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Nonexistence of twentieth power residue difference sets
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1. Introduction. Let Fp denote the field of p elements, where p is prime.
A subset H ⊂ Fp is a difference set (mod p) if there is a fixed integer λ > 0
such that every element of F∗p can be written as a difference of two elements
of H in exactly λ ways.

Let Hk = Hk,p denote the set of (nonzero) kth power residues (mod p),
where k > 1 and p is a prime of the form p = kf + 1. If Hk is a difference
set (mod p), it is called a kth power residue difference set . If Hk ∪ {0} is
a difference set (mod p), it is called a modified kth power residue difference
set .

By 1953, the kth power residue and modified kth power residue difference
sets had been found for k = 2, 4, and 8 (see [3], [2, Chapter 5]). In the period
1953–1967, the combined work of seven authors showed the nonexistence of
such difference sets for all other k < 20; see the book [1] or [2, Chapter 5]
for references.

In 1970, Muskat and Whiteman [4] obtained partial results for the case
k = 20 by showing that H20 and H20 ∪{0} are never difference sets (mod p)
when 5 is a quartic residue (mod p). Regarding the remaining case where 5
is a quartic nonresidue (mod p), they wrote: “Efforts to prove that there
are no residue difference sets or modified residue difference sets. . . were
unsuccessful.” (See [4, p. 215].)

The purpose of this note is to complete the proof that H20 and H20∪{0}
are never difference sets (mod p). This solves Research Problem 11 in [2, p.
497]. (Research Problem 12, the analogous problem for k = 24, is still open.)

2. Strategy and notation. Let (i, j), 0 ≤ i, j ≤ 19, denote the cyclo-
tomic numbers of order 20 with respect to a fixed primitive root g (mod p),
where p = 20f + 1. Assume for the purpose of contradiction that H20 or
H20 ∪ {0} is a difference set (mod p). Then ([3], [4, p. 214]) f is odd, 5 is a
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quartic nonresidue (mod p), and

1600(0, 0) = 4p− 80− 4ν2,(1)

1600(i, 0) = 4p− 76 + 8ν, 1 ≤ i ≤ 9,(2)

where

(3) ν =
{−1 if H20 is a difference set,

19 if H20 ∪ {0} is a difference set.

The cyclotomic numbers in (1) and (2) are expressed in the tables of [4] as
linear combinations of p, 1, c, d, x, u, v, w, and dj (0 ≤ j ≤ 19), where these
integral parameters are as defined in [4]. In particular (see [4, eqs. (4.14),
(4.1), (2.18), (2.17)]),

p = c2 + 5d2,(4)

16p = x2 + 125w2 + 50u2 + 50v2,(5)

x ≡ 1 (mod 5),(6)

xw = v2 − u2 − 4uv,(7)

p =
∣∣∣

9∑

j=0

djζ
j
∣∣∣
2
, where ζ = exp(2πi/20),(8)

and

(9) dj = −dj−10 for 10 ≤ j ≤ 19.

If we formally expand

(10)
9∑

j=0

djζ
j

9∑

j=0

d9−jζj − pζ9,

and then make the substitutions

ζk = −ζk−10 (10 ≤ k ≤ 18),

ζ9 = ζ7 − ζ5 + ζ3 − ζ, ζ8 = ζ6 − ζ4 + ζ2 − 1,

we obtain the sum

(11)
7∑
r=0

Grζ
r,

where

G0 = −2
9∑

j=0

djdj+1,(12)

G1 = p−
9∑

j=0

d2
j −

9∑

j=0

djdj+2,(13)



Residue difference sets 399

G2 =
9∑

j=0

djdj+1 −
9∑

j=0

djdj+3,(14)

G3 =
9∑

j=0

d2
j − p−

9∑

j=0

djdj+4,(15)

G4 = G0/2, G5 = −G3, G6 = −G2 −G0, and G7 = −G1. By (8), the sums
in (10) and (11) vanish, and thus

(16) G0 = G1 = G2 = G3 = 0,

since {1, ζ, ζ2, . . . , ζ7} is a basis for Q(ζ) over Q.
Our strategy is to obtain the desired contradiction by showing that (2)

is inconsistent with (4)–(7) and (16). As was pointed out in [4, p. 215], we
need to consider just two cases. The first case is

(17) indg2 ≡ 5 (mod 10), c ≡ 6 (mod 10)

and the second case is

(18) indg2 ≡ 1 (mod 10), c ≡ 6 (mod 10).

These cases are discussed in Sections 3 and 4, respectively.

3. The case indg 2 ≡ 5 (mod 10), c ≡ 6 (mod 10). View the last nine
rows of Table 4 in [4, pp. 212–213] as a system of nine linear equations in the
nine variables d0, d4, d8, d12, d16, d1, d5, d9, and d13. Replace each 1600(i, 0)
in this system by 4p − 76 + 8ν (see (2)). Using Maple to solve this sys-
tem, we obtain expressions for the nine variables as linear combinations
of ν, c, d, x, w, u, v, d17 over Q. For example, d0 = −3(x + ν)/5. Then from
(12)–(15), each of G0, G1, G2, and G3 can be written as a quadratic polyno-
mial in p, ν, c, d, x, w, u, v over Q (d17 does not appear). These polynomials
are rather cumbersome (e.g., G1 and G3 each have 18 terms) and so we
do not write them explicitly here. A Maple program which produces these
polynomials is currently available upon request.

Reducing (2) and (5) (mod 25), and using (6), we deduce that

(19) x ≡ 5− ν (mod 25).

Also, by (3) and (17),

(20) 5ν ≡ −5 (mod 25), 5c ≡ 5 (mod 25).

We cannot have u = v = 0, in view of (5) and (7). Hence one can define

(21) u0 = u/gcd(u, v), v0 = v/gcd(u, v).

Dividing the equality 0 = G0 −G2 by gcd(u, v) and then reducing mod 25,
we obtain

0 ≡ 18xu0 + xv0 + 5cu0 + 10cv0 + 3νu0 + 21νv0 (mod 25).
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Substituting in the value of x given by (19), and then making the substitu-
tions for 5ν and 5c given by (20), we obtain

(22) 0 ≡ 10u0 − 5v0 (mod 25).

Reduction of the equality 0 = G1 + G3 modulo 25 yields, after the
substitution of x from (19),

0 ≡ 20νw + 10cw + 5d+ 20uv + 20v2 + 5u2 (mod 25).

After substitutions from (20) and (22), this becomes

(23) 0 ≡ 5d− 10w (mod 25).

From (7) and (22), we see that 5 |xw, so that by (6), 5 |w. Thus by (23),

(24) d ≡ w ≡ 0 (mod 5).

Dividing the equality 0 = G0 +G2 by gcd(u, v) and then reducing mod
25, we obtain, after the substitution of x from (19),

0 ≡ 20u0 + 10νu0 + 5cu0 + 20du0 + 15dv0 + 15v0 (mod 25).

After substitutions from (20), (22), and (24), this becomes

0 ≡ 20u0 (mod 25).

Then 5 |u0, which contradicts (22), because gcd(u0, v0) = 1 by (21). This
completes the proof that H20 and H20 ∪ {0} are never difference sets in the
case (17).

4. The case indg 2 ≡ 1 (mod 10), c ≡ 6 (mod 10). We express G0, G1,
G2 and G3 as quadratic polynomials just as in Section 3, except that instead
of using the last nine rows of Table 4, we use rows 21, 22, 38, 40, 52, 55, 63,
67, 71 of Table 1 in [4, pp. 204–207]. The polynomials are more complicated
than those in Section 3; for example, G3 has 28 terms instead of 18.

Since f is odd, p ≡ 5 (mod 8). Since c is even by (18), and p = c2 + 5d2

by (4), it follows that 4 | c. Write

(25) c = 4c2,

where c2, as well as each parameter introduced below, is integral. Since ν is
−1 or 19 by (3), write

(26) ν = −1 + 4ν2.

By (2),

(27) p = 19− 2ν + 16p4.

From [2, Theorem 3.7.9, p. 135], we can write

x = 1 + 2x1,(28)

u = 2u1,(29)
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v = x+ u+ 4s2.(30)

Further, from [2, eq. (3.7.46), p. 135],

(31) w = x− 2u+ 8t3.

Write

(32) E := −xw + v2 − u2 − 4uv,

so that E = 0 by (7).
From E/8 ≡ 0 (mod 2), we see that t3+s2 is even. From 4G1 ≡ 0 (mod 2),

we see that 1 + u1 + s2 is even. Thus

s2 = 1 + u1 + 2s3,(33)

t3 = 1 + u1 + 2t4.(34)

We now consider separately the two cases d ≡ ±1 (mod 4).

Case 1: d ≡ −1 (mod 4). In this case, write

(35) d = −1 + 4d2.

From E/16 ≡ 0 (mod 2), we see that 1 + s3 + t4 is even. From G0/2 ≡
0 (mod 2), we see that x1s3 +u1 +t4 is even. From G1 ≡ 0 (mod 2), x1s3 +u1

is even, so that t4 is even and s3 is odd. From G2 ≡ 0 (mod 2), x1u1 + x1

is even. From G3 ≡ 0 (mod 2), x1u1 + x1 + u1 is even. Combining these five
results, we can write

t4 = 2t5,(36)

s3 = 1 + 2s4,(37)

u1 = 2u2,(38)

x1 = 2x2.(39)

From these formulas we arrive at

(40) G1/2 +G2/2 + E/32 ≡ 1 (mod 2),

which is a contradiction, since G1 = G2 = E = 0.

Case 2: d ≡ 1 (mod 4). In this case, d ≡ −ν (mod 8), since by (7), (25),
and (27), 19− 2ν ≡ p ≡ 5d2 (mod 16). Thus write

(41) d = −ν + 8d3.

From E/16 ≡ 0 (mod 2), we see that 1 + s3 + t4 is even. From G0/2 ≡
0 (mod 2), x1s3 is even. From G1 ≡ 0 (mod 2), u1 is even. From G2 ≡
0 (mod 2), 1 + x1t4 is even. From G3 ≡ 0 (mod 2), x1 + x1t4 is even. Com-
bining these five results, we can write

t4 = 1 + 2t5,(42)

s3 = 2s4,(43)
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u1 = 2u2,(44)

x1 = 2x2 + 1.(45)

From E/32 ≡ 0 (mod 2), 1+u2 +t5 +s4 is even. From G0/4 ≡ 0 (mod 2),
s4 + ν2 is even. From G1/2 ≡ 0 (mod 2), ν2 + u2 + x2 + t5 + s4 is even.
Combining these three results, we can write

s4 = −ν2 + 2s5,(46)

x2 = 1− ν2 + 2x3,(47)

t5 = 1− ν2 + u2 + 2t6.(48)

From these formulas, we arrive at

(49) G0/8 +G1/4 +G3/4 ≡ 1 (mod 2),

which is a contradiction, since G0 = G1 = G3 = 0.
The contradictions obtained in Cases 1 and 2 complete the proof that

H20 and H20 ∪ {0} are never difference sets in the case (18).
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