroup of @. The
group G/M is an extension of the finite group e¢G/M by the em-group
@GleG — see (1) and (2). It follows from IV that G/M is an e-group.
Hence M < ¢G = M so that M = eG. As M has been shown to be the
intersection of all the subgroups of finite index in e@, we have shown

(4) eG is free of proper subgroups of finite index.

It follows from (1) and (2) that e@ is a nilpotent torsion group. Be-
cause of (4) we may apply Lemma 1.1 on the normal subgroup @ of e¢@.
It follows that .

(5) ‘ e@ is abelian.

Becanse of (1) and Lemma 2.2, (a) there exists a subgroup G of &
with the property:

(6) A subgroup § of @ contains f@ if and only if [G: 8] is finite.

Because of (1) and (5) the group eG is an abelian m-group. Thus
e contains to every positive integer » only a finite number of solutions
of the equation 2" =1 (see Fuchs, [6], p. 65, Theorem 19.2). If ¢ is any
element in the abelian torsion group e@, there exists consequently
a finite characteristic subgroup T of ¢G which contains t. Then 7T is
a finite characteristic subgroup of @ so that eI is a characteristic sub-
group of finite index in @. It follows that & < ¢;T'; and this implies
that ¢ is centralized by {¢. Hence ¢@ is centralized by {G. By IV finite

groups are e-groups. The finite group G/f¢ is consequently an e-group so
that ¢4 = fG. Thus we have shown:

(M) G < 3f@.
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The subgroup {G /e of @/e@ is by (2) and (1) an em-group. It follows
from (7) that f@ is a central extension of the abelian m-group ¢G by the
em-group {G/eG. Application of V shows that {@ is an em-group. Conse-
quently @ is an extension of the em-group fG by the finite group G/iG;
and application of III shows that G itself is an em-group.

Remark 2.4. We have not been able to decide whether condition
(b) is indispensable. The construection of an example showing the indis-
pensability of (b) should prove difficult in view of the fact that it would
have to be an m-group without abelian subgroups of finite index; see
the remarks appended to the statement of the postulates I-V.

3. We are now ready to prove our principal result.
THEOREM 3.1. If the property e meets requirements 1-V, then the fol-
lowing properties of the group G are equivalent:

(i) G is an em-group.

(a) G is an mu-group.

(b) @ is an e*-group.

(¢) If M is an abelian minimal normal subgroup of the epimor-

(ii) phic image H of G, and if H[cgM 1is an e-group, then M is
finite.

(d) If H is an epimorphic image of @ with emH[eH 1, then
there exists a normal subgroup N # 1 of H with finite N'.

a) @ is an mu-group.

b) G is an (em)*-group.

¢) If M is a minimal normal subgroup of the epimorphic image
H of G, and if M < 3(emH), then M 1is finite.

—
(=
j=n
|=H
~
— e~

(iv) { (a) Glem@ and em@G are mn-groups.
(b) G is an (em)*-group.
(a) Gfem@ is an Mmn-group.
(b) G is an (em)*-group.
(c) em@ is a torsion group of finite rank and the number of em@-
relevant primes is finite.

Proof. Assume first that @ is an em-group. Then G is an m-group
and a fortiori an mn-group. Since @ is an e-group, and sinee ¢ is inherited
by epimorphic images, G is an e*-group. The abelian minimal normal
subgroups of epimorphic images of G are characteristically simple abelian
m-groups and these are finite; of. Fuchs ([6], p. 65, Theorem 19.2).
Furthermore, em@ = 1; and this implies emH = 1 for every epimorphic
image H of @ Thus we have shown that (ii) is a consequence of (i)-

Assume next the validity of (ii). Then we note the identity of (ii.a)
and (iii.a). Assume next that M is a minimal normal subgroup of the
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epimorphic image H of G with M < 3(emH). Since H is by (ii.a) an
mn-group, we deduce from Lemma 2.2, (a) that H/jemH ig an em-group.
Furthermore, emH < ¢z M so that the epimorphic image H/fcpM of
HjemH is likewise an em-group. Application of (ii.c) shows the finiteness
of M and the validity of (ili.c). Assume by way of contradiction that
@ is not an (em)*-Group. Then we deduce from (iia) and Lemma
2.2, (b) that em@ is not nilpotent; and this, by definition, is equivalent
to em@ # h(em@). We form the epimorphic image H = G/h(em@). Then
emH = em@/h(emd) # 1; and recalling the definition of the hypercenter
and the construction of H we deduce 3(emH) = 1. Consider a finite nor-
mal subgroup F of H with ¥ < emH. Then L = emHnczF is a normal
subgroup of H;and emH /L is essentially the same as the group of automor-
phisms, induced in F by elements in emH. It follows that emH/L
i finite. The extension H/L of the finite group emH /L by the em-group
H/emH is (by IV) an em-group. Hence emH < L = (gF so that F is
centralized by emH. It follows that F < g(emH) = 1; and we have shown:

(+) 1 is the only finite normal subgroup of H which is part of emH.

Assume by way of contradiction that eH # 1. Then e¢H is nilpotent
by (iib) and Lemma 2.1, (¢). Hence 3(eH) # 1; and we deduce from
(ii.a) the existence of a minimal normal subgroup K of H with K < 3(eH).
Then K is abelian and ¢H < cgK. Now H/eH is an ¢-group by (il.a) and
Lemma 2.2, (a) so that the epimorphic image H/cxK of H[eH is likewise
an e-group. Application of (ii.c) shows the finiteness of K 5+ 1 in contra-
diction to (+4). Hence eH =1.

It follows that 1 5= emH = emH [¢H. Application of (‘ii.a) shows the
existence of a minimal normal subgroup J of H with J < emH. Among
the normal subgroups X of H with JnX =1 there exists a maximal one,
say R. The epimorphic image H* = H/R of H has the following prop-
erties:

eH* =R-eH[R=1, emH*=R-emHR2RJR=J #1

[because of JnR = 1]. Application of (ii.d) shows the existence of a nor-
mal subgroup N /R 1 of H* with finite (N/R). If N’ were not part of
E, then R = RN’; and we would deduce JAnRN' # 1 from the maxima-
lity of R. From the minimality of J we deduce now J = JAnRN' = RN',
since B, N and N’ are normal subgroups of H. Hence

J = J(RnJ) ~RJ|R = RN'|R = (N |R)

is finite, contradicting 1 = J < emH and (+). Hence N’ = R. Because
of Ec N and the maximality of B we have J n ¥ s 1 which implies
J = N because of the minimality of J. We have furthermore

JednN cJnR =1
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so that J is abelian. From eH = 1 {and I] we deduce that H[cxzM is
an e-group. Application of (ii. ¢) shows the finiteness of J; and this
contradiets 1< J < emH and (). This contradiction shows that @ is
an (em)*-group; and thus we have deduced (iii) from (ii).

Assume next the validity of (iii). If X is any group, then we denote
by FX the set of all the elements # in X such that the class z¥ of all the
elements, conjugate to # in X, is finite. It is well known, and easily veri-
fied, that the set FX is actually a characteristic subgroup of X;cf. Baer
[1], p. 1023, Proposition 1, or [2], p. 22, (A). Denote by F*X the uni-
quely determined characteristic subgroup of X with

FX cFX and FIXGFX =FIX/FX).
Application of Baer [2], p. 11, Theorem 1 and Corollary 1 and (iii.a)
shows that

(%) F*G/FG is finite; F(G/F*G) =1; F*¢ is an m-group.

Agsume now by way of contradiction that emG ¢ &*¢. The
characteristic subgroup L = em@nG*@ of G is then a proper sub-
group of emG. We form the epimorphic image H = G/L of G. Then
emH = emG/L # 1. From (iii.b) and Lemma 2.1, (¢) we deduce that
emH is nilpotent. Hence 3(emH) 5= 1; and we deduce from (iil.a) the ex-
istence of a minimal normal subgroup M of H with M < j{emH). Appli-
cation of (ifi.c) shows the finiteness of the normal subgroup M of H.
There exists a normal subgroup N of G with L ¢ N and N/L = M.
Then

N|L =M c emH = emG/L

so that N < em@. Hence

(NG*@)[F*G ~ N [(NnF*G) = N[(NnemGnF*G) = N[(NnL) = I

is finite so that
(¥N3*a)[F*G < F(@/F'F) =1

by (*). Hence N = F*Gnem@ = L so that 1% M = N/L =1, a con-
tradiction proving em@ = F*G. Application of () shows that em@ is an
m-group; and that G/em@ is an mn-group, is an immediate consequence
of (iil.a). Now it is clear that (iv) is a consequence of (iii).

Assume next the validity of (iv). Applying Lemma 2.2, (a) on the
mn-group G/em@ we see that Gjem@ is an em-group [since clearly
em(G/em@) = 1]. Application of Lemma 2.1, (c) shows the nilpotency
of em@ The nilpotent mn-group em@ is an m-group by a Theorem of Du-
guid and MeLain ([5], p. 396, Lemma 3.3). Application of Lemma 2.2,
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(a) on the m-group em@ shows the existence of a characteristic subgroup
¢ of em@ with the property:

(4+-+) The subgroup § of em@ contains (' if and only if [em@ : §] is finite.

Then ¢ is a characteristic subgroup of & and G/C is an extension
of the finite group em@/C by the em-group @/em@. Application of IV shows
that G/C is an em-group. Hence em@ = (' so that em@ is free of proper sub-
groups of finite index. Thus we have shown that em@ iy a nilpotent
m-group which is free of finite epimorphic images, not 1. We deduce from
Lemma 1.1 the commutativity of em@. The abelian m-group em& ig by
V an em-group. Thus we have shown that @ is an extension of the em-
group em@ by the em-group G/em@. The group G is an e*-group, since
it is, by (iv.b), an (em)*-group.

Application of Proposition 2.3 shows that G is an em-group. Hence
(i) is a consequence of (iv).

If the equivalent properties (i)-(iv) are satisfied by @, then it is
clear that @ femG is an mn-group, that G is an (em)*-group and that emt=1.
Thus (v) is a consequence of the equivalent conditions (i)-(iv).

Assume conversely the validity of (v). Then it iy a consequence of
(v.a) and Lemma 2.2, (a) that

(1) Glem@G is an em-group;

and we deduce from (v.b) and Lemma 2.1, (¢) that

(2) em@ is nilpotent.

It is a consequence of (v.c), (2) and Lemma 1.2 that

(3) em@ is an m-group.

Combining (1), (3) and (v.b) we see that (iv) is a consequence of (v),

proving the equivalence of (i)-(v).
Remark 3.2. The reader should observe that the. condition:

G is an mn-group

has been needed only to assure the applicability of Lemma 2.2 and the
existence of minimal normal subgroups contained in certain mormal
subgroups, not 1.— It is evident that condition (iv.a) iy congiderably
stronger than the condition that & be an mn-group.— When deriving
(iii) from (ii) it has become evident that (ili.c) is just a weak form of
(ii.c) whereas (ii.b) is considerably weaker than (iii.b). A more detailed
analysis of the various conditions may be found in section 5.

, CoroLLARY 3.3. The following properties of the group G are equiva-
lent: .
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(i) G is an m-group.

(a) G is an mn-group.

(b) Abelian minimal normal subgroups of epimorphic images

(if) of G are finite.

(¢) If H is an epimorphic image of G with mH = 1, then there
exists a normal subgroup N %1 of H with finite N'.

(a) G is an mn-group.

(b) G is an m*-group.

(c) If M is a minimal normal subgroup of the epimorplic image
H of @, and if M < 3(mH), then M is finite.

(a) G/m@ and mG are mn-groups.
b) @ is an m*-group.
)

(i)

) |
(
") E

a) G/mG is an mu-group.

b) G is an m*-group.

¢) m@ is a torsion grouwp of finite rank and the number of m@G-
relevant primes is finite.

This is the special case of Theorem 3.1, obtained by letting ¢ be the
universal property of just being a group.

4. When applying Theorem 3.1 two extreme special cases present
themselves for inspection: the case dealt with in Corollary 3.3 where
e has been selected as the universal property of just being a group and
at the other extreme the “minimal” property which, according to an
observation made in section 2, is the property of being an m-group posses-
sing an abelian subgroup of finite index. In the present section we shall
concern ourselves with just this case.

ProPOSITION 4.1. The following properties of the almost abelian group
@G are equivalent:

(1) @ is an m-group.

(ii) G is an mn-group.

(iii) @ 4s a forsion group of finite rank and the number of G-relevant
primes s finite.

Terminological note. Groups possessing abelian snbgroups of
finite index are termed almost abelian.

Proof. By hypothesis there exists an abelian subgroup of finite
index; and it is a fairly immediate consequence of Poincaré’s Theorem
that this abelian subgroup of finite index in @ contains a necessarily
abelian normal subgroup 4 of G with finite G/A.

Tt is clear that (ii) is a consequence of (i).— If (i) is satisfied by @,
then @ induces in its abelian normal subgroup 4 a finite group I' of
automorphisms. Sinee the normal subgroups of &, contained in 4, are
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just the Iadmissible subgroups of 4, the minimum condition is satisfied
by the I-admissible subgroups of A. Application of Baer ([2], p. 4/5,
Lemma 1) shows that the abelian torsion group 4 is an m-group. Hence
A is the direct product of finitely many primary groups of rank 1; see
Fuchs ([6], p- 65, Theorem 19.2). Thus 4 is a torsion group of finite rank
and the number of A-relevant primes is finite. Since G/A4 is finite, it
follows that G is a torsion group of finite rank and that the number of
G-relevant primes is finite. Hence (iii) is a consequence of (ii).

Tf (iii) is satisfied by @, then A is an abelian torsion group of finite
rank and the number of A-relevant primes is finite. Hence A is the direct
product of finitely many primary groups 4,; and the number of ele-
ments of order p in A, is finite. This implies that 4 is an m-group (sece
Fuchs [6], p. 68, 19). The extension of the mi-group 4 by the finite
group G/4 is an m-group so that (i) is a consequence of (iii) proving the
equivalence of (i)-(iii).

In the sequel we shall denote the property of being almost abelian
by aa. It is trivial that this property meets the basic requirements I-IIT.
Beyond these it satisfies:

E. An extension of an aom-group by an aam-group is an QaAM-group.
(See Baer [4], p. 14, Folgerung 2.6.) It is clear that the properties IV
and V are consequences of BE. Thus aa meets all the requirements I-V.
We note furthermore that

awm = aamn

is a consequence of Proposition 4.1 — the equivalence of (i) and (ii).
THEOREM 4.2. The following properties of the group G are equivalent:

(i) G is an aam-group.

(a) @ 45 an mu-group.

(b) @ is an (aa)*-group.

(e) If M is a minimal normal subgroup of the epimorphic image
H of @, and if M < 3(aaH), then M is finite.

(i) {(a) GfoamG and cemG are wmn-groups.
(b) G is an (aa)*-group.

(it)

(a) G/aam@ is an mn-group.
(iv) (v) @ v_ls an (m'x)*-group. .
() G is a torsion group of finite rank and the mumber of Q-rele-
vant primes is. finite.

Proof. If we let e=aa in Theorem 3.1, then the condition (i) of Theo-
rem 31 andnour present condition (i) are identical whereas our present
conditions (ii) and (iii) are consequences of the conditions (iii) and (iv)
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of Theorem 3.1, respectively. Thus our present conditions (ii) and (iii)
are consequences of (i).

If (ii) is true, then we deduce from (ii.a) that every epimorphic image
H of G which is an aa-group is an aamn-group and hence an aam-group.
Thus G is an (aam)*-group and we have aaH = aamH for every epimorphic
image H of G. Hence condition (iii) of Theorem 3.1 is true and this implies
that G is an aam-group.

If (ifi) is true, then we deduce from (iii.a) that & is an mn-group. It
follows from (iii.b) and Proposition 4.1 that G is an (aam)*-group. Con-
sequently condition (iv) of Theorem 3.1 is satisfied by &; and it follows
that @ is an aam-group. Thus we have shown the equivalence of our con-
ditions (i)-(iii).

If the equivalent conditions (i)-(iil) are satisfied by &, then the con-
ditions (iv.a) and (iv.b) are likewise true. The validity of (iv.c) is a con-
sequence of Proposition 4.1. Assume conversely the validity of condi-
tion (iv). If the epimorphic image J of ¢ is an aag-group, then J is by
(iv.e) a torsion group of finite rank and the number of Jrelevant primes
is finite. Application of Proposition 4.1 shows that J is an aam-group.
From (iv.b) we deduce that & is an (aam)*-group. Now it is clear that
our present condition (iv) implies the validity of condition (v) of Theorem
3.1; and this proves the equivalence of our eonditions (i)-(iv).

Remark 4.3. If ¢/aam@ is an mn-group, then we deduce from Lemma
2.2, (a) that GJaam@ is an aam-group; and this implies:

(iv.a®) Glaam@ is an aa-group.

It is clear that (iv.a*) is a weaker condition than (iv.a). But (iv.a) is
a consequence of (iv.a*) and (iv.d), as follows from Proposition 4.1. Thus
we may substitute for (iv.a) the weaker condition (iv.a*). Whether it
is possible to dispense altogether with econdition (iv.a), we have not been
able to decide.

Remark 4.4. We have pointed out before that it is an open question
whether or not all m-groups are ag-groups. If this should be true, then
the conditions (iil) and (iv) of Corollary 3.3 would appear to be stronger
than the conditions (ii) and (iii) of Theorem 4.2, respectively, whereas
conditions (i) of Corollary 3.3 and (i) of Theorem 4.2 would be identical.

5. In this section we are going to construct some examples ghow-
ing the indispensability of certain conditions appearing in our principal
theorems.

ExamprE 5.1. Suppose that X is the group of all permutations of
some countably infinite set ©. The permutations in X which move only
o finite number of elements and effect an even permutation in the [fi-
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nite] subset of & actually moved form a normal subgroup 4 of X, the
so-called alternating group on &.

Tt is a well-known Theorem of Schreier-Ulam that
1) 4 is a simple group.

For a proof, see Specht [7], p. 65, Satz 36.

If p is a prime, then we may divide © into mutually disjoint 2p-ele-
ment subsets P;. To every 4 there exists a permutation in 4 which leaves
invariant every element, not in P;, and which induces an even permu-
tation of order p in P;. These permutations commute pairwise and gen-
erate therefore an infinite elementary abelian p-group. Thus we have
shown:

(@)
Combination of (1) and (2) shows that

3)

Combining (1) and (3) with the fact that A is obviously not abelian we
see that

(4)

Since every permutation in 4 moves but a finite number of elements,
its order is finite too, proving that

(8)
This example shows the indispensability of conditions (ii.e), (iii.b), (iv.b)
of Corollary 3.3 and of conditions (ii.b), (iii.b) of Theorem 4.2.

. EXAMPLE 52 Denote by P = P, the essentially uniquely deter-
mmgd algebraically closed, absolutely algebraic field of characteristic p,
a prime; and denote by € = €, the multiplicative group of the elements,
not 0, in P. This is a group of roots of unity whose abstract characteri-
zation is given by the following properties:

. €, is an abelian torsion group of rank 1; the p-component of G,
is 1 and the g-component for g # p is a group of Priifer’s type ¢*.
It is a consequence of these properties that
(a) isomorphic subgroups of &, are identical
and that
' (b) the group I'is isomorphic to a subgroup of €, if and only if I’
is an abelian torsion group of rank 1 without elements of order p.
Consider now any subgroup I" of €,. It is a subset of P, which spans

a cerbain subring K of P,. Since P is an absolutely algebraic fiel i
it g » y algebraic field, K is

A containg infinite elementary abelian p-groups.

4 is an mn-group, but not an m-group.

Ad=md and sma)=1.

4 is a torsion group.
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Denote now by A the additive group of the elements in the field
K. Then A is an [additively written] elementary abelian p-group which
may be finite or infinite. The subgroup I" of K acts on A as group of
automorphisms [by multiplication]; and K is the ring of endomorphisms
of A spanned by I. It follows that 0 and A are the only I-admissible
subgroups of 4; a fact that we express shortly by saying:

(e) I' is an irreducible group of automorphisms of the elementary
abelian p-group A.

Combining (b) and (¢) we obtain the statement:

(d) If I" is an abelian torsion group of rank 1 without elements of
order p, then I' acts as an irreducible group of automorphisms on an
elementary abelian p-group A.

If we congider A again as a multiplicatively written group, then it
is a normal subgroup of its holomorph; and I' is a subgroup of its holo-
morph. Within the holomorph of 4 we may form the product ¢ = AI.
Tt is clear that A is its own centralizer in G; and we deduce from (d)
that A4 is a minimal normal subgroup of G. Thus we have translated (d)
into the following statement:

(e) If @ is an abelian torsion group of rank 1 without elements of
order p, then there exists an extension & of an elementary abelian p-group
A by Q such that 4 = ¢gd is a minimal normal subgroup of ¢ [and A
is contained in every normal subgroup, not 1, of G].

Note. A similar constriction, due to Ph. Hall, has been used by Du-
guid-MeLain ([5], p- 398).

If we select in particular the group ¢ [in (e)] as an infinite m-group —
for instance, as & group of Priifer’s type ¢* — then we obtain a group G
with the following properties:

@ is a locally finite mn-group, but not an m-group;
G’ =1; @ =mG = ald;
@/m@ is an abelian m-group of rank 1;
G is an (aom)*-group.

This shows the indispensability of Conditions (ii.b), (iii.c), (iv. a, second
half), (v.¢) of Corollary 3.3 and of conditions (ii.c), (iii.a, second half),
(iv.c) of Theorem 4.2. Note that @ is a locally finite metabelian group.
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On certain elliptic functions of order three
by
P. Du VAL (London)

1. The parametrisation of the general plane cubic curve, in the form
1) ¥ =48 — g.0—gs,
where ¢,, g, are constants, by means of the Weierstrassian elliptic func-
tions
T =fu, y=4ppu
is familiar. There is, however, another canonical form of the equation of
the cubic, in terms of homogeneous coordinates (z,¥,2)

(2) a*+yP L +b6mayz =0,

which from a geometrical point of view is at least as important as (1)
and the elliptic functions by which this equation can be parametrised
have not, so far as I know, received attention. A brief study of their
outstanding properties is the object of this note.

2. We denote by 2 a lattice of complex numbers o = pw;+ qws,
where p, g range over all integers, and I(w,/w;) > 0. (I(r) denoting the
imaginary part of any complex number z.) n will denote the lattice
of numbers nw for all » in Q. o, ®, are a basis for 2. We define also

Wy = —W;— W, @ = 0;— 0.

Q has four sublattices 2P (5 =1,2,3,4) (i.e. subgroups with respect
to addition) of index three, with the bases

wgl) = oy, w(lz) = 3wy, w?) = 20;— W, w£4) = 20,+ 03,
(3) ) (2) (3) (4) 92
wy) = 3wy, W57 == g, of! = —w;+ 2w, wy! = 0+ 20,,

of which Q® contains o; but none of the other three of w;, wy, ws; w,.
30 is a sublattice of index three in each of these; in fact, with fhe con-
vention (3) as to their bases

(4) 30 = (Q(U)@) — (9(2))(1) — (Q(3))(4) — (9(4))(3)‘
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