
ACTA ARITHMETICA
LXXXIX.2 (1999)

Hankel determinants for the Fibonacci word
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1. Introduction. The aim of this paper is to give a concrete and inter-
esting example of the Padé approximation theory as well as to develop the
general theory so as to find a quantitative relation between the Hankel de-
terminant and the Padé pair. Our example is the formal power series related
to the Fibonacci word.

The Fibonacci word ε(a, b) on an alphabet {a, b} is the infinite sequence

ε(a, b) = ε̂0ε̂1 . . . ε̂n . . .(1)

:= abaababaabaab . . . (ε̂n ∈ {a, b}),
which is the fixed point of the substitution

(2) σ : a→ ab, b→ a.

The Hankel determinants for an infinite word (or sequence) ϕ = ϕ0ϕ1 . . .
(ϕn ∈ K) over a field K are

(3) Hn,m(ϕ) := det(ϕn+i+j)0≤i,j≤m−1 (n = 0, 1, . . . ; m = 1, 2, . . .).

It is known [2] that the Hankel determinants play an important role in
the theory of Padé approximation for the formal Laurent series

(4) ϕ(z) =
∞∑

k=0

ϕkz
−k+h.

Let K((z−1)) be the set of formal Laurent series ϕ as above of z with coeffi-
cients inK and h ∈ Z providing a nonarchimedean norm ‖ϕ‖ := exp(−k0+h)
with k0 = inf{k : ϕk 6= 0}. Let ϕ be as above with h = −1. We say that a
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pair (P,Q) ∈ K[z]2 of polynomials of z over K is a Padé pair of order m for
ϕ if

(5) ‖Qϕ− P‖ < exp(−m), Q 6= 0, degQ ≤ m.
A Padé pair (P,Q) of order m for ϕ always exists and the rational func-
tion P/Q ∈ K(z) is uniquely determined for each m = 0, 1, . . . The element
P/Q ∈ K(z) with P,Q satisfying (5) is called the mth diagonal Padé ap-
proximation for ϕ. A number m is called a normal index if (5) implies
degQ = m. Note that P/Q is irreducible if m is a normal index, although it
can be reducible for a general m. A normal Padé pair (P,Q), i.e., degQ is a
normal index, is said to be normalized if the leading coefficient of Q is equal
to 1. It is a classical result that m is a normal index for ϕ if and only if the
Hankel determinant det(ϕi+j)0≤i,j≤m−1 is nonzero. Note that 0 is always
a normal index and the determinant for the empty matrix is considered to
be 1, so that the above statement remains valid for m = 0.

We succeed in obtaining a quantitative relation between the Hankel de-
terminant and the normalized Padé pair. Namely,

(6) det(ϕi+j)0≤i,j≤m−1 = (−1)[m/2]
∏

z;Q(z)=0

P (z)

for any normal index m with the normalized Padé pair (P,Q), where∏
z;Q(z)=0 indicates a product taken over all zeros z of Q with their multi-

plicity (Theorem 6).
We are specially interested in the Padé approximation theory applied to

the Fibonacci words ε := ε(1, 0) and ε := ε(0, 1), where 0, 1 are considered
as elements in the field Q, since we have the following remark.

Remark 1. Let M be a matrix of size m×m with entries consisting of two
independent variables a and b. Then detM = (a− b)m−1(pa+ (−1)m−1qb),
where p and q are integers defined by

p = detM |a=1, b=0, q = detM |a=0, b=1.

P r o o f. Subtracting the first column vector from all the other column
vectors of M , we see that detM is divisible by (a− b)m−1 as a polynomial
in Z[a, b]. Hence, detM = (a − b)m−1(xa + yb) for integers x, y. Setting
(a, b) = (1, 0), (0, 1), we get the assertion.

In Section 2, we study the structure of the Fibonacci word, in particular,
its repetition property. The notion of singular words introduced in Z.-X. Wen
and Z.-Y. Wen [5] plays an important role.

In Section 3, we give the value of the Hankel determinants Hn,m(ε) and
Hn,m(ε) for the Fibonacci words in some closed forms. It is a rare case where
the Hankel determinants are determined completely. Another such case is
for the Thue–Morse sequence ϕ consisting of 0 and 1, where the Hankel
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determinants Hm,n(ϕ) modulo 2 are obtained, and the function Hm,n(ϕ) of
(m,n) is proved to be 2-dimensionally automatic (see [1]).

In Section 4, we consider the self-similar property of the values Hn,m(ε)
and Hn,m(ε) for the Fibonacci words. The quarter plane {(n,m) : n ≥ 0,
m ≥ 1} is tiled by 3 kinds of tiles with the values Hn,m(ε) and Hn,m(ε) on
it with various scales.

In Section 5, we develop a general theory of Padé approximation. We also
obtain the admissible continued fraction expansion of ϕε and ϕε, the formal
Laurent series (4) with h = −1 for the sequences ε and ε, and determine
all the convergents pk/qk of the continued fractions. It is known in general
that the set of the convergents pk/qk for ϕ is the set of diagonal Padé
approximations and the set of degrees of qk’s in z coincides with the set of
normal indices for ϕ.

2. Structure of the Fibonacci word. In what follows, σ denotes the
substitution defined by (2), and

ε̂ = ε̂0ε̂1 . . . ε̂n . . . (ε̂n ∈ {a, b})
is the (infinite) Fibonacci word (1). A finite word over {a, b} is sometimes
considered to be an element of the free group generated by a and b with
inverses a−1 and b−1. For n = 0, 1, . . . , we define the nth Fibonacci word Fn
and the nth singular word Wn as follows:

(7) Fn := σn(a) = σn+1(b), Wn := βnFnα
−1
n ,

where we put

(8) αn = βm =
{
a (n even, m odd),
b (n odd, m even),

and we define W−2 to be the empty word and W−1 := a for convenience.
Let (fn;n ∈ Z) be the Fibonacci sequence:

(9) fn+2 = fn+1 + fn (n ∈ Z), f−1 = f0 = 1.

Then |Fn| = |Wn| = fn (n ≥ 0), where |ξ| denotes the length of a finite
word ξ.

For a finite word ξ = ξ0ξ1 . . . ξn−1 and a finite or infinite word η =
η0η1 . . . over an alphabet, we denote

(10) ξ ≺k η
if ξ = ηkηk+1 . . . ηk+n−1. We simply write

(11) ξ ≺ η
and say that ξ is a subword of η if ξ ≺k η for some k. For a finite word
ξ = ξ0ξ1 . . . ξn−1 and i with 0 ≤ i < n, we denote the ith cyclic permutation
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of ξ by Ci(ξ) := ξiξi+1 . . . ξn−1ξ0ξ1 . . . ξi−1. We also define Ci(ξ) := Ci′(ξ)
with i′ := i− n[i/n] for any i ∈ Z.

In this section, we study the structure of the Fibonacci word ε̂ and discuss
the repetition property. The following two lemmas were obtained by Z.-X.
Wen and Z.-Y. Wen [5] and we omit the proofs.

Lemma 1. We have the following statements:

(1) ε̂ = FnFn−1FnFn+1Fn+2 . . . (n ≥ 1),
(2) Fn = Fn−1Fn−2 = Fn−2Fn−1β

−1
n α−1

n βnαn (n ≥ 2),
(3) FnFn ≺ ε̂ (n ≥ 3),
(4) ε̂ = W−1W0W1W2W3 . . . ,
(5) Wn = Wn−2Wn−3Wn−2 (n ≥ 1),
(6) Wn is a palindrome, that is, Wn stays invariant under reading the

letters from the end (n ≥ −2),
(7) Ci(Fn) ≺ ε̂ (n ≥ 0, 0 ≤ i < fn),
(8) Ci(Fn) 6= Cj(Fn) for any i 6= j, moreover , they are different already

before their last places (n ≥ 1, 0 ≤ i < fn),
(9) Wn 6= Ci(Fn) (n ≥ 0, 0 ≤ i < fn),
(10) ξ ≺ ε̂ and |ξ| = fn imply that either ξ = Ci(Fn) for some i with

0 ≤ i < fn or ξ = Wn (n ≥ 0).

Lemma 2. For any k ≥ −1, we have the decomposition of ε̂ as follows:

ε̂ = (W−1W0 . . .Wk−1)Wkγ0Wkγ1 . . .Wkγn . . . ,

where all the occurrences of Wk in ε̂ are picked up and γn is either Wk+1 or
Wk−1 corresponding to ε̂n is a or b, respectively. That is, any two different
occurrences of Wk do not overlap and are separated by Wk+1 or Wk−1.

We introduce another method to discuss the repetition property of ε̂.
Let N be the set of nonnegative integers. For n ∈ N, let

(12)
n =

∞∑

i=0

τi(n)fi,

τi(n) ∈ {0, 1} and τi(n)τi+1(n) = 0 (i ∈ N)

be the regular expression of n in the Fibonacci base due to Zeckendorf. For
m,n ∈ N and a positive integer k, we define

(13) m ≡k n
if τi(m) = τi(n) for all i < k.

Lemma 3. We have ε̂n = a if and only if τ0(n) = 0.

P r o o f. We use induction on n. The lemma holds for n = 0, 1, 2. Assume
that it holds for any n ∈ N with n < fk for some k ≥ 2. Take any n ∈ N
with fk ≤ n < fk+1. Then, since 0 ≤ n− fk < fk−1, we have
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n =
k−1∑

i=0

τi(n− fk)fi + fk,

which gives the regular expression if τk−1(n− fk) = 0. If τk−1(n− fk) = 1,
then we have the regular expression n =

∑k−2
i=0 τi(n − fk)fi + fk+1. In any

case, we have τ0(n) = τ0(n − fk). On the other hand, since ε̂ starts with
FkFk−1 by Lemma 1, we have ε̂n = ε̂n−fk . Hence, ε̂n = a if and only if
τ0(n) = 0 by the induction hypothesis. Thus, we have the assertion for any
n < fk+1, and by induction, we complete the proof.

Lemma 4. Let n =
∑∞
i=0 nifi with ni ∈ {0, 1} (i ∈ N). Assume that

nini+1 = 0 for 0 ≤ i < k. Then ni = τi(n) for 0 ≤ i < k.

P r o o f. If there exists i ∈ N such that nini+1 = 1, let i0 be the maximum
such i. Take the maximum j such that ni0+1 = ni0+3 = ni0+5 = . . . = nj
= 1. Then, replacing fi0 + fi0+1 + fi0+3 + fi0+5 + . . .+ fj by fj+1, we have
a new expression of n:

n =
∞∑

i=0

n′ifi :=
i0−1∑

i=0

nifi + fj+1 +
∞∑

i=j+3

nifi.

This new expression is unchanged at the indices less than k, and is either
regular or has a smaller maximum index i with n′in

′
i+1 = 1. By continuing

this procedure, we finally get the regular expression of n, which does not
differ from the original expression at the indices less than k. Thus, ni = τi(n)
for any 0 ≤ i < k.

Lemma 5. For any n ∈ N and k ≥ 0, τ0(n + fk) 6= τ0(n) if and only if
either n ≡k+2 fk+1 − 2 or n ≡k+2 fk+1 − 1. Moreover ,

ε̂n+fk − ε̂n =
{

(−1)k−1(a− b) (n ≡k+2 fk+1 − 2),
(−1)k(a− b) (n ≡k+2 fk+1 − 1),

where a and b are considered as independent variables.

P r o o f. If k = 0, we can verify the statement by a direct calculation.
Assume that k ≥ 1 and τk(n) = 0. Then

n+ fk =
k−1∑

i=0

τi(n)fi + fk +
∞∑

i=k+1

τi(n)fi.

By Lemma 4, we have τ0(n+ fk) = τ0(n) if k ≥ 2 or if k = 1 and τ0(n) = 0.
In the case where k = 1, τ0(n) = 1 and τ2(n) = 0, since

n+ fk = 1 + 2 +
∞∑

i=3

τi(n)fi = f2 +
∞∑

i=3

τi(n)fi,

we have τ0(n+ fk) = 0 by Lemma 4. On the other hand, in the case where
k = 1, τ0(n) = 1 and τ2(n) = 1, since
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n+ fk = 1 + 2 + 3 +
∞∑

i=4

τi(n)fi = f0 + f3 +
∞∑

i=4

τi(n)fi,

we have τ0(n+ fk) = 1 by Lemma 4.
Thus, in the case where k ≥ 1 and τk(n) = 0, τ0(n + fk) 6= τ0(n) if

and only if k = 1, τ0(n) = 1 and τ2(n) = 0, or equivalently, if and only
if n ≡k+2 fk+1 − 2 with k = 1. Note that n ≡k+1 fk+1 − 1 with k = 1
contradicts τk(n) = 0.

Now assume that k ≥ 1 and τk(n) = 1. Take the minimum j ≥ 0 such
that τk(n) = τk−2(n) = τk−4(n) = . . . = τj(n) = 1. Then since 2fi =
fi+1 + fi−2 for any i ∈ N, we have

n+ fk =
j−3∑

i=0

τi(n)fi + fj−2(14)

+ fj+1 + fj+3 + fj+5 + . . .+ fk+1 +
∞∑

i=k+2

τi(n)fi,

where the first term on the right-hand side vanishes if j = 0, 1, 2. Hence by
Lemma 4, τ0(n+ fk) = τ0(n) if j ≥ 4.

In the case where j = 3, τ0(n + fk) = τ0(n) holds if τ0(n) = 0 by (14)
and Lemma 4. If τ0(n) = 1, then by (14) and Lemma 4, τ0(n + fk) = 0.
Thus, for j = 3, τ0(n+ fk) 6= τ0(n) if and only if τ0(n) = 1.

If j = 2, then by the assumption on j, we have τ0(n) = 0. On the other
hand, since f0 = 1, by (14) and Lemma 4, we have τ0(n + fk) = 1. Thus,
τ0(n+ fk) 6= τ0(n).

If j = 1, then τ0(n) = 0 since τ1(n) = 1 by the assumption on j. On the
other hand, since f−1 = 1, we have τ0(n + fk) = 1 by (14) and Lemma 4.
Thus, τ0(n+ fk) 6= τ0(n).

If j = 0, then by the assumption on j, τ0(n) = 1. On the other hand, since
f−2 = 0, we have τ0(n+ fk) = 0 by (14) and Lemma 4. Thus, τ0(n+ fk) 6=
τ0(n).

By combining all the results as above, we get the first part.
The second part follows from Lemma 3 and the fact that for any k ≥ 0,

fk+1 − 1 = fk + fk−2 + . . .+ fi

with i = 0 if k is even and i = 1 if k is odd. Hence,

τ0(fk+1 − 1) = τ0(fh+1 − 2) =
{
a (k odd, h even),
b (k even, h odd).

Lemma 6. For any k ≥ 0, Wk ≺n ε̂ if and only if n ≡k+2 fk+1 − 1.

P r o o f. By Lemma 2, the smallest n ∈ N such that Wk ≺n ε̂ is

f−1 + f0 + f1 + . . .+ fk−1 = fk+1 − 1,
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which is the smallest n ∈ N such that n ≡k+2 fk+1 − 1. Let n0 := fk+1 − 1.
Then the regular expression of n0 is

n0 = fk + fk−2 + fk−4 + . . .+ fd,

where d = (1− (−1)k)/2. The next n with n ≡k+2 n0 is clearly

n = fk+2 + fk + fk−2 + . . .+ fd,

which is, by Lemma 2, the next n such that Wk ≺n ε̂ since fk+fk+1 = fk+2.
For i = 1, 2, . . . , let

ni = n0 +
∞∑

j=0

τj(i)fk+2+j .

Then it is easy to see that ni is the ith n after n0 such that n ≡k+2 fk+1−1.
We prove by induction on i that ni is the ith n after n0 such that Wk ≺n ε̂.
Assume that it is so for i. Then by Lemma 4, WkγiWk ≺ni ε̂. Hence, the
next n after ni such that Wk ≺n ε̂ is ni + fk + |γi|. Thus, we have

ni + fk + |γi| = ni + fk + fk+11ε̂i=a + fk−11ε̂i=b
= ni + fk+21τ0(i)=0 + fk+11τ0(i)=1 = ni+1,

which completes the proof.

Lemma 7. Let k ≥ 0 and n, i ∈ N satisfy n ≡k+1 i.

(1) If 0 ≤ i < fk, then τ0(n + j) = τ0(i + j) for any j = 0, 1, . . . ,
fk+2 − i− 3.

(2) If fk ≤ i < fk+1, then τ0(n + j) = τ0(i + j) for any j = 0, 1, . . . ,
fk+3 − i− 3.

P r o o f. (1) We prove the lemma by induction on k. The assertion holds
for k = 0. Let k ≥ 1 and assume that the assertion is valid for k − 1. For
j = 0, 1, . . . , fk − i, we have n+ j ≡k i+ j and hence, τ0(n+ j) = τ0(i+ j).
Let j0 = fk − i. Then, since n + j0 ≡k i + j0 ≡k 0, we have τ0(n + j0 +
j) = τ0(i + j0 + j) = τ0(j) for any j = 0, 1, . . . , fk+1 − 3 by the induction
hypothesis. Thus, τ0(n + j) = τ0(i + j) for any j = 0, 1, . . . , fk+2 − i − 3.
This proves (1).

(2) In this case, τk+1(n) = 0. Hence, n ≡k+2 i. Therefore, we can apply
(1) with k + 1 for k. Thus, we get (2).

Let n,m, i ∈ N with m ≥ 2 and 0 < i < m. We call n an (m, i)-shift
invariant place in ε̂ if

ε̂nε̂n+1 . . . ε̂n+m−1 = ε̂n+iε̂n+i+1 . . . ε̂n+i+m−1.

We call n an m-repetitive place in ε̂ if there exist i, j ∈ N with i > 0 and
i+ j < m such that n+ j is an (m, i)-shift invariant place in ε̂. Let Rm be
the set of m-repetitive places in ε̂.
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Lemma 8. (1) Let n ≡k+1 0 for some k ≥ 1. Then n is an (fk+1−2, fk)-
shift invariant place in ε̂.

(2) Let n ≡k+1 fk for some k ≥ 2. Then n is an (fk+1 − 2, fk−1)-shift
invariant place in ε̂.

P r o o f. (1) Since the least i ≥ n such that either i ≡k+2 fk+1 − 1 or
i ≡k+2 fk+1 − 2 is not less than n+ fk+1 − 2, by Lemma 5, we have

ε̂nε̂n+1 . . . ε̂n+fk+1−3 = ε̂n+fk ε̂n+fk+1 . . . ε̂n+fk+fk+1−3.

(2) Since the minimum i ≥ n such that either i ≡k+1 fk − 1 or i ≡k+1

fk − 2 is n+ fk+1 − 2, by Lemma 5, we have

ε̂nε̂n+1 . . . ε̂n+fk+1−3 = ε̂n+fk−1 ε̂n+fk−1+1 . . . ε̂n+fk−1+fk+1−3.

Theorem 1. The pair (n,m) of nonnegative integers satisfies n ∈ Rm
if one of the following two conditions holds:

(1) fk + 1 ≤ m ≤ fk+1 − 2, n− i ≡k+1 0 and i ≤ n for some k ≥ 1 and
i ∈ Z with fk + 1 ≤ m+ i ≤ fk+1 − 2.

(2) fk−1 + 1 ≤ m ≤ fk+1 − 2, i ≤ n and n − i ≡k+1 fk for some k ≥ 2
and i ∈ Z with fk−1 + 1 ≤ m+ i ≤ fk+1 − 2.

Remark 2. The “if and only if” statement actually holds in Theorem
1 in place of “if” since we will prove later that Hn,m 6= 0 if none of the
conditions (1) and (2) hold.

P r o o f (of Theorem 1). Assume (1) and i ≥ 0. By Lemma 8(1), n− i is
an (fk+1 − 2, fk)-shift invariant place. Then n is an (m, fk)-shift invariant
place since i+m ≤ fk+1 − 2. Thus, n ∈ Rm as fk < m.

Assume (1) and i < 0. Then, since n−i is an (fk+1−2, fk)-shift invariant
place and m ≤ fk+2−2, it is an (m, fk)-shift invariant place. Moreover, since
fk − i < m, n is an m-repetitive place.

Assume (2) and i ≥ 0. Then, n− i is an (fk+1 − 2, fk−1)-shift invariant
place by Lemma 8(2). Then, n is an (m, fk−1)-shift invariant place since
i+m ≤ fk+1 − 2. Thus, n is an m-repetitive place as fk−1 < m.

Assume (2) and i < 0. Then, since n − i is an (fk+1 − 2, fk−1)-shift
invariant place and m ≤ fk+1 − 2, it is an (m, fk−1)-shift invariant place.
Then n is an m-repetitive place, since fk−1 − i < m. Thus, n ∈ Rm.

Corollary 1. The place 0 is m-repetitive for an m ≥ 2 if m 6∈⋃∞
k=1{fk − 1, fk}.

Remark 3. The “if and only if” statement actually holds in Corollary 1
in place of “if” since we prove later that H0,m 6= 0 if m ∈ ⋃∞k=1{fk − 1, fk}.

P r o o f (of Corollary 1). Let i = 0 in (1) of Theorem 1. Then 0 is
m-repetitive if fk + 1 ≤ m ≤ fk+1 − 2 for some k ≥ 1.
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Corollary 2. Let k ≥ 2. The place n is fk-repetitive if

Wk ≺ ε̂n+1ε̂n+2 . . . ε̂n+2fk−3.

P r o o f. By (2) of Theorem 1, for any k ≥ 2, n is an fk-repetitive place if
n− i ≡k+1 fk for some i with i ≤ n and −fk−2 +1 ≤ i ≤ fk−1−2. Since the
condition n− i ≡k+1 fk is equivalent to n− i ≡k+2 fk and there is no carry
in addition of −i to both sides of n ≡k+2 fk + i, the condition n− i ≡k+1 fk
is equivalent to n ≡k+2 fk+ i. Hence, the place n is fk-repetitive if n ≡k+2 j
for some j with fk−1 + 1 ≤ j ≤ fk+1 − 2. By Lemma 6, this condition is
equivalent to Wk starting at one of the places in {n+ 1, n+ 2, . . . , fk − 2},
which completes the proof.

3. Hankel determinants. The aim of this section is to find the value
of the Hankel determinants

Hn,m := Hn,m(ε) = det(εn+i+j)0≤i,j≤m−1,

Hn,m := Hn,m(ε) = det(εn+i+j)0≤i,j≤m−1

(n = 0, 1, . . . ;m = 1, 2, . . .)

for the Fibonacci word ε(a, b) at (a, b) = (1, 0) and (a, b) = (0, 1):

ε := ε(1, 0) = 10110101101101 . . . ,

ε := ε(0, 1) = 01001010010010 . . .

It is clear that Hn,m(ε(a, b)) = 0 if n is the m-repetitive place in ε(a, b),
where a, b are considered to be two independent variables, and that, in gen-
eral, Hn,m(ε(a, b)) becomes a polynomial in a and b as stated in Remark 1.

In the following lemmas, theorems and corollary, we give parallel state-
ments for ε and ε, while we give the proofs only for ε since those for ε are
similar. The only difference is the starting point, Lemma 5, where a− b on
the right-hand side is 1 for ε and −1 for ε.

We use the following notation: for every subset S of {0, 1, 2, 3, 4, 5},
χ(k : S) is the function on k ∈ Z such that

χ(k : S) =
{−1 if k ≡ s (mod 6) for some s ∈ S,

1 otherwise.
The following corollary follows from Theorem 1.

Corollary 3. Hn,m = 0 if one of the conditions (1), (2) in Theorem 1
is satisfied. The same statement holds for Hn,m.

Lemma 9. For any k ≥ 2, we have

H0,fk = χ(k : 2, 3)(H0,fk−1 − (−1)fk−1Hfk−1,fk−1),

H0,fk = χ(k : 1, 3, 4, 5)(H0,fk−1 − (−1)fk−1Hfk−1,fk−1).
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P r o o f. The matrix (εi+j)0≤i,j<fk is decomposed into three parts:

(εi+j)0≤i,j<fk =



A
A′

B


 ,

where
A = (εi+j)0≤i<fk−2, 0≤j<fk ,

A′ = (εfk−2+i+j)0≤i<fk−3, 0≤j<fk ,

B = (εfk−1+i+j)0≤i<fk−2, 0≤j<fk .
By Lemma 5, the following two subwords of ε:

ε0ε1 . . . εfk−2+fk−2 and εfk−1εfk−1+1 . . . εfk−1+fk−2+fk−2

differ only at two places, namely, εfk−2 6= εfk−1+fk−2 and εfk−1 6=
εfk−1+fk−1. Thus, we get

(15) B −A =




(−1)k (−1)k−1

(−1)k (−1)k−1

0 . . .
(−1)k (−1)k−1 0


 .

Let A0, A1, . . . , Afk−1 be the columns of the matrix
(
A
A′
)

in order from the
left. Since

(A0A1 . . . Afk−2−2) = (εi+j)0≤i<fk−1, 0≤j<fk−2−1,

(Afk−1Afk−1+1 . . . Afk−2) = (εfk−1+i+j)0≤i<fk−1, 0≤j<fk−2−1

and

ε0ε1 . . . εfk−2+fk−1−3 = εfk−1εfk−1+1 . . . εfk−1+fk−2+fk−1−3

by Lemma 5, we get

(16) (A0A1 . . . Afk−2−2) = (Afk−1Afk−1+1 . . . Afk−2).

Thus, from (15) and (16) we obtain

H0,fk = det




A0 . . . Afk−1−1 Afk−1 . . . Afk−2 Afk−1

(−1)k (−1)k−1

(−1)k (−1)k−1

0 . . . . . .
(−1)k (−1)k−1 0




(17)

= det




A0 . . . Afk−1−1 0 . . . 0 Afk−1

(−1)k (−1)k−1

(−1)k (−1)k−1

0 . . . . . .
(−1)k (−1)k−1 0






Hankel determinants and Padé approximation 133

= (−1)(k−1)fk−2(−1)[fk−2/2] det(A0A1 . . . Afk−1−1)

+ (−1)kfk−2(−1)[fk−2/2]+fk−1 det(Afk−1A0A1 . . . Afk−1−2).

Since

ε0ε1 . . . ε2fk−1−3 = εfkεfk+1 . . . εfk+2fk−1−3

by Lemma 5, we get

det(Afk−1A0A1 . . . Afk−1−2) = det(εfk−1+i+j)0≤i,j<fk−1 = Hfk−1,fk−1 .

Thus we get

H0,fk = (−1)(k−1)fk−2(−1)[fk−2/2]H0,fk−1

+ (−1)kfk−2(−1)[fk−2/2]+fk−1Hfk−1,fk−1

= χ(k : 2, 3)(H0,fk−1 − (−1)fk−1Hfk−1,fk−1),

where we have used the fact that

(−1)(k−1)fk−2(−1)[fk−2/2] = χ(k : 2, 3).

Lemma 10. For k ≥ 2, we have

Hfk+1−1,fk = χ(k : 1, 3, 4, 5)Hfk+1−1,fk−1 ,

Hfk+1−1,fk = χ(k : 2, 3)Hfk+1−1,fk−1 .

P r o o f. Just as in the proof of Lemma 9, we decompose the matrix
(εfk+1−1+i+j)0≤i,j<fk into three parts:

(εfk+1−1+i+j)0≤i,j<fk =



A
A′

B


 ,

where
A = (εfk+1−1+i+j)0≤i<fk−2, 0≤j<fk ,

A′ = (εfk+1−1+fk−2+i+j)0≤i<fk−3, 0≤j<fk ,

B = (εfk+1−1+fk−1+i+j)0≤i<fk−2, 0≤j<fk .
By Lemma 5, the following two subwords of ε:

εfk+1−1εfk+1 . . . εfk+1+fk−2+fk−3 and

εfk+1−1+fk−1εfk+1+fk−1 . . . εfk+1+fk−1+fk−2+fk−3

differ only at two places. Namely, εfk+1+fk−2 6= εfk+1+fk−1+fk−2 and
εfk+1+fk−1 6= εfk+1+fk−1+fk−1. Therefore, we get

B −A =




(−1)k

(−1)k (−1)k−1

0 . . .
. . .

(−1)k (−1)k−1 0



.
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Thus, we have

(18) det(εfk+1−1+i+j)0≤i,j<fk

= det




A0 A1 . . . Afk−1−1 Afk−1 . . . Afk−2 Afk−1

(−1)k

(−1)k (−1)k−1

0 . . . . . .
(−1)k (−1)k−1 0




= (−1)kfk−2(−1)[fk−2/2] det(A0A1 . . . Afk−1−1)

= χ(k : 1, 3, 4, 5)Hfk+1−1,fk−1 .

Lemma 11. For any k ≥ 2, we have

Hfk+1−1,fk−1 = χ(k : 2, 5)H0,fk−1 ,

Hfk+1−1,fk−1 = χ(k : 2, 5)H0,fk−1 .

P r o o f. Since, by Lemma 5,

εfk+1−1εfk+1 . . . εfk+1+fk−1−2 = εfk+1+fk−1−1εfk+1+fk−1 . . . εfk+1+2fk−1−2,

we get

(εfk+1−1+i+j)0≤i,j<fk−1 =




0 0 1
1 · 0
· ·
· ·

0 1 0


 (εfk+1+i+j)0≤i,j<fk−1 .

Also, by Lemma 5,

(εfk+1+i+j)0≤i,j<fk = (εi+j)0≤i,j<fk .

Thus we obtain
Hfk+1−1,fk−1 = det(εfk+1−1+i+j)0≤i,j<fk−1

= (−1)fk−1−1 det(εfk+1+i+j)0≤i,j<fk−1

= χ(k : 2, 5)H0,fk−1 .

Lemma 12. For any k ≥ 3, we have

H0,fk = χ(k : 2, 3)H0,fk−1 + χ(k : 2, 4)H0,fk−2 ,

H0,fk = χ(k : 1, 3, 4, 5)H0,fk−1 + χ(k : 0, 1, 2, 3)H0,fk−2 .

P r o o f. Clear from Lemmas 9–11.

Lemma 13. For any k ≥ 0, we have

H0,fk = χ(k : 2)fk−1,

H0,fk = χ(k : 1, 2, 4)fk−2.
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P r o o f. We have

H0,f0 = 1, H0,f1 = 1, H0,f2 = −2,

H0,f0 = 0, H0,f1 = −1, H0,f2 = −1.

Thus, the assertion holds for k = 0, 1, 2. For k ≥ 3, we can prove it by
induction on k using Lemma 12.

Lemma 14. For any k ≥ 1, we have

H0,fk−1 = χ(k : 0, 4)fk−2,

H0,fk−1 = χ(k : 2, 3, 4, 5)fk−3.

P r o o f. Since the matrix (εi+j)0≤i,j<fk−1 is obtained from (εi+j)0≤i,j<fk
by removing the last row and the last column, for any k ≥ 2 we have by (17),

(19) H0,fk−1

= det




A0 A1 . . . Afk−1−1 0 . . . 0 0
(−1)k

(−1)k (−1)k−1

0 . . . . . .
(−1)k (−1)k−1 0




= (−1)k(fk−2−1)(−1)[(fk−2−1)/2] det(A0A1 . . . Afk−1−1)

= (−1)k(fk−2−1)(−1)[(fk−2−1)/2]H0,fk−1 .

Hence, in view of Lemma 13, we obtain the formula for H0,fk−1.

Theorem 2. For any m, k ≥ 1 with fk−1 < m ≤ fk and n ∈ N with
n ≡k+1 0, we have

Hn,m =




χ(k : 2)fk−1 if m = fk,
χ(k : 0, 4)fk−2 if m = fk − 1,
0 otherwise,

Hn,m =




χ(k : 1, 2, 4)fk−2 if m = fk,
χ(k : 2, 3, 4, 5)fk−3 if m = fk − 1,
0 otherwise.

P r o o f. By Lemmas 3 and 7, the matrix for Hn,m coincides with that for
H0,m so that Hn,m = H0,m. Thus, the first two cases follow from Lemmas
13 and 14. For the last case, by Corollary 1, there exist two identical rows
in the matrix (εi+j)0≤i,j<m, so that H0,m = 0.
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Theorem 3. For any k, n, i ∈ N with n ≡k+1 i and 0 ≤ i ≤ fk+1− 1, we
have

Hn,fk =





χ(k : 2)χ(k : 1, 4)ifk−1

if either τk+1(n) = 0 and 0 ≤ i < fk−1

or τk+1(n) = 1 and 0 ≤ i < fk,
χ(k : 1, 2, 4)fk−2

if either τk+1(n) = 0 and i = fk−1

or i = fk+1 − 1,
0 otherwise,

Hn,fk =





χ(k : 1, 2, 4)χ(k : 1, 4)ifk−2

if either τk+1(n) = 0 and 0 ≤ i < fk−1

or τk+1(n) = 1 and 0 ≤ i < fk,
χ(k : 2)fk−3

if either τk+1(n) = 0 and i = fk−1

or i = fk+1 − 1,
0 otherwise.

P r o o f. The assertion holds for k = 0. Let k ≥ 1.
Assume that either τk+1(n) = 0 and 0 ≤ i < fk−1 or τk+1(n) = 1 and

0 ≤ i < fk. Then by Lemmas 3 and 7 we have

εi+j = εn+j (j = 0, 1, . . . , fk − i− 1),

εi+j−fk = εn+j (j = fk − i, fk, . . . , 2fk − 2),

εj = εj+fk (j = 0, 1, . . . , fk − 1).

Hence, the columns of the matrix (εn+h+j)0≤h,j≤fk coincide with those of
(εh+j)0≤h,j≤fk . The jth column of the former is the (i + j) (mod fk)th
column of the latter for j = 0, . . . , fk − 1. Therefore, we get Hn,fk =
(−1)i(fk−i)H0,fk , which leads to the first case of our theorem by Theorem
2.

Assume that i = fk+1−1. Then Hn,fk = Hfk+1−1,fk by Lemmas 3 and 7.
Thus, by Lemmas 10–12 we get

Hn,fk = χ(k : 1, 2, 4)fk−2.

Assume that τk+1(n) = 0 and i = fk−1. Then, since n ≡k+2 i, we have
Hn,fk = Hfk−1,fk by Lemmas 3 and 7. By Lemma 1,

ξ := εfk−1εfk−1+1 . . . εfk−1+2fk−2 ≺1 Wk−2Wk−1WkWk−1Wk−2,

η := εfk+1−1εfk+1 . . . εfk+1+2fk−3 ≺fk Wk−2Wk−1WkWk−1Wk−2.

Since the last letter of η comes one letter before the last letter of the palin-
drome word Wk−2Wk−1WkWk−1Wk−2, it follows that ξ is the mirror image
of η, so that
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(εfk−1+i+j)0≤i,j<fk

=




1
0 1

·
·

1 0
1




(εfk+1−1+i+j)0≤i,j<fk




1
0 1

·
·

1 0
1



.

Thus, we obtain Hfk−1,fk = Hfk+1−1,fk and

Hn,fk = χ(k : 1, 2, 4)fk−2.

Assume that n does not belong to the above two cases. Then, since
τk+1(n) = 1 implies i < fk, we have the following condition:

τk+1(n) = 0 and fk−1 + 1 ≤ i ≤ fk+1 − 2.

This condition is nonempty only if k ≥ 2, which we assume. Then the
condition (2) of Theorem 1 is satisfied with fk (resp. i − fk) in place of m
(resp. i). Thus, by Corollary 3, Hn,fk = 0.

Lemma 15. For any k, n, i ∈ N with k ≥ 1 and n ≡k+1 i, assume that
either τk+1(n) = 0 and 0 ≤ i < fk−1 or τk+1(n) = 1 and 0 ≤ i < fk. Then

Hn,fk−1 =





χ(k : 0, 4)fk−2 (i = 0),
χ(k : 2, 3)χ(k : 1, 2, 4, 5)iHi+fk,fk−1−1

+ χ(k : 1, 2, 3, 5)χ(k : 1, 4)ifk−2 (0 < i ≤ fk−2),
χ(k : 2, 3)χ(k : 1, 2, 4, 5)iHi+fk,fk−1−1 (fk−2 < i ≤ fk−1),
χ(k : 0, 4)χ(k : 1, 4)ifk−2 (fk−1 < i < fk),

Hn,fk−1 =





χ(k : 2, 3, 4, 5)fk−3 (i = 0),
χ(k : 1, 3, 4, 5)χ(k : 1, 2, 4, 5)iHi+fk,fk−1−1

+ χ(k : 0, 1)χ(k : 1, 4)ifk−3 (0 < i ≤ fk−2),
χ(k : 1, 3, 4, 5)χ(k : 1, 2, 4, 5)iHi+fk,fk−1−1 (fk−2 < i ≤ fk−1),
χ(k : 2, 3, 4, 5)χ(k : 1, 4)ifk−3 (fk−1 < i < fk).

P r o o f. If i = 0, then the statement follows from Theorem 2. Let

Aj = t(εj , εj+1, . . . , εj+fk−1−1),

A′j = t(εj , εj+1, . . . , εj+fk−1−2),(20)

B′j = t(εj+fk−1 , εj+fk−1+1, . . . , εj+fk−1) (j = 0, 1, . . .).

Then, by the same argument as in the proof of Theorem 3, we obtain

Hn,fk−1 = det
(
Ai . . . Afk−1A0 . . . Ai−2

B′i . . . B
′
fk−1B

′
0 . . . B

′
i−2

)

= (−1)(i−1)(fk−i) det
(
A0 . . . Ai−2Ai . . . Afk−1

B′0 . . . B
′
i−2B

′
i . . . B

′
fk−1

)
.
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Therefore, if fk−2 < i ≤ fk−1, then by the same argument as for (17), we
obtain

(−1)(i−1)(fk−i)Hn,fk−1

= det




A0 . . . Ai−2Ai . . . Afk−1−1 0 . . . 0 Afk−1

(−1)k (−1)k−1

(−1)k−1

0 . . . 0
(−1)k (−1)k−1



.

Since by Lemma 5,

Afk−1 −Afk−2−1 =




0
...
0

(−1)k


 ,

we get

(−1)(i−1)(fk−i)Hn,fk−1

= det




A′0 . . . A
′
i−2A

′
i . . . A

′
fk−1−1 0 . . . 0 0

∗ . . . ∗ ∗ . . . ∗ 0 . . . 0 (−1)k

(−1)k (−1)k−1

(−1)k−1

0 . . . 0
(−1)k (−1)k−1




= (−1)kfk−2(−1)[fk−2/2] det(A′0 . . . A
′
i−2A

′
i . . . A

′
fk−1−1)

= χ(k : 1, 3, 4, 5)(−1)(i−1)(fk−1−i)Hi+fk,fk−1−1.

Thus we obtain

Hn,fk−1 = χ(k : 2, 3)χ(k : 1, 2, 4, 5)iHi+fk,fk−1−1.

Assume that fk−1 < i < fk. Then as above we have

(−1)(i−1)(fk−i)Hn,fk−1

= det




A0 . . . Afk−1−1 0 . . . 0 0 . . . 0 Afk−1

(−1)k (−1)k−1

. . .
0 (−1)k . . .

0 0 (−1)k−1

(−1)k 0 0
. . .

(−1)k . . .




= (−1)k(i−fk−1−1)+(k−1)(fk−i)+[(fk−2−1)/2] det(A0 . . . Afk−1−1).
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Hence, by Lemma 13,

Hn,fk−1 = χ(k : 0, 3, 4)χ(k : 1, 4)iH0,fk−1 = χ(k : 0, 4)χ(k : 1, 4)ifk−2.

Assume that 0 < i < fk−2. Then, since Ai−1+fk−1 = Ai−1, by the same
arguments as above we get

(−1)(i−1)(fk−i)Hn,fk−1

= det




A′0 . . . A
′
i−2A

′
i . . . A

′
fk−1−1 0 . . . A′i−1 . . . 0

∗ . . . ∗ ∗ . . . ∗ 0 . . . ∗ . . . (−1)k

(−1)k (−1)k−1

(−1)k−1

0 . . . 0
(−1)k




= (−1)kfk−2(−1)[fk−2/2] det(A′0 . . . A
′
i−2A

′
i . . . A

′
fk−1−1)

+ (−1)k(i−1)+(k−1)(fk−2−i)(−1)i−1+[(fk−2−1)/2]

× det(A0 . . . Ai−2Ai . . . Afk−1−1Ai−1).

Since

det(A0 . . . Ai−2Ai . . . Afk−1−1Ai−1) = (−1)fk−1−iH0,fk−1 ,

by Lemma 13 we obtain

Hn,fk−1 = χ(k : 2, 3)χ(k : 1, 2, 4, 5)iHi+fk,fk−1−1(21)

+ χ(k : 1, 2, 3, 5)χ(k : 1, 4)ifk−2.

Note that (21) holds also for i = fk−2 since in this case,

Hn,fk−1 = (−1)k(fk−2−1)(−1)fk−2−1+[(fk−2−1)/2]

× det(A0 . . . Afk−2−2Afk−2 . . . Afk−1−2Afk−1)

and

Afk−1 = Afk−1−1 + t(0, . . . , 0, (−1)k).

Lemma 16. For any k, n, i ∈ N with k ≥ 1 and n ≡k+1 i, assume that
either τk+1(n) = 0 and 0 ≤ i < fk−1 or τk+1(n) = 1 and 0 ≤ i < fk. Then

Hn,fk−1 =




χ(k : 0, 4)fk−2 (i = 0),
χ(k : 1, 2, 3, 5)χ(k : 1, 4)ifk−3 (0 < i ≤ fk−1),
χ(k : 0, 4)χ(k : 1, 4)ifk−2 (fk−1 < i < fk),

Hn,fk−1 =




χ(k : 2, 3, 4, 5)fk−3 (i = 0),
χ(k : 0, 1)χ(k : 1, 4)ifk−4 (0 < i ≤ fk−1),
χ(k : 2, 3, 4, 5)χ(k : 1, 4)ifk−3 (fk−1 < i < fk).
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P r o o f. The first and third cases have already been proved in Lemma 15.
Consider the second case where 0 < i ≤ fk−1. We divide it into two subcases,
and use induction on k.

Case 1: i = 1. If k = 1, then

Hn,fk−1 = Hn,1 = εn = 0

since n ≡2 1 and τ0(n) = 1. On the other hand, fk−3 = f−2 = 0, and hence,
we get the statement. Assume that k ≥ 2 and the assertion holds for k − 1.
Then, by Lemma 15 and the induction hypothesis, we get

Hn,fk−1 = χ(k : 2, 3)χ(k : 1, 2, 4, 5)iHi+fk,fk−1−1

+ χ(k : 1, 2, 3, 5)χ(k : 1, 4)ifk−2

= χ(k : 1, 3, 4, 5)H1+fk,fk−1−1 + χ(k : 2, 3, 4, 5)fk−2

= χ(k : 1, 3, 4, 5)χ(k − 1 : 2, 3, 4, 5)fk−4 + χ(k : 2, 3, 4, 5)fk−2

= χ(k : 0, 1)fk−4 + χ(k : 2, 3, 4, 5)fk−2

= χ(k : 2, 3, 4, 5)fk−3,

which is the desired statement.

Case 2: i ≥ 2. If fk−2 < i ≤ fk−1, then it follows from the third case
and then the fourth case of Lemma 15 that

Hn,fk−1 = χ(k : 2, 3)χ(k : 1, 2, 4, 5)iHi+fk,fk−1−1

= χ(k : 2, 3)χ(k : 1, 2, 4, 5)iχ(k − 1 : 0, 4)χ(k − 1 : 1, 4)ifk−3

= χ(k : 1, 2, 3, 5)χ(k : 1, 4)ifk−3.

Assume that i ≤ fk−2 and the statement holds for k−1. Then by Lemma 15,
we get

Hn,fk−1 = χ(k : 2, 3)χ(k : 1, 2, 4, 5)iHi+fk,fk−1−1

+ χ(k : 1, 2, 3, 5)χ(k : 1, 4)ifk−2

= χ(k : 2, 3)χ(k : 1, 2, 4, 5)iχ(k − 1 : 1, 2, 3, 5)χ(k − 1 : 1, 4)ifk−4

+ χ(k : 1, 2, 3, 5)χ(k : 1, 4)ifk−2

= χ(k : 0, 4)χ(k : 1, 4)ifk−4 + χ(k : 1, 2, 3, 5)χ(k : 1, 4)ifk−2

= χ(k : 1, 2, 3, 5)χ(k : 1, 4)ifk−3.

Lemma 17. For any k, n ∈ N with k ≥ 2 and τk+1(n) = 0, we have

Hn,fk−1 =
{
χ(k : 2, 3, 4, 5)fk−3 (n ≡k+1 fk−1),
χ(k : 0, 4)fk−2 (n ≡k+1 fk−1 + 1),

Hn,fk−1 =
{
χ(k : 0, 4)fk−4 (n ≡k+1 fk−1),
χ(k : 2, 3, 4, 5)fk−3 (n ≡k+1 fk−1 + 1).
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P r o o f. Assume that n ≡k+1 fk−1. Then since τk+1(n) = 0, we have
n ≡k+2 fk−1. Therefore, by Lemmas 3 and 7, we get

Hn,fk−1 = det
(
Afk−1 . . . Afk−1Afk . . . Afk+1−2

B′fk−1
. . . B′fk−1B

′
fk
. . . B′fk+1−2

)
,

where we use the notation (20). By Lemma 5, the following two subwords
of ε:

εnεn+1 . . . εn+fk−2+fk−3 and εn+fk−1εn+fk−1+1 . . . εn+fk−1+fk−2+fk−3

differ only at two places, namely, at the (fk − 2− fk−1)th and the (fk − 1−
fk−1)th places. Hence, we have

Hn,fk−1 = det
(
Afk−1 . . . Afk−1Afk . . . Afk+1−2

B′fk−1
. . . B′fk−1B

′
fk
. . . B′fk+1−2

)

= det




Afk−1 . . . . . . Afk−1 Afk . . . Afk+1−2

(−1)k (−1)k−1

(−1)k−1

0 . . .
. . . 0

(−1)k (−1)k−1



.

By adding the first fk−2 − 1 columns and subtracting the last fk−2 − 1
columns to and from the column beginning by Afk−1, we get the column

t(Afk−10 . . . 0) + t((−1)k−10 . . . 0(−1)k0 . . . 0),

where (−1)k is at the (fk−2 − 1)th place. Since, by Lemma 5,

(Afk−1 . . . Afk−2)− (A2fk−1 . . . Afk−2)

=




(−1)k−1

0 (−1)k−1 (−1)k

. . . . . .
. . . . . .

(−1)k−1 (−1)k 0
(−1)k

0




,

we get

(22) Hn,fk−1

= (−1)k(fk−2−1)(−1)fk−1(fk−2−1)+[(fk−2−1)/2]

× {det(Afk−1Afk . . . Afk+1−2) + (−1)k−1 det(A′′fk . . . A
′′
fk+1−2)

+ (−1)k+fk−2−1 det(A′′′fk . . . A
′′′
fk+1−2)},
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where

A′′j := t(εj+1 . . . εj+fk−1−1),

A′′′j = t(εj . . . εj+fk−2−2εj+fk−2 . . . εj+fk−1−1).

Here, we have

(23)
det(Afk−1Afk . . . Afk+1−2) = Hfk−1,fk−1 ,

det(A′′fk . . . A
′′
fk+1−2) = Hfk+1,fk−1−1,

and by Lemma 5,

det(A′′′fk . . . A
′′′
fk+1−2)

=




0
(−1)k−1

(−1)k−1 (−1)k

A′′′fk . . . A
′′′
fk+fk−2−1 . . . . . .

. . . . . .
(−1)k−1 . . .

(−1)k 0




=




Cfk
... 0

Cfk+fk−2−2

Cfk+fk−2 (−1)k−1

(−1)k−1 (−1)k
... . . . . . .

. . . . . .
(−1)k−1 . . .

Cfk+1−1 (−1)k 0




,

where we put

Cj = (εjεj+1 . . . εj+fk−2−1).

Since Cfk+fk−2+j = Cfk+j (j = 0, 1, . . . , fk−3 − 2) by Lemma 5, we have

det(A′′′fk . . . A
′′′
fk+1−2)

= (−1)(k−1)(fk−3−1)+fk−3−1+[(fk−3−1)/2] det




Cfk
...

Cfk+fk−2−2

Cfk+1−1


 .



Hankel determinants and Padé approximation 143

Moreover it follows from Lemma 5 that

det




Cfk
...

Cfk+fk−2−2

Cfk+1−1


 = det




Cfk+1

...
Cfk+1+fk−2−2

Cfk+1−1


 = (−1)fk−2−1Hfk+1−1,fk−2 ,

which implies

det(A′′′fk . . . A
′′′
fk+1−2) = χ(k : 0, 3, 5)Hfk+1−1,fk−2 .

Thus by (22), (23), Theorem 3 and Lemma 16, we obtain

Hn,fk−1 = χ(k : 4)Hfk−1,fk−1 + χ(k : 0, 2)Hfk+1,fk−1−1

+ χ(k : 1, 3, 4)Hfk+1−1,fk−2

= χ(k : 2, 3, 4, 5)fk−3 + χ(k : 2, 3, 4, 5)fk−4 + χ(k : 0, 1)fk−4

= χ(k : 2, 3, 4, 5)fk−3,

which is the first case of our lemma.

To prove the second case, assume that n ≡k+1 fk−1 + 1. Then as above
we get

Hn,fk−1 = det
(
Afk−1+1 . . . Afk−1Afk . . . Afk+1−1

B′fk−1+1 . . . B
′
fk−1B

′
fk
. . . B′fk+1−1

)

= det




Afk−1+1 . . . . . . Afk−1 Afk . . . Afk+1−1

(−1)k (−1)k−1

(−1)k−1

0 . . .
. . . 0

(−1)k (−1)k−1

(−1)k−1




= (−1)(k−1)(fk−2−1)(−1)(fk−2−1)fk−1+[(fk−2−1)/2]

× det(Afk . . . Afk+1−1).

Therefore, by Theorem 3 we get

Hn,fk−1 = χ(k : 0, 3, 4)χ(k − 1 : 2)fk−2 = χ(k : 0, 4)fk−2.

Theorem 4. For any k, n, i ∈ N with k ≥ 1, n ≡k+1 i and 0 ≤ i < fk+1,
we have
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Hn,fk−1 =





χ(k : 0, 4)fk−2 (i = 0),
χ(k : 1, 2, 3, 5)χ(k : 1, 4)ifk−3 (0 < i ≤ fk−1),
χ(k : 0, 4)χ(k : 1, 4)ifk−2 (fk−1 < i < fk

and τk+1(n) = 1),
χ(k : 0, 4)fk−2 (i = fk−1 + 1

and τk+1(n) = 0),
0 (otherwise),

Hn,fk−1 =





χ(k : 2, 3, 4, 5)fk−3 (i = 0),
χ(k : 0, 1)χ(k : 1, 4)ifk−4 (0 < i ≤ fk−1),
χ(k : 2, 3, 4, 5)χ(k : 1, 4)ifk−3 (fk−1 < i < fk

and τk+1(n) = 1),
χ(k : 2, 3, 4, 5)fk−3 (i = fk−1 + 1

and τk+1(n) = 0),
0 (otherwise).

P r o o f. The first four cases follow from Lemmas 16 and 17. Note that
for i = fk−1, the assertions in these lemmas coincide, so that Hn,fk−1 is
independent of τk+1(n). Consider the last case, where τk+1(n) = 0 and
fk−1 + 2 ≤ i ≤ fk+1−1. We may assume that k ≥ 2. Then, with m = fk−1
and i − fk in place of i there, the condition (2) of Theorem 1 is satisfied.
Therefore by Theorem 1, n ∈ Rm, which implies that Hn,fk−1 = 0.

Lemma 18. For any n,m ∈ N such that fk−2 + 1 ≤ m ≤ fk − 2, i ≤ n
and n− i ≡k+1 0 for some i, k ∈ Z with k ≥ 2 and m+ i = fk, we have

Hn,m = χ(k : 2)χ(k : 3, 4, 5)i(−1)[i/2]fk−3,

Hn,m = χ(k : 1, 4)χ(k : 0, 1, 2)i(−1)[i/2]fk−3.

P r o o f. First, we consider the case i < fk−2. By arguments similar to
those used in the proof of Lemma 15, we get, with the notation (20),

Hn,m = det




AiAi+1 . . . Afk−1+i−1 0 . . . 0 Afk−1

(−1)k (−1)k−1

. . .
0 . . . 0

(−1)k (−1)k−1


 .

Therefore, by Theorems 3 and 4,

Hn,m = (−1)k(fk−2−i+1)+[(fk−2−i+1)/2]Hi,fk−1−1

+ (−1)(k−1)(fk−2−i)+[(fk−2−i)/2]Hi,fk−1

= χ(k : 2)χ(k : 3, 4, 5)i(−1)[i/2](−fk−4 + fk−2)

= χ(k : 2)χ(k : 3, 4, 5)i(−1)[i/2]fk−3.

If i = fk−2, then the statement follows from Theorem 3.
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Finally, we consider the case fk−2 < i < fk−1. Then, setting

(24) Arj = t(εjεj+1 . . . εj+r−1),

by Theorem 3 we obtain

Hn,m = det(Afk−ii Afk−ii+1 . . . Afk−ifk−1)

= det




A
fk−2
i A

fk−2
i+1 . . . A

fk−2
fk−1−2 A

fk−2
fk−1−1 A

fk−2
fk−1

. . . A
fk−2
fk−1

(−1)k−1 (−1)k

0 (−1)k

. . . . . .

. . . . . . 0
(−1)k−1 (−1)k

(−1)k




= (−1)k(fk−1−i)(−1)(fk−1−i)fk−2+[(fk−1−i)/2]Hfk−1,fk−2

= χ(k : 2)χ(k : 3, 4, 5)i(−1)[i/2]fk−3.

Lemma 19. For any n,m ∈ N such that fk−1 + 1 ≤ m ≤ fk − 2, i ≤ n,
n− i ≡k fk−1 for some i, k ∈ Z with k ≥ 2 and m+ i = fk, we have

Hn,m = χ(k : 1, 2, 4)χ(k : 0, 1, 2)i(−1)[i/2]fk−2,

Hn,m = χ(k : 2)χ(k : 3, 4, 5)i(−1)[i/2]fk−3.

P r o o f. By the same arguments and in the same notations as in the
second part of the proof of Lemma 18, we obtain

Hn,m = det(Afk−ifk−1+i . . . A
fk−i
fk−1A

fk−i
fk

. . . Afk−ifk+1−1)

= det




A
fk−1
i A

fk−1
i+1 . . . A

fk−1
fk−2−2 A

fk−1
fk−2−1 A

fk−1
fk

. . . A
fk−1
fk+1−1

(−1)k (−1)k−1

0 (−1)k−1

. . . . . .

. . . . . . 0
(−1)k (−1)k−1

(−1)k−1




= (−1)(k−1)(fk−2−i)(−1)(fk−2−i)fk−1+[(fk−2−i)/2]Hfk,fk−1

= χ(k : 1, 2, 4)χ(k : 0, 1, 2)i(−1)[i/2]fk−2.

Lemma 20. For any n,m ∈ N such that fk−1 + 1 ≤ m ≤ fk − 2, i ≤ n
and n− i ≡k+1 0 for some i, k ∈ Z with k ≥ 2 and m+ i = fk − 1, we have

Hn,m = χ(k : 0, 4)χ(k : 3, 4, 5)i(−1)[i/2]fk−2,

Hn,m = χ(k : 2, 3, 4, 5)χ(k : 0, 1, 2)i(−1)[i/2]fk−3.
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P r o o f. The proof is similar to the first part of the proof of Lemma 18.
With the notation in (20), we get

Hn,m = det




AiAi+1 . . . Afk−1+i−1 0 0 . . . 0
(−1)k

. . .
0 . . .

(−1)k (−1)k−1 0




= (−1)k(fk−2−1−i)(−1)[(fk−2−1−i)/2] det(AiAi+1 . . . Afk−1+i−1).

Hence, by Theorem 3

Hn,m = χ(k : 0, 4)χ(k : 3, 4, 5)i(−1)[i/2]fk−2.

Lemma 21. For any n,m ∈ N such that fk−2 + 1 ≤ m ≤ fk − 2, i ≤ n
and n− i ≡k fk−1 for some i, k ∈ Z with k ≥ 2 and m+ i = fk− 1, we have

Hn,m = χ(k : 2, 3, 4, 5)χ(k : 0, 1, 2)i(−1)[i/2]fk−3,

Hn,m = χ(k : 0, 4)χ(k : 3, 4, 5)i(−1)[i/2]fk−4.

P r o o f. Since i = fk − 1−m, we get 1 ≤ i ≤ fk−1 − 2.
If i = fk−2 − 1, then m = fk−1 and n ≡k fk − 1. Therefore, by Theorem

3, we get

Hn,m = χ(k − 1 : 1, 2, 4)fk−3,

which coincides with the required identity since

χ(k : 0, 1, 2)fk−2−1 = χ(k : {0, 1, 2} ∩ {0, 3}) = χ(k : 0),

(−1)[(fk−2−1)/2] = χ(k : 0, 4).

If i = fk−2, then m = fk−1 − 1 and n ≡k 0. Therefore, by Theorem 4,
we get

Hn,m = χ(k − 1 : 0, 4)fk−3,

which coincides with the required statement since

χ(k : 0, 1, 2)fk−2 = χ(k : {0, 1, 2} ∩ {1, 2, 4, 5}) = χ(k : 1, 2),

(−1)[fk−2/2] = χ(k : 3, 4).

If fk−2 + 1 ≤ i ≤ fk−1 − 2, then n − i′ ≡k 0 with i′ := i − fk−2. Then,
since m+ i′ = fk−1 − 1 and fk−2 + 1 ≤ m ≤ fk−1 − 2, applying Lemma 20,
we obtain

Hn,m = χ(k − 1 : 0, 4)χ(k − 1 : 3, 4, 5)i
′
(−1)[i′/2]fk−3

= χ(k : 1, 5)χ(k : 0, 4, 5)iχ(k : {0, 4, 5} ∩ {1, 2, 4, 5})(−1)[i′/2]fk−3

= χ(k : 1, 4)χ(k : 0, 4, 5)i(−1)[i/2](−1)[(fk−2+1)/2](−1)ifk−2fk−3

= χ(k : 2, 3, 4, 5)χ(0, 1, 2)i(−1)[i/2]fk−3.
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Now, we consider the case 1 ≤ i ≤ fk−2− 2. Then, with the notations in
(24) and in (20), we get

Hn,m = det(Afk−ifk−1+i . . . A
fk−i
fk−1A

fk−i
fk

. . . Afk−ifk+1−2)

= det




Afk−1+i Afk−1+i+1 . . . Afk−2 Afk−1 Afk . . . Afk+1−2

(−1)k (−1)k−1

0 (−1)k−1

. . . . . .

. . . . . . 0
(−1)k

(−1)k (−1)k−1




.

Therefore, by arguments similar to those used in the first part of the proof
of Lemma 17, we get

Hn,m = (−1)k(fk−2−1−i)(−1)fk−1(fk−2−1−i)+[(fk−2−1−i)/2]

× {det(Afk−1Afk . . . Afk+1−2) + (−1)k−1 det(A′′fk . . . A
′′
fk+1−2)

+ (−1)k+fk−2−1−i det(A′′′fk . . . A
′′′
fk+1−2)},

where we use the same notations as in the proof of Lemma 17 except for
A′′′j ’s which are defined by

A′′′j = t(εj . . . εj+fk−2−i−2εj+fk−2−i . . . εj+fk−1−1).

Then, following the arguments there, we get

Hn,m = χ(k : 4)χ(k : 0, 1, 2)i(−1)[i/2]{Hfk−1,fk−1

+ (−1)k−1Hfk+1,fk−1−1 + (−1)k+fk−2−1−iE}
with

E := det(A′′′fk . . . A
′′′
fk+1−2)

= det(A′fk . . . A
′
fk+fk−2−i−2A

′
fk+fk−2−i . . . A

′
fk+1−1)

= det(A′fk+1
. . . A′fk+1+fk−2−i−2A

′
fk+fk−2−i . . . A

′
fk+1−1)

= (−1)(fk−2−i−1)(fk−3+i) det(A′fk+fk−2−i . . . A
′
fk+1+fk−2−i−2)

= (−1)(fk−2−i−1)(fk−3+i)Hfk−2−i,fk−1−1,

where we have used Lemma 5. Therefore, by Theorems 3 and 4, we have

Hn,m = χ(k : 4)χ(k : 0, 1, 2)i(−1)[i/2]{χ(k − 1 : 1, 2, 4)fk−3

+ (−1)k−1χ(k − 1 : 2, 3, 4, 5)fk−4

+ (−1)k+fk−2−1−i(−1)(fk−2−i−1)(fk−3+i)

× χ(k − 1 : 1, 2, 3, 5)χ(k − 1 : 1, 4)fk−2−ifk−4}
= χ(k : 2, 3, 4, 5)χ(k : 0, 1, 2)i(−1)[i/2]fk−3.
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4. Tiling for Hn,m and Hn,m. In this section, we collect the values of
Hn,m and Hn,m obtained in the last section and arrange them in the quarter
plane Ω := {0, 1, . . .} × {1, 2, . . .}. We will tile Ω by the following tiles on
which the values Hn,m are written in. That is, U1 := V1 := {(1,−1)}, and
for k ≥ 2,

Uk := {(i, j) ∈ Z2 : 0 ≤ i+ j ≤ fk−1 − 1, −fk−1 ≤ j ≤ −1},
Vk := {(i, j) ∈ Z2 : 0 ≤ i+ j ≤ fk−2 − 1, −fk−2 ≤ j ≤ −1},

with the written-in values uk : Uk → Z and vk : Vk → Z given by u1(1,−1)
:= 0, v1(1,−1) := 1, and for k ≥ 2,

uk(i, j) :=





χ(k : 2)χ(k : 3, 4, 5)i(−1)[i/2]fk−3 (i+ j = 0),
χ(k : 0, 3, 4)χ(k : 0, 3)ifk−3 (j = −fk−1),
χ(k : 3, 5)χ(k : 2, 3, 4)i(−1)[i/2]fk−3 (i+ j = fk−1 − 1),
χ(k : 1, 2, 3, 5)χ(k : 1, 4)ifk−3 (j = −1),
0 (otherwise),

vk(i, j) :=





χ(k : 1, 2, 4)χ(k : 0, 1, 2)i(−1)[i/2]fk−2 (i+ j = 0),
χ(k : 2, 3, 5)χ(k : 2, 5)ifk−2 (j = −fk−2),
χ(k : 0, 1, 2, 3)χ(k : 1, 2, 3)i(−1)[i/2]fk−2 (i+ j = fk−2 − 1),
χ(k : 0, 1)χ(k : 1, 4)ifk−2 (j = −1),
0 (otherwise),

and with uk : Uk → Z and vk : Vk → Z given u1(1,−1) := 1, v1(1,−1) := 0,
and for k ≥ 2,

uk(i, j) :=





χ(k : 1, 4)χ(k : 0, 1, 2)i(−1)[i/2]fk−4 (i+ j = 0),
χ(k : 4)χ(k : 0, 3)ifk−4 (j = −fk−1),
χ(k : 1, 2, 3, 4)χ(k : 0, 1, 5)i(−1)[i/2]fk−4 (i+ j = fk−1 − 1),
χ(k : 0, 1)χ(k : 1, 4)ifk−4 (j = −1),
0 (otherwise),

vk(i, j) :=





χ(k : 2)χ(k : 3, 4, 5)i(−1)[i/2]fk−3 (i+ j = 0),
χ(k : 3)χ(k : 2, 5)ifk−3 (j = −fk−2),
χ(k : 2, 4)χ(k : 0, 4, 5)i(−1)[i/2]fk−3 (i+ j = fk−2 − 1),
χ(k : 1, 2, 3, 5)χ(k : 1, 4)ifk−3 (j = −1),
0 (otherwise).

For k ≥ 1 let

Uk := {(n, fk) : n ∈ N and n ≡k+1 0},
Vk := {(n, fk) : n ∈ N and n ≡k+2 fk+1 + fk−1},
Tk := (Vk + (−fk−2, fk)) ∩Ω,

where V + (x, y) := {(v + x,w + y) : (v, w) ∈ V } for V ⊂ Z2, (x, y) ∈ Z2.
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Theorem 5. We have

Ω =
∞⋃

k=1

( ⋃

(i,j)∈Uk
(Uk + (i, j)) ∪

⋃

(i,j)∈Vk
(Vk + (i, j)) ∪ Tk

)
,

where the right hand side is a disjoint union, so that Ω is tiled by the Uk’s,
Vk’s and Tk’s. Moreover , for any (n,m) ∈ Ω, if (n,m) = (i, j) + (i′, j′) with
(i, j) ∈ Uk and (i′, j′) ∈ Uk, then Hn,m = uk(i, j) and Hn,m = uk(i, j). Also,
if (n,m) = (i, j) + (i′, j′) with (i, j) ∈ Vk and either (i′, j′) ∈ Vk or (i′, j′) =
(−fk−2, fk), then Hn,m = vk(i, j) and Hn,m = vk(i, j). Furthermore, in this
tiling , the tiles Uk, Vk and Tk with k ≥ 2 are followed by the sequences
of smaller tiles Uk−1Vk−1Uk−1, Uk−1 and Uk−1, respectively , as shown in
Figure 1.

Fig. 1. Tiling for Hn,m

P r o o f. Take an arbitrary point (n,m) ∈ Ω. Let fk−1 ≤ m < fk. If
n+m− fk ≥ 0, define 0 ≤ i < fk+2 by i ≡k+2 n.

Case 1: n+m− fk < 0. We get (n,m) ∈ Tk.
Case 2: 0 ≤ i < fk−1. We get (n,m) ∈ Uk + (n+m− i− fk, fk).
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Case 3: fk−1 ≤ i < fk+1. We get (n,m) ∈ Uk+1+(n+m−i−fk+1, fk+1).
Case 4: fk+1 ≤ i < fk+1 + fk−1. We get (n,m) ∈ Uk + (n + m − i +

fk−1, fk).
Case 5: fk+1 + fk−1 ≤ i < fk+2. We get (n,m) ∈ Vk + (n + m − i +

2fk−1, fk).

The fact that the written-in values coincide with Hn,m and Hn,m follows
from Lemma 18 (first case in uk and uk), Theorem 3 (second case), Lemma
21 (third case), Theorem 4 (fourth case), Corollary 3 (fifth case), Lemma 19
(first case in vk and vk), Theorem 3 (second case), Lemma 20 (third case),
Lemma 20 (fourth case) and Corollary 3 (fifth case). The m in the preceding
lemmas and theorems coincides with fk+j in Theorem 5 while the meaning
of the symbols k, i, n is not necessarily the same.

5. Padé approximation. Let ϕ = ϕ0ϕ1 . . . be an infinite sequence over
a field K, Ĥn,m := Hn,m(ϕ) be the Hankel determinant (3), and ϕ(z) the
formal Laurent series (4) with h = −1. We also denote the Hankel matrices
by

(25) M̂n,m := (ϕn+i+j)i,j=0,1,...,m−1 (n = 0, 1, . . . ; m = 1, 2, . . .),

so that Ĥn,m = det M̂n,m.
The following proposition is well known ([1], for example). But we give

a proof for self-containment.

Proposition 1. (1) For any m = 1, 2, . . . , a Padé pair (P,Q) of order
m for ϕ exists. Moreover , for each m, the rational function P/Q ∈ K(z) is
determined uniquely for such Padé pairs (P,Q).

(2) For any m = 1, 2, . . . , m is a normal index for ϕ if and only if
Ĥ0,m(ϕ) 6= 0.

P r o o f. Let

P = p0 + p1z + p2z
2 + . . .+ pmz

m,

Q = q0 + q1z + q2z
2 + . . .+ qmz

m.

Then the condition ‖Qϕ− P‖ < exp(−m) is equivalent to

(26)

− pm = 0,
qmϕ0 − pm−1 = 0,
. . . . . .

q1ϕ0 + . . . + qmϕm−1 − p0 = 0,
q0ϕ0 + q1ϕ1 + . . . + qmϕm = 0,

. . . . . .
q0ϕm−1 + q1ϕm−2 + . . . + qmϕ2m−1 = 0.
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Furthermore, the system (26) for (q0q1 . . . qm) is equivalent to

(27) (q0q1 . . . qm−1)M̂0,m + qm(ϕmϕm+1 . . . ϕ2m−1) = (00 . . . 0),

where (p0p1 . . . pm) is determined by (q0q1 . . . qm) by the upper half of (26).
There are two cases.

Case 1: Ĥ0,m = 0. In this case, since det M̂0,m = Ĥ0,m = 0, there exists
a nonzero vector (q0q1 . . . qm−1) such that (q0q1 . . . qm−1)M̂0,m = 0. Then
(27) is satisfied with this (q0q1 . . . qm−1) and qn = 0.

Case 2: Ĥ0,m 6= 0. In this case, since det M̂0,m = Ĥ0,m 6= 0, there exists
a unique vector (q0q1 . . . qm−1) such that

(28) (q0q1 . . . qm−1)M̂0,m = −(ϕmϕm+1 . . . ϕ2m−1).

Then (27) is satisfied with this (q0q1 . . . qm−1) and qm = 1.

Thus, a Padé pair of order m exists. Moreover, by the above arguments,
a Padé pair (P,Q) of order m with degQ < m exists if and only if Ĥ0,m = 0,
since if Ĥ0,m 6= 0, then by (27), qm = 0 implies (q0q1 . . . qm−1) = (00 . . . 0),
and hence Q = 0.

Now we prove that for any Padé pairs (P,Q) and (P ′, Q′) of order m,
we have P/Q = P ′/Q′. By (5), we have

‖ϕ− P/Q‖ < exp(−n− degQ), ‖ϕ− P ′/Q′‖ < exp(−m− degQ′).

Hence,

‖P/Q− P ′/Q′‖ < exp(−m− degQ ∧ degQ′).

Therefore,

‖PQ′ − P ′Q‖ < exp(−m+ degQ ∨ degQ′) ≤ 1.

Since PQ′ − P ′Q is a polynomial of z, ‖PQ′ − P ′Q‖ is either 0 or not less
than 1. Hence, the above inequality implies PQ′ − P ′Q = 0.

In view of (26), without loss of generality, we can put

(29)
P = p0 + p1z + p2z

2 + . . .+ pm−1z
m−1,

Q = q0 + q1z + q2z
2 + . . .+ qmz

m.

Theorem 6. Let (P,Q) be the normalized Padé pair for ϕ with degQ as
its normal index m with P,Q given by (29). Then
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(1) Q(z) = Ĥ−1
0,m det(zM̂0,m − M̂1,m).

(2) det(zI − M̂0,m) is equal to
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z 1
z 1

. . . . .
.

z 1
z 1

pm−1 1
pm−2 pm−1 qm−1 1

...
. . .

. . .
...

. . .
. . .

p1 . . . pm−1 q2 . . . 1
p0 . . . pm−2 pm−1 q1 . . . qm−1 1

p0 . . .
... pm−2 q0 . . . . . .

... qm−1 1
. . . p1

... q0 . . .
...

...
. . .

p0 p1
. . . q1 q2 . . . . . . 1

p0 q0 q1 . . . . . . qm−1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where I is the unit matrix of size m.
(3) We have

Ĥ0,m = (−1)[m/2]
∏

z;Q(z)=0

P (z) = (−1)[m/2]pmk
∏

z;P (z)=0

Q(z),

where
∏
z;R(z)=0 denotes the product over all the roots of the polynomial

R(z) with their multiplicity and pk is the leading coefficient of P (z), that is,
pm−1 = . . . = pk+1 = 0, pk 6= 0 if P (z) is not the zero polynomial , otherwise
pk = 0.

P r o o f. (1) Note that qm = 1 by the assumption that (P,Q) is the
normalized Padé pair. By (28), we have




0 1
0 1

. . .
0 1

−q0 −q1 . . . −qm−2 −qm−1



M̂0,m = M̂1,m.

Since

Ĥ0,m = det M̂0,m 6= 0
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by the normality of the index m, it follows that

Q(z) = det



zI −




0 1
0 1

. . .
0 1

−q0 −q1 . . . −qm−2 −qm−1







= det(zI − M̂1,mM̂
−1
0,m)

= Ĥ−1
0,m det(zM̂0,m − M̂1,m).

(2) We define the matrices:

Pm :=




pm−1 pm−2 . . . p1 p0

pm−2 . . . . . . p0
... . .

.

p1 . .
. 0

p0



,

P ′m−1 :=




pm−1

0 pm−1 pm−2

. .
. ...

...

. .
. ... p2

pm−1 pm−2 . . . p2 p1



,

Qm :=




1
qm−1 1 0

...
. . .

...
. . .

q1 q2 . . . qm−1 1




,

Q′m :=




1
0 1 qm−1

. .
. ...

. .
. ...

1 qm−1 . . . q2 q1




,
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Q′′m−1 :=




1
qm−1 1 0

...
. . .

...
. . .

q2 q3 . . . qm−1 1




,

Qm,m−1 :=




q1 q2 . . . qm−2 qm−1

q0 q1 . . . qm−3 qm−2

q0 q1 . . . qm−3

. . .
. . .

...

0 . . . q1

q0




,

Φm−1 :=




ϕ0

0 ϕ0 ϕ1

. .
. ...

...

. .
. ... ϕm−3

ϕ0 ϕ1 . . . ϕm−3 ϕm−2



.

We denote by O the zero matrices of various sizes. We also denote by In the
unit matrix of size n. By (26), we have

det(zI − M̂0,m)

= det
(
z

(
O O
O Im

)
−
( −Im−1 O

Q−1
m Qm,m−1 M̂0,m

))

= det
((

Im−1 O
O Qm

)(
z

(
O O
O Im

)
−
( −Im−1 O

Q−1
m Qm,m−1 M̂0,m

)))

= det
(
z

(
O O
O Qm

)
−
( −Im−1 O

Qm,m−1 QmM̂0,m

))

= det
((

z

(
O O
O Qm

)
−
( −Im−1 O

Qm,m−1 QmM̂0,m

))(
Im−1 O Φm−1

O Im

))

= det
(
z

(
O O
O Qm

)
−
( −Im−1 O −Φm−1

Qm,m−1 Pm

))
,

where we use (26) to get the last equality. Hence

det(zI − M̂0,m) = det
(
z

(
O O
O Qm

)
−
( −Im−1 O −Φm−1

Qm,m−1 Pm

))



Hankel determinants and Padé approximation 155

= det
((

Q′′m−1 O
O Im

)(
z

(
O O
O Qm

)
−
( −Im−1 O −Φm−1

Qm,m−1 Pm

)))

= det
(
z

(
O O
O Qm

)
−
( −Q′′m−1 O −P ′m−1
Qm,m−1 Pm

))

= (−1)m det
((

Q′′m−1 O P ′m−1
Qm,m−1 Pm

)
− z

(
O O
O Qm

))

= (−1)m det



Im O zIm
O Q′′m−1 O P ′m−1
Q′m Qm,m−1 Pm


 ,

which implies (2).
(3) By (2), we have

Ĥ0,m = (−1)m det(0I − M̂0,m)

= (−1)[m/2]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pm−1 1
pm−2 pm−1 qm−1 1

...
. . .

...
. . .

. . .

p1
. . . pm−1 q2

. . . 1

p0
. . . pm−2 pm−1 q1

. . . qm−1

p0 pm−2 q0
. . . qm−2

. . .
...

...
. . .

...

p0 p1
. . . q1

p0 q0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which completes the proof since the last determinant is Sylvester’s determi-
nant for P (z) and Q(z).

For a finite or infinite sequence a0(z), a1(z), . . . of elements in K((z−1)),
we use the notation

[a0(z); a1(z), a2(z), . . . , an(z)] := a0(z) +
1

a1(z) +
1

a2(z)+
. . .

+
1

an(z)
and

(30) [a0(z); a1(z), a2(z), . . .] := lim
n→∞

[a0(z); a1(z), a2(z), . . . , an(z)]

provided that the limit exists, where the limit is taken with respect to the
metric induced by the nonarchimedean norm in K((z−1)).
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We define

(31) p0(z) = a0(z), p−1(z) = 1, q0(z) = 1, q−1(z) = 0,

pn(z) = an(z)pn−1(z)+pn−2(z), qn(z) = an(z)qn−1(z)+qn−2(z)

(n = 1, 2, 3, . . .)

for any given sequence a1(z), a2(z), . . . ∈ K((z−1)). Then pn(z), qn(z) ∈
K((z−1)), pn(z) 6= 0 if qn(z) = 0, and

pn(z)
qn(z)

= [a0(z); a1(z), a2(z), . . . , an(z)] ∈ K((z−1)) ∪ {∞} (n ≥ 0),

where we mean ψ/0 :=∞ for ψ ∈ K((z−1))\{0}, and ψ+∞ :=∞, ψ/∞ := 0
for ψ ∈ K((z−1)). By using (31), it can be shown that the limit (30) always
exists in the set K((z−1)) as far as

(32) an(z) ∈ K[z] (n ≥ 0), deg an(z) ≥ 1 (n ≥ 1).

For ϕ(z) ∈ K((z−1)) given by (4), we denote by bϕ(z)c the polynomial part
of ϕ(z), which is defined as follows:

bϕ(z)c :=
h∑

k=0

ϕhz
−k+h ∈ K[z].

We denote by T the mapping T : K((z−1)) \ {0} → K((z−1)) defined by

T (ψ(z)) :=
1

ψ(z)
−
⌊

1
ψ(z)

⌋
(ψ(z) ∈ K((z−1)) \ {0}).

Then, for any given ϕ(z) ∈ K((z−1)), we can define the continued fraction
expansion of ϕ(z):

(33) ϕ(z) =
{

[a0(z); a1(z), a2(z), . . . , aN−1(z)] if ϕ(z) ∈ K(z),
[a0(z); a1(z), a2(z), a3(z), . . .] otherwise

with an(z) satisfying (32) according to the following algorithm.

Continued Fraction Algorithm:

a0(z) = bϕ(z)c, an(z) =
⌊

1
Tn−1(ϕ(z)− a0(z))

⌋
,

N = N(ϕ(z)) := inf{m : Tm−1(ϕ(z)) = 0} (inf ∅ :=∞).

We note that if ϕ(z) ∈ K(z), then N < ∞; if ϕ(z) ∈ K((z−1)) \K(z), then
N =∞ and the continued fraction (33) converges to the given ϕ(z) ∈ K(z).
We say a continued fraction is admissible if it is obtained by the algorithm.
We remark that a continued fraction (33) is admissible if and only if (32)
holds.

The following proposition is known [2], but we give a proof for complete-
ness.
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Proposition 2. The set of all P/Q ∈ K(z) for Padé pairs (P,Q) for
ϕ(z) ∈ K((z)) coincides with the set of convergents pn(z)/qn(z) (0 ≤ n < N)
of the continued fraction expansion of ϕ(z). Moreover , m is a normal index
if and only if m is a degree of qn(z) for some n = 0, 1, 2, . . . (with n < N if
ϕ(z) ∈ K(z)).

P r o o f. Note that

ϕ(z) =
(an(z) + Tn(ϕ(z)− a0))pn−1(z) + pn−2(z)
(an(z) + Tn(ϕ(z)− a0))qn−1(z) + qn−2(z)

,

(−1)n = pn−1(z)qn−2(z)− pn−2(z)qn−1(z).

Hence, we have

‖qn(z)ϕ(z)− pn(z)‖ =
∥∥∥∥

(−1)nTn(ϕ(z)− a0(z))
qn(z) + Tn(ϕ(z)− a0(z))qn−1(z)

∥∥∥∥
= exp(−deg an+1(n)− deg qn(z)),

so that

(34) ‖qn(z)ϕ(z)− pn(z)‖ < exp(− deg qn(z)) (n < N).

In the case N < ∞, the left-hand side of (34) turns out to be 0 for n =
N − 1. Therefore, (pn(z), qn(z)) is a Padé pair of order m = deg qn(z) for
all m ∈ {deg qn(z) : 0 ≤ n < N}.

Conversely, for any k = 1, 2, . . . , let (P,Q) be a Padé pair of order k.
Let deg qn(z) ≤ k < deg qn+1(z) for some n = 0, 1, 2, . . . with n < N
(deg qN (z) := ∞). Then, since degQ ≤ k < deg qn+1, it follows from (34)
that

‖ϕ(z)− pn(z)/qn(z)‖ = exp(− deg qn(z)− deg qn+1(z))

< exp(− deg qn(z)− degQ).
Since (P,Q) is a Padé pair of order k, we have

‖ϕ(z)− P/Q‖ < exp(−k − degQ) ≤ exp(− deg qn(z)− degQ).

Therefore, ∥∥∥∥
P

Q
− pn(z)
qn(z)

∥∥∥∥ < exp(−deg qn(z)− degQ).

On the other hand, if P/Q 6= pn(z)/qn(z), then∥∥∥∥
P

Q
− pn(z)
qn(z)

∥∥∥∥ =
∥∥∥∥
Pqn(z)−Qpn(z)

Qqn(z)

∥∥∥∥
≥ exp(−deg qn(z)− degQ),

which is a contradiction. Thus P/Q = pn(z)/qn(z).
Note that pn(z)/qn(z) is irreducible for any n = 1, 2, . . . with n < N ,

since pnqn−1 − pn−1qn = (−1)n−1. Let m = deg qn(z) for some n = 1, 2, . . .
with n < N . Take any Padé pair (P,Q) of order m. Then degQ ≤ m. On the
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other hand, by the above argument, P/Q = pn(z)/qn(z). Since pn(z)/qn(z)
is irreducible, this implies that degQ ≥ deg qn(z) = m. Thus, m is a normal
index.

Conversely, let m ≥ 0 be any normal index. Take any Padé pair (P,Q)
of order m. Then, by the above argument, there exists n = 0, 1, 2, . . . with
n < N such that P/Q = pn(z)/qn(z). Hence the irreducibility of pn(z)/qn(z)
implies deg qn(z) ≤ degQ (≤ m). Hence, (pn(z), qn(z)) is a Padé pair of
order m. Since m is a normal index, deg qn(z) = m.

We now obtain the continued fraction expansions for

ϕε̂(z) = ε̂0z
−1 + ε̂1z

−2 + ε̂2z
−3 + . . . ∈ Q((z−1))

corresponding to the Fibonacci words ε̂ = ε(a, b) with (a, b) = (1, 0) and
(a, b) = (0, 1). As in Section 3, we use the notations ε and ε for them.
The proofs in the following theorems are given only for ε, since the proof is
similar for ε. In [3], J. Tamura gave the Jacobi–Perron–Parusnikov expansion
for a vector consisting of Laurent series with coefficients given by certain
substitutions, which contains the following as its special case (cf. the footnote
on p. 301 of [3]):

Proposition 3. We have

(z − 1)ϕε(z) = [0; zf−2 , zf−1 , zf0 , zf1 , zf2 , . . .].

Theorem 7. We have the following admissible continued fraction for
ϕε(z) and ϕε(z):

ϕε(z) = [0; a1, a2, a3, . . .], ϕε(z) = [0; a1, a2, a3, . . .]

with
a1 = z, a2 = −z + 1, a3 = − 1

2 (z + 1),

a2n+2 = (−1)n−1f2
n(zfn−1 + zfn−2 + . . .+ 1),

a2n+3 = (−1)n−1 1
fnfn+1

(z − 1) (n = 1, 2, . . .),

and
a1 = z2, a2 = −z,
a2n+1 = (−1)n−1f2

n−1(zfn−1 + zfn−2 + . . .+ 1),

a2n+2 = (−1)n−1 1
fn−1fn

(z − 1) (n = 1, 2, . . .).

P r o o f. We put

θn := [0; zfn , zfn+1 , zfn+2 , . . .] (n ≥ −2),

ξn := (−1)n−1 f
2
nz

fn + fn−1fn + f2
nθn+1

z − 1
(n ≥ 1),



Hankel determinants and Padé approximation 159

ηn := (−1)n−1 z − 1
fnfn+1 + f2

nθn+1
(n ≥ 1),

cn := (−1)n−1f2
n(zfn−1 + zfn−2 + . . .+ 1) (n ≥ 1),

dn := (−1)n−1 1
fnfn+1

(z − 1) (n ≥ 1).

Then

(35) ξn = [cn; ηn] (= cn + 1/ηn), ηn = [dn; ξn].

Using

θ−1
n = zfn + θn+1

and Proposition 3, we get

ϕε(z) =
θ−2

z − 1
(‖θ−2/(z − 1)‖ < 1)

= [0; (z − 1)θ−1
−2]

= [0; z − 1 + (z − 1)θ−1] (‖ − 1 + (z − 1)θ−1‖ < 1)

=
[
0; z,

θ−1
−1

−θ−1
−1 + z − 1

]
=
[
0; z,

z + θ0

−1− θ0

]

=
[
0; z,−z + 1 +

1 + (−z + 2)θ0

−1− θ0

] (∥∥∥∥
1 + (−z + 2)θ0

−1− θ0

∥∥∥∥ < 1
)

=
[
0; z,−z + 1,

−1− θ−1
0

−z + 2 + θ−1
0

]

=
[
0; z,−z + 1,

−z − 1− θ1

2 + θ1

]

=
[
0; z,−z + 1,−1

2
(z + 1),

4θ−1
1 + 2
z − 1

]

=
[
0; z,−z + 1,−1

2
(z + 1),

4z + 2 + 4θ2

z − 1

]
.

Hence, we have

(36) f(z) =
[
0; z,−z + 1,− 1

2 (z + 1), ξ1
]

(‖ξ−1
1 ‖ < 1).

From (35) and (36), it follows that

f(z) =
[
0; z,−z + 1,− 1

2 (z + 1)c1, d1, . . . , cn, dn, ξn+1
]

=
[
0; z,−z + 1,− 1

2 (z + 1)c1, d1, c2, d2, . . .
]

which completes the proof for ϕε(z).
Starting from the identity ϕε(z) = (1− θ−2)/(z − 1) instead of ϕε(z) =

θ−2/(z − 1), we can get the admissible continued fraction for ϕε(z) in a
similar fashion.
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Theorem 8. The numerator pn := pn(z) (pn := pn(z), resp.) and the de-
nominator qn := qn(z) (qn := qn(z), resp.) of the nth convergent of the con-
tinued fraction expansion for ϕε(z) (and ϕε(z), resp.) are given as follows:

p0 = 0, p1 = 1, p2 = −z + 1,

q0 = 1, q1 = z, q2 = −z2 + z + 1,

p2n−1 =
1

fn−1
(ε0z

fn−1 + ε1z
fn−2 + . . .+ εfn−1),

p2n = (−1)n{fn−1z
fn(ε0z

fn−1−1 + ε1z
fn−1−2 + . . .+ εfn−1−1)

− fn−2(ε0z
fn−1 + ε1z

fn−2 + . . .+ εfn−1)}/(z − 1),

q2n−1 =
1

fn−1
(zfn − 1),

q2n = (−1)n{fn−1z
fn(zfn−1−1 + zfn−1−2 + . . .+ 1)

− fn−2(zfn−1 + zfn−2 + . . .+ 1)} (n = 2, 3, . . .),

and
p0 = 0, p1 = 1,

q0 = 1, q1 = z2,

p2n−2 = − 1
fn−2

(ε0z
fn−1 + ε1z

fn−2 + . . .+ εfn−1),

p2n−1 = (−1)n−1{fn−2z
fn(ε0z

fn−1−1 + ε1z
fn−1−2 + . . .+ εfn−1−1)

− fn−3(ε0z
fn−1 + ε1z

fn−2 + . . .+ εfn−1)}/(z − 1) + fn−2,

q2n−2 = − 1
fn−2

(zfn − 1),

q2n−1 = (−1)n−1{fn−2z
fn(zfn−1−1 + zfn−1−2 + . . .+ 1)

− fn−3(zfn−1 + zfn−2 + . . .+ 1)} (n = 2, 3, . . .),

where p2n and p2n−1 are polynomials since the numerators are divisible by
z − 1.

P r o o f. The values for p0, p1, p2, q0, q1, q2 are obtained from Theorem 7
by direct calculations. For a general n, we can prove the formula for pn, qn
by induction on n using (31) and Theorem 7 without difficulty.

Remark 4. From Proposition 2 and Theorem 8, it follows that the set
of normal indices for ϕε(z) (and ϕε(z), resp.), is {0, f0 = f1 − 1, f1 = f2 −
1, f2, f3 − 1, . . .} ({0, f1 = f2 − 1, f2, f3 − 1, . . .}, resp.) which together with
Proposition 1 gives another proof of the third cases of Theorem 2 with n = 0.

Remark 5. In [4], the continued fraction expansion for Laurent series
corresponding to infinite words over {a, b} generated by substitutions of “Fi-
bonacci type” is considered, where a, b are viewed as independent variables.
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