Hankel determinants for the Fibonacci word
and Padé approximation

by

Teturo Kamae (Osaka), Jun-ichi Tamura (Tokyo)
and Zhi-Ying Wen (Beijing)

1. Introduction. The aim of this paper is to give a concrete and interesting example of the Padé approximation theory as well as to develop the general theory so as to find a quantitative relation between the Hankel determinant and the Padé pair. Our example is the formal power series related to the Fibonacci word.

The Fibonacci word $\varepsilon(a,b)$ on an alphabet $\{a,b\}$ is the infinite sequence
\begin{equation}
\varepsilon(a,b) = \hat{\varepsilon}_0 \hat{\varepsilon}_1 \ldots \hat{\varepsilon}_n \ldots := ababaababaab\ldots \quad (\hat{\varepsilon}_n \in \{a,b\}),
\end{equation}
which is the fixed point of the substitution
\begin{equation}
\sigma: \quad a \rightarrow ab, \quad b \rightarrow a.
\end{equation}

The Hankel determinants for an infinite word (or sequence) $\varphi = \varphi_0 \varphi_1 \ldots (\varphi_n \in \mathbb{K})$ over a field \mathbb{K} are
\begin{equation}
H_{n,m}(\varphi) := \det(\varphi_{n+i+j})_{0 \leq i,j \leq m-1} \quad (n = 0,1,\ldots; \; m = 1,2,\ldots). \tag{3}
\end{equation}

It is known [2] that the Hankel determinants play an important role in the theory of Padé approximation for the formal Laurent series
\begin{equation}
\varphi(z) = \sum_{k=0}^{\infty} \varphi_k z^{-k+h}. \tag{4}
\end{equation}

Let $\mathbb{K}((z^{-1}))$ be the set of formal Laurent series φ as above of z with coefficients in \mathbb{K} and $h \in \mathbb{Z}$ providing a nonarchimedean norm $\|\varphi\| := \exp(-k_0+h)$ with $k_0 = \inf\{k : \varphi_k \neq 0\}$. Let φ be as above with $h = -1$. We say that a
pair \((P,Q)\in \mathbb{K}[z]^2\) of polynomials of \(z\) over \(\mathbb{K}\) is a Padé pair of order \(m\) for \(\varphi\) if
\[
\|Q \varphi - P\| < \exp(-m), \quad Q \neq 0, \quad \deg Q \leq m.
\]
A Padé pair \((P,Q)\) of order \(m\) for \(\varphi\) always exists and the rational function \(P/Q \in \mathbb{K}(z)\) is uniquely determined for each \(m = 0, 1, \ldots\). The element \(P/Q \in \mathbb{K}(z)\) with \(P,Q\) satisfying (5) is called the \(m\)th diagonal Padé approximation for \(\varphi\). A number \(m\) is called a normal index if (5) implies \(\deg Q = m\). Note that \(P/Q\) is irreducible if \(m\) is a normal index, although it can be reducible for a general \(m\). A normal Padé pair \((P,Q)\), i.e., \(\deg Q\) is a normal index, is said to be normalized if the leading coefficient of \(Q\) is equal to 1. It is a classical result that \(m\) is a normal index for \(\varphi\) if and only if the Hankel determinant \(\det(\varphi_{i+j})_{0 \leq i,j \leq m-1}\) is nonzero. Note that 0 is always a normal index and the determinant for the empty matrix is considered to be 1, so that the above statement remains valid for \(m = 0\).

We succeed in obtaining a quantitative relation between the Hankel determinant and the normalized Padé pair. Namely,
\[
\det(\varphi_{i+j})_{0 \leq i,j \leq m-1} = (-1)^{\lfloor m/2 \rfloor} \prod_{z: Q(z) = 0} P(z)
\]
for any normal index \(m\) with the normalized Padé pair \((P,Q)\), where \(\prod_{z: Q(z) = 0}\) indicates a product taken over all zeros \(z\) of \(Q\) with their multiplicity (Theorem 6).

We are specially interested in the Padé approximation theory applied to the Fibonacci words \(\varepsilon := \varepsilon(1,0)\) and \(\overline{\varepsilon} := \varepsilon(0,1)\), where 0, 1 are considered as elements in the field \(\mathbb{Q}\), since we have the following remark.

Remark 1. Let \(M\) be a matrix of size \(m \times m\) with entries consisting of two independent variables \(a\) and \(b\). Then \(\det M = (a - b)^{m-1}(pa + (-1)^{m-1}qb)\), where \(p\) and \(q\) are integers defined by
\[
p = \det M|_{a=1, b=0}, \quad q = \det M|_{a=0, b=1}.
\]

Proof. Subtracting the first column vector from all the other column vectors of \(M\), we see that \(\det M\) is divisible by \((a - b)^{m-1}\) as a polynomial in \(\mathbb{Z}[a, b]\). Hence, \(\det M = (a - b)^{m-1}(xa + yb)\) for integers \(x,y\). Setting \((a,b) = (1,0), (0,1)\), we get the assertion.

In Section 2, we study the structure of the Fibonacci word, in particular, its repetition property. The notion of singular words introduced in Z.-X. Wen and Z.-Y. Wen [5] plays an important role.

In Section 3, we give the value of the Hankel determinants \(H_{n,m}(\varepsilon)\) and \(H_{n,m}((\overline{\varepsilon})\) for the Fibonacci words in some closed forms. It is a rare case where the Hankel determinants are determined completely. Another such case is for the Thue–Morse sequence \(\varphi\) consisting of 0 and 1, where the Hankel
determinants \(H_{m,n}(\varphi) \) modulo 2 are obtained, and the function \(H_{m,n}(\varphi) \) of \((m, n)\) is proved to be 2-dimensionally automatic (see [1]).

In Section 4, we consider the self-similar property of the values \(H_{n,m}(\varepsilon) \) and \(H_{n,m}(\bar{\varepsilon}) \) for the Fibonacci words. The quarter plane \(\{(n, m) : n \geq 0, m \geq 1\} \) is tiled by 3 kinds of tiles with the values \(H_{n,m}(\varepsilon) \) and \(H_{n,m}(\bar{\varepsilon}) \) on it with various scales.

In Section 5, we develop a general theory of Padé approximation. We also obtain the admissible continued fraction expansion of \(\varphi_{\varepsilon} \) and \(\varphi_{\bar{\varepsilon}} \), the formal Laurent series (4) with \(h = -1 \) for the sequences \(\varepsilon \) and \(\bar{\varepsilon} \), and determine all the convergents \(p_k/q_k \) of the continued fractions. It is known in general that the set of the convergents \(p_k/q_k \) for \(\varphi \) is the set of diagonal Padé approximations and the set of degrees of \(q_k \)'s in \(z \) coincides with the set of normal indices for \(\varphi \).

2. Structure of the Fibonacci word. In what follows, \(\sigma \) denotes the substitution defined by (2), and

\[
\hat{\varepsilon} = \hat{\varepsilon}_0 \hat{\varepsilon}_1 \ldots \hat{\varepsilon}_n \ldots \quad (\hat{\varepsilon}_n \in \{a, b\})
\]

is the (infinite) Fibonacci word (1). A finite word over \{a, b\} is sometimes considered to be an element of the free group generated by a and b with inverses \(a^{-1} \) and \(b^{-1} \). For \(n = 0, 1, \ldots \), we define the \(n \)th Fibonacci word \(F_n \) and the \(n \)th singular word \(W_n \) as follows:

\[
F_n := \sigma^n(a) = \sigma^{n+1}(b), \quad W_n := \beta_n F_n \alpha^{-1}_n,
\]

where we put

\[
\alpha_n = \beta_m = \begin{cases} a & \text{(n even, \(m \) odd)}, \\ b & \text{(n odd, \(m \) even)}, \end{cases}
\]

and we define \(W_{-2} \) to be the empty word and \(W_{-1} := a \) for convenience.

Let \((f_n; n \in \mathbb{Z})\) be the Fibonacci sequence:

\[
f_{n+2} = f_{n+1} + f_n \quad (n \in \mathbb{Z}), \quad f_{-1} = f_0 = 1.
\]

Then \(|F_n| = |W_n| = f_n \) \((n \geq 0)\), where \(|\xi| \) denotes the length of a finite word \(\xi \).

For a finite word \(\xi = \xi_0 \xi_1 \ldots \xi_{n-1} \) and a finite or infinite word \(\eta = \eta_0 \eta_1 \ldots \) over an alphabet, we denote

\[
\xi \prec_k \eta
\]

if \(\xi = \eta_k \eta_{k+1} \ldots \eta_{k+n-1} \). We simply write

\[
\xi \prec \eta
\]

and say that \(\xi \) is a subword of \(\eta \) if \(\xi \prec_k \eta \) for some \(k \). For a finite word \(\xi = \xi_0 \xi_1 \ldots \xi_{n-1} \) and \(i \) with \(0 \leq i < n \), we denote the \(i \)th cyclic permutation
of \(\xi \) by \(C_i(\xi) := \xi_1\xi_{i+1} \cdots \xi_{n-1}\xi_n \xi_1 \cdots \xi_i \). We also define \(C_{i'}(\xi) := C_{i'}(\xi) \) with \(i' := i - n[i/n] \) for any \(i \in \mathbb{Z} \).

In this section, we study the structure of the Fibonacci word \(\hat{\varepsilon} \) and discuss the repetition property. The following two lemmas were obtained by Z.-X. Wen and Z.-Y. Wen [5] and we omit the proofs.

Lemma 1. We have the following statements:

1. \(\hat{\varepsilon} = F_nF_{n-1}F_nF_{n+1}F_{n+2} \cdots \) \((n \geq 1) \),
2. \(F_n = F_{n-1}F_n - F_{n-2}F_{n-1} \beta_n^{-1} \alpha_n^{-1} \beta_n \alpha_n \) \((n \geq 2) \),
3. \(F_nF_n < \hat{\varepsilon} \) \((n \geq 3) \),
4. \(\hat{\varepsilon} = W_{-1}W_0W_1W_2W_3 \cdots \),
5. \(W_n = W_{n-2}W_{n-3}W_{n-2} \) \((n \geq 1) \),
6. \(W_n \) is a palindrome, that is, \(W_n \) stays invariant under reading the letters from the end \((n \geq -2) \),
7. \(C_i(F_n) < \hat{\varepsilon} \) \((n \geq 0, 0 \leq i < f_n) \),
8. \(C_i(F_n) \neq C_j(F_n) \) for any \(i \neq j \), moreover, they are different already before their last places \((n \geq 1, 0 \leq i < f_n) \),
9. \(W_n \neq C_i(F_n) \) \((n \geq 0, 0 \leq i < f_n) \),
10. \(\xi < \hat{\varepsilon} \) and \(|\xi| = f_n \) imply that either \(\xi = C_i(F_n) \) for some \(i \) with \(0 \leq i < f_n \) or \(\xi = W_n \) \((n \geq 0) \).

Lemma 2. For any \(k \geq -1 \), we have the decomposition of \(\hat{\varepsilon} \) as follows:

\[
\hat{\varepsilon} = (W_{-1}W_0 \cdots W_{k-1})W_k\gamma_0W_k\gamma_1 \cdots W_k\gamma_n \cdots ,
\]

where all the occurrences of \(W_k \) in \(\hat{\varepsilon} \) are picked up and \(\gamma_n \) is either \(W_{k+1} \) or \(W_{k-1} \) corresponding to \(\hat{\varepsilon}_n \) is a or b, respectively. That is, any two different occurrences of \(W_k \) do not overlap and are separated by \(W_{k+1} \) or \(W_{k-1} \).

We introduce another method to discuss the repetition property of \(\hat{\varepsilon} \). Let \(\mathbb{N} \) be the set of nonnegative integers. For \(n \in \mathbb{N} \), let

\[
n = \sum_{i=0}^{\infty} \tau_i(n)f_i ,
\]

\[
\tau_i(n) \in \{0,1\} \quad \text{and} \quad \tau_i(n)\tau_{i+1}(n) = 0 \quad (i \in \mathbb{N})
\]

be the regular expression of \(n \) in the Fibonacci base due to Zeckendorf. For \(m, n \in \mathbb{N} \) and a positive integer \(k \), we define

\[
m \equiv_k n
\]

if \(\tau_i(m) = \tau_i(n) \) for all \(i < k \).

Lemma 3. We have \(\hat{\varepsilon}_n = a \) if and only if \(\tau_0(n) = 0 \).

Proof. We use induction on \(n \). The lemma holds for \(n = 0, 1, 2 \). Assume that it holds for any \(n \in \mathbb{N} \) with \(n < f_k \) for some \(k \geq 2 \). Take any \(n \in \mathbb{N} \) with \(f_k \leq n < f_{k+1} \). Then, since \(0 \leq n - f_k < f_{k-1} \), we have
which gives the regular expression if \(\tau_{k-1}(n - f_k) = 0 \). If \(\tau_{k-1}(n - f_k) = 1 \), then we have the regular expression \(n = \sum_{i=0}^{k-2} \tau_i(n - f_k)f_i + f_{k+1} \). In any case, we have \(\tau_0(n) = \tau_0(n - f_k) \). On the other hand, since \(\tilde{\varepsilon} \) starts with \(F_kF_{k-1} \) by Lemma 1, we have \(\tilde{\varepsilon}_n = \tilde{\varepsilon}_{n-f_k} \). Hence, \(\tilde{\varepsilon}_n = a \) if and only if \(\tau_0(n) = 0 \) by the induction hypothesis. Thus, we have the assertion for any \(n < f_{k+1} \), and by induction, we complete the proof. ■

Lemma 4. Let \(n = \sum_{i=0}^{\infty} n_i f_i \) with \(n_i \in \{0, 1\} \) \((i \in \mathbb{N}) \). Assume that \(n_i n_{i+1} = 0 \) for \(0 \leq i < k \). Then \(n_i = \tau_i(n) \) for \(0 \leq i < k \).

Proof. If there exists \(i \in \mathbb{N} \) such that \(n_i n_{i+1} = 1 \), let \(i_0 \) be the maximum such \(i \). Take the maximum \(j \) such that \(n_i+1 = n_i+3 = n_i+5 = \ldots = n_j = 1 \). Then, replacing \(f_{i_0} + f_{i_0+1} + f_{i_0+3} + f_{i_0+5} + \ldots + f_j \) by \(f_{j+1} \), we have a new expression of \(n \):

\[
n = \sum_{i=0}^{\infty} n'_i f_i := \sum_{i=0}^{i_0-1} n_i f_i + f_{j+1} + \sum_{i=j+3}^{\infty} n_i f_i.
\]

This new expression is unchanged at the indices less than \(k \), and is either regular or has a smaller maximum index \(i \) with \(n'_i n'_{i+1} = 1 \). By continuing this procedure, we finally get the regular expression of \(n \), which does not differ from the original expression at the indices less than \(k \). Thus, \(n_i = \tau_i(n) \) for any \(0 \leq i < k \). ■

Lemma 5. For any \(n \in \mathbb{N} \) and \(k \geq 0 \), \(\tau_0(n + f_k) \neq \tau_0(n) \) if and only if either \(n \equiv_{k+2} f_{k+1} - 2 \) or \(n \equiv_{k+2} f_{k+1} - 1 \). Moreover,

\[
\tilde{\varepsilon}_{n+f_k} - \tilde{\varepsilon}_n = \begin{cases} (-1)^{k+1}(a - b) & (n \equiv_{k+2} f_{k+1} - 2), \\ (-1)^k(a - b) & (n \equiv_{k+2} f_{k+1} - 1), \end{cases}
\]

where \(a \) and \(b \) are considered as independent variables.

Proof. If \(k = 0 \), we can verify the statement by a direct calculation.

Assume that \(k \geq 1 \) and \(\tau_k(n) = 0 \). Then

\[
n + f_k = \sum_{i=0}^{k-1} \tau_i(n)f_i + f_k + \sum_{i=k+1}^{\infty} \tau_i(n)f_i.
\]

By Lemma 4, we have \(\tau_0(n + f_k) = \tau_0(n) \) if \(k \geq 2 \) or if \(k = 1 \) and \(\tau_0(n) = 0 \). In the case where \(k = 1 \), \(\tau_0(n) = 1 \) and \(\tau_2(n) = 0 \), since

\[
n + f_k = 1 + 2 + \sum_{i=3}^{\infty} \tau_i(n)f_i = f_2 + \sum_{i=3}^{\infty} \tau_i(n)f_i,
\]

we have \(\tau_0(n + f_k) = 0 \) by Lemma 4. On the other hand, in the case where \(k = 1 \), \(\tau_0(n) = 1 \) and \(\tau_2(n) = 1 \), since
we have \(\tau_0(n + f_k) = 1 \) by Lemma 4.

Thus, in the case where \(k \geq 1 \) and \(\tau_k(n) = 0 \), \(\tau_0(n + f_k) \neq \tau_0(n) \) if and only if \(k = 1 \), \(\tau_0(n) = 1 \) and \(\tau_2(n) = 0 \), or equivalently, if and only if \(n \equiv_{k+2} f_{k+1} - 2 \) with \(k = 1 \). Note that \(n \equiv_{k+1} f_{k+1} - 1 \) with \(k = 1 \) contradicts \(\tau_k(n) = 0 \).

Now assume that \(k \geq 1 \) and \(\tau_k(n) = 1 \). Take the minimum \(j \geq 0 \) such that \(\tau_k(n) = \tau_{k-2}(n) = \tau_{k-4}(n) = \ldots = \tau_j(n) = 1 \). Then since \(2f_i = f_{i+1} + f_{i-2} \) for any \(i \in \mathbb{N} \), we have

\[
(14) \quad n + f_k = \sum_{i=0}^{j-3} \tau_i(n)f_i + f_{j-2} + f_{j+1} + f_{j+3} + f_{j+5} + \ldots + f_{k+1} + \sum_{i=k+2}^{\infty} \tau_i(n)f_i,
\]

where the first term on the right-hand side vanishes if \(j = 0, 1, 2 \). Hence by Lemma 4, \(\tau_0(n + f_k) = \tau_0(n) \) if \(j \geq 4 \).

In the case where \(j = 3 \), \(\tau_0(n + f_k) = \tau_0(n) \) holds if \(\tau_0(n) = 0 \) by (14) and Lemma 4. If \(\tau_0(n) = 1 \), then by (14) and Lemma 4, \(\tau_0(n + f_k) = 0 \). Thus, for \(j = 3 \), \(\tau_0(n + f_k) \neq \tau_0(n) \) if and only if \(\tau_0(n) = 1 \).

If \(j = 2 \), then by the assumption on \(j \), we have \(\tau_0(n) = 0 \). On the other hand, since \(f_0 = 1 \), by (14) and Lemma 4, we have \(\tau_0(n + f_k) = 1 \). Thus, \(\tau_0(n + f_k) \neq \tau_0(n) \).

If \(j = 1 \), then \(\tau_0(n) = 0 \) since \(\tau_1(n) = 1 \) by the assumption on \(j \). On the other hand, since \(f_{-1} = 1 \), we have \(\tau_0(n + f_k) = 1 \) by (14) and Lemma 4. Thus, \(\tau_0(n + f_k) \neq \tau_0(n) \).

If \(j = 0 \), then by the assumption on \(j \), \(\tau_0(n) = 1 \). On the other hand, since \(f_{-2} = 0 \), we have \(\tau_0(n + f_k) = 0 \) by (14) and Lemma 4. Thus, \(\tau_0(n + f_k) \neq \tau_0(n) \).

By combining all the results as above, we get the first part.

The second part follows from Lemma 3 and the fact that for any \(k \geq 0 \),

\[
f_{k+1} - 1 = f_k + f_{k-2} + \ldots + f_i
\]

with \(i = 0 \) if \(k \) is even and \(i = 1 \) if \(k \) is odd. Hence,

\[
\tau_0(f_{k+1} - 1) = \tau_0(f_{k+1} - 2) = \begin{cases} a & (k \text{ odd}, \text{ } h \text{ even}), \\ b & (k \text{ even}, \text{ } h \text{ odd}). \end{cases}
\]

Lemma 6. For any \(k \geq 0 \), \(W_k \prec_n \hat{e} \) if and only if \(n \equiv_{k+2} f_{k+1} - 1 \).

Proof. By Lemma 2, the smallest \(n \in \mathbb{N} \) such that \(W_k \prec_n \hat{e} \) is

\[
f_{-1} + f_0 + f_1 + \ldots + f_{k-1} = f_{k+1} - 1,
\]

but
which is the smallest $n \in \mathbb{N}$ such that $n \equiv k+2 \ f_{k+1} - 1$. Let $n_0 := f_{k+1} - 1$. Then the regular expression of n_0 is
\[
 n_0 = f_k + f_{k-2} + f_{k-4} + \ldots + f_d,
\]
where $d = (1 - (-1)^k)/2$. The next n with $n \equiv k+2 \ n_0$ is clearly
\[
 n = f_{k+2} + f_k + f_{k-2} + \ldots + f_d,
\]
which is, by Lemma 2, the next n such that $W_k \prec_n \hat{\epsilon}$ since $f_k + f_{k+1} = f_{k+2}$.

For $i = 1, 2, \ldots$, let
\[
 n_i = n_0 + \sum_{j=0}^{\infty} \tau_j(i) f_{k+2+j}.
\]
Then it is easy to see that n_i is the ith n after n_0 such that $n \equiv k+2 \ f_{k+1} - 1$. We prove by induction on i that n_i is the ith n after n_0 such that $W_k \prec_n \hat{\epsilon}$. Assume that it is so for i. Then by Lemma 4, $W_k \gamma_i W_k \prec_{n_i} \hat{\epsilon}$. Hence, the next n after n_i such that $W_k \prec_n \hat{\epsilon}$ is $n_i + f_k + |\gamma_i|$. Thus, we have
\[
 n_i + f_k + |\gamma_i| = n_i + f_k + f_{k+1} |\hat{\epsilon}_{i=a} + f_{k-1} |\hat{\epsilon}_{i=b}
\]
\[
 = n_i + f_{k+2} |\tau_0(i)=0 + f_{k+1} |\tau_0(i)=1 = n_{i+1},
\]
which completes the proof. ■

Lemma 7. Let $k \geq 0$ and $n, i \in \mathbb{N}$ satisfy $n \equiv k+1 \ i$.

1. If $0 \leq i < f_k$, then $\tau_0(n+j) = \tau_0(i+j)$ for any $j = 0, 1, \ldots, f_{k+2} - i - 3$.

2. If $f_k \leq i < f_{k+1}$, then $\tau_0(n+j) = \tau_0(i+j)$ for any $j = 0, 1, \ldots, f_{k+3} - i - 3$.

Proof. (1) We prove the lemma by induction on k. The assertion holds for $k = 0$. Let $k \geq 1$ and assume that the assertion is valid for $k - 1$. For $j = 0, 1, \ldots, f_k - i$, we have $n + j \equiv k \ i + j$ and hence, $\tau_0(n+j) = \tau_0(i+j)$. Let $j_0 = f_k - i$. Then, since $n + j_0 \equiv k \ i + j_0 \equiv k \ 0$, we have $\tau_0(n+j_0 + j) = \tau_0(i+j_0 + j)$ for any $j = 0, 1, \ldots, f_{k+1} - 3$ by the induction hypothesis. Thus, $\tau_0(n+j) = \tau_0(i+j)$ for any $j = 0, 1, \ldots, f_{k+2} - i - 3$. This proves (1).

(2) In this case, $\tau_{k+1}(n) = 0$. Hence, $n \equiv k+2 \ i$. Therefore, we can apply (1) with $k + 1$ for k. Thus, we get (2). ■

Let $n, m, i \in \mathbb{N}$ with $m \geq 2$ and $0 < i < m$. We call n an (m, i)-shift invariant place in $\hat{\epsilon}$ if
\[
 \hat{\epsilon}_{n+i} \hat{\epsilon}_{n+1+i} \ldots \hat{\epsilon}_{n+m-1+i} = \hat{\epsilon}_{n+i} \hat{\epsilon}_{n+i+1} \ldots \hat{\epsilon}_{n+i+m-1}.
\]
We call n an m-repetitive place in $\hat{\epsilon}$ if there exist $i, j \in \mathbb{N}$ with $i > 0$ and $i + j < m$ such that $n + j$ is an (m, i)-shift invariant place in $\hat{\epsilon}$. Let R_m be the set of m-repetitive places in $\hat{\epsilon}$.

\[\]
Lemma 8. (1) Let \(n \equiv_{k+1} 0 \) for some \(k \geq 1 \). Then \(n \) is an \((f_{k+1} - 2, f_k)\)-shift invariant place in \(\hat{\mathcal{E}} \).

(2) Let \(n \equiv_{k+1} f_k \) for some \(k \geq 2 \). Then \(n \) is an \((f_{k+1} - 2, f_{k-1})\)-shift invariant place in \(\hat{\mathcal{E}} \).

Proof. (1) Since the least \(i \geq n \) such that either \(i \equiv_{k+2} f_{k+1} - 1 \) or \(i \equiv_{k+2} f_{k+1} - 2 \) is not less than \(n + f_{k+1} - 2 \), by Lemma 5, we have
\[
\hat{\mathcal{E}}_n \hat{\mathcal{E}}_{n+1} \cdots \hat{\mathcal{E}}_{n+f_{k+1}-3} = \hat{\mathcal{E}}_n f_k \hat{\mathcal{E}}_{n+f_k+1} \cdots \hat{\mathcal{E}}_{n+f_k+f_{k+1}-3}.
\]

(2) Since the minimum \(i \geq n \) such that either \(i \equiv_{k+1} f_k - 1 \) or \(i \equiv_{k+1} f_k - 2 \) is \(n + f_{k+1} - 2 \), by Lemma 5, we have
\[
\hat{\mathcal{E}}_n \hat{\mathcal{E}}_{n+1} \cdots \hat{\mathcal{E}}_{n+f_k-3} = \hat{\mathcal{E}}_n f_k \hat{\mathcal{E}}_{n+f_k+1} \cdots \hat{\mathcal{E}}_{n+f_k+f_{k+1}-3}.
\]

Theorem 1. The pair \((n,m)\) of nonnegative integers satisfies \(n \in \mathcal{R}_m \) if one of the following two conditions holds:

(1) \(f_k + 1 \leq m \leq f_{k+1} - 2 \), \(n-i \equiv_{k+1} 0 \) and \(i \leq n \) for some \(k \geq 1 \) and \(i \in \mathbb{Z} \) with \(f_k + 1 \leq m + i \leq f_{k+1} - 2 \).

(2) \(f_{k-1} + 1 \leq m \leq f_{k+1} - 2 \), \(i \leq n \) and \(n-i \equiv_{k+1} f_k \) for some \(k \geq 2 \) and \(i \in \mathbb{Z} \) with \(f_{k-1} + 1 \leq m + i \leq f_{k+1} - 2 \).

Remark 2. The “if and only if” statement actually holds in Theorem 1 in place of “if” since we will prove later that \(H_{n,m} \neq 0 \) if none of the conditions (1) and (2) hold.

Proof (of Theorem 1). Assume (1) and \(i \geq 0 \). By Lemma 8(1), \(n-i \) is an \((f_{k+1} - 2, f_k)\)-shift invariant place. Then \(n \) is an \((m, f_k)\)-shift invariant place since \(i + m \leq f_{k+1} - 2 \). Thus, \(n \in \mathcal{R}_m \) as \(f_k < m \).

Assume (1) and \(i < 0 \). Then, since \(n-i \) is an \((f_{k+1} - 2, f_k)\)-shift invariant place and \(m \leq f_{k+1} - 2 \), it is an \((m, f_k)\)-shift invariant place. Moreover, since \(f_k - i < m \), \(n \) is an \(m \)-repetitive place.

Assume (2) and \(i \geq 0 \). Then, \(n-i \) is an \((f_{k+1} - 2, f_{k-1})\)-shift invariant place by Lemma 8(2). Then, \(n \) is an \((m, f_{k-1})\)-shift invariant place since \(i + m \leq f_{k+1} - 2 \). Thus, \(n \) is an \(m \)-repetitive place as \(f_{k-1} < m \).

Assume (2) and \(i < 0 \). Then, since \(n-i \) is an \((f_{k+1} - 2, f_{k-1})\)-shift invariant place and \(m \leq f_{k+1} - 2 \), it is an \((m, f_{k-1})\)-shift invariant place. Then \(n \) is an \(m \)-repetitive place, since \(f_{k-1} - i < m \). Thus, \(n \in \mathcal{R}_m \).

Corollary 1. The place 0 is \(m \)-repetitive for an \(m \geq 2 \) if \(m \notin \bigcup_{k=1}^{\infty} \{f_k - 1, f_k\} \).

Remark 3. The “if and only if” statement actually holds in Corollary 1 in place of “if” since we will prove later that \(H_{0,m} \neq 0 \) if \(m \in \bigcup_{k=1}^{\infty} \{f_k - 1, f_k\} \).

Proof (of Corollary 1). Let \(i = 0 \) in (1) of Theorem 1. Then 0 is \(m \)-repetitive if \(f_k + 1 \leq m \leq f_{k+1} - 2 \) for some \(k \geq 1 \).
Corollary 2. Let $k \geq 2$. The place n is f_k-repetitive if
\[W_k \prec \hat{x}_{n+1} \hat{x}_{n+2} \cdots \hat{x}_{n+2f_k-3}. \]

Proof. By (2) of Theorem 1, for any $k \geq 2$, n is an f_k-repetitive place if
\[n-i \equiv_{k+1} f_k \] for some i with $i \leq n$ and $-f_{k-2} + 1 \leq i \leq f_{k-1} - 2$. Since the
condition $n-i \equiv_{k+1} f_k$ is equivalent to $n-i \equiv_{k+2} f_k$ and there is no carry
in addition of $-i$ to both sides of $n \equiv_{k+2} f_k + i$, the condition $n-i \equiv_{k+1} f_k$
is equivalent to $n \equiv_{k+2} f_k + i$. Hence, the place n is f_k-repetitive if $n \equiv_{k+2} j$
for some j with $f_{k-1} + 1 \leq j \leq f_{k+1} - 2$. By Lemma 6, this condition is
equivalent to W_k starting at one of the places in \{ $n + 1, n + 2, \ldots, f_k - 2$ \},
which completes the proof. \bull

3. Hankel determinants. The aim of this section is to find the value
of the Hankel determinants
\[
H_{n,m} := H_{n,m}(\varepsilon) = \det(\varepsilon_{n+i+j})_{0 \leq i,j \leq m-1},
\]
\[
\bar{H}_{n,m} := H_{n,m}(\bar{\varepsilon}) = \det(\bar{\varepsilon}_{n+i+j})_{0 \leq i,j \leq m-1}
\]
\[(n = 0, 1, \ldots; m = 1, 2, \ldots) \]
for the Fibonacci word $\varepsilon(a, b)$ at $(a, b) = (1, 0)$ and $(a, b) = (0, 1)$:
\[\varepsilon := \varepsilon(1, 0) = 10110101101101 \ldots, \]
\[\bar{\varepsilon} := \varepsilon(0, 1) = 01001010010010 \ldots. \]

It is clear that $H_{n,m}(\varepsilon(a, b)) = 0$ if n is the m-repetitive place in $\varepsilon(a, b)$,
where a, b are considered to be two independent variables, and that, in general,
$H_{n,m}(\varepsilon(a, b))$ becomes a polynomial in a and b as stated in Remark 1.

In the following lemmas, theorems and corollary, we give parallel state-
ments for ε and $\bar{\varepsilon}$, while we give the proofs only for ε since those for $\bar{\varepsilon}$ are
similar. The only difference is the starting point, Lemma 5, where $a - b$ on
the right-hand side is 1 for ε and -1 for $\bar{\varepsilon}$.

We use the following notation: for every subset S of \{ $0, 1, 2, 3, 4, 5$ \},
$\chi(k : S)$ is the function on $k \in \mathbb{Z}$ such that
\[\chi(k : S) = \begin{cases} 1 & \text{otherwise.} \\
-1 & \text{if } k \equiv s \pmod{6} \text{ for some } s \in S, \end{cases} \]

The following corollary follows from Theorem 1.

Corollary 3. $H_{n,m} = 0$ if one of the conditions (1), (2) in Theorem 1
is satisfied. The same statement holds for $\bar{H}_{n,m}$.

Lemma 9. For any $k \geq 2$, we have
\[
H_{0,f_k} = \chi(k : 2, 3)(H_{0,f_{k-1}} - (-1)^{f_{k-1}} H_{f_{k-1}, f_{k-1}}),
\]
\[
\bar{H}_{0,f_k} = \chi(k : 1, 3, 4, 5)(\bar{H}_{0,f_{k-1}} - (-1)^{f_{k-1}} \bar{H}_{f_{k-1}, f_{k-1}}). \]
Proof. The matrix \((\varepsilon_{i+j})_{0 \leq i,j < f_k}\) is decomposed into three parts:

\[
(\varepsilon_{i+j})_{0 \leq i,j < f_k} = \begin{pmatrix} A \\ A' \\ B \end{pmatrix},
\]

where

\[
A = (\varepsilon_{i+j})_{0 \leq i < f_{k-2}, 0 \leq j < f_k},
\]

\[
A' = (\varepsilon_{f_{k-2}+i+j})_{0 \leq i < f_{k-3}, 0 \leq j < f_k},
\]

\[
B = (\varepsilon_{f_{k-1}+i+j})_{0 \leq i < f_{k-2}, 0 \leq j < f_k}.
\]

By Lemma 5, the following two subwords of \(\varepsilon\):

\[
\varepsilon_0\varepsilon_1 \ldots \varepsilon_{f_{k-2}+f_{k-2}} \quad \text{and} \quad \varepsilon_{f_{k-1}}\varepsilon_{f_{k-1}+1} \ldots \varepsilon_{f_{k-1}+f_{k-2}+f_{k-2}}
\]

differ only at two places, namely, \(\varepsilon_{f_{k-2}} \neq \varepsilon_{f_{k-1}+f_{k-2}}\) and \(\varepsilon_{f_{k-1}} \neq \varepsilon_{f_{k-1}+f_{k-1}}\). Thus, we get

\[
B - A = \begin{pmatrix} (-1)^k & (-1)^{k-1} \\ (-1)^k & (-1)^{k-1} \\ \vdots & \vdots \\ (-1)^k & (-1)^{k-1} & \cdots & 0 \end{pmatrix}.
\]

Let \(A_0, A_1, \ldots, A_{f_{k-1}}\) be the columns of the matrix \(\begin{pmatrix} A \\ A' \end{pmatrix}\) in order from the left. Since

\[
(A_0A_1 \ldots A_{f_{k-2}-2}) = (\varepsilon_{i+j})_{0 \leq i < f_{k-1}, 0 \leq j < f_{k-2}-1},
\]

\[
(A_{f_{k-1}}A_{f_{k-1}+1} \ldots A_{f_{k-2}}) = (\varepsilon_{f_{k-1}+i+j})_{0 \leq i < f_{k-1}, 0 \leq j < f_{k-2}-1}
\]

and

\[
\varepsilon_0\varepsilon_1 \ldots \varepsilon_{f_{k-2}+f_{k-1}-3} = \varepsilon_{f_{k-1}}\varepsilon_{f_{k-1}+1} \ldots \varepsilon_{f_{k-1}+f_{k-2}+f_{k-1}-3}
\]

by Lemma 5, we get

\[
(A_0A_1 \ldots A_{f_{k-2}-2}) = (A_{f_{k-1}}A_{f_{k-1}+1} \ldots A_{f_{k-2}}).
\]

Thus, from (15) and (16) we obtain

\[
H_{0,f_k} = \det \begin{pmatrix} A_0 & \ldots & A_{f_{k-1}-1} & A_{f_{k-1}} & \ldots & A_{f_{k-2}} & A_{f_{k-1}} \\ 0 & \ldots & (A_0)_{f_{k-1}-1} & (A_{f_{k-1}})_{f_{k-1}} & \ldots & (A_{f_{k-2}})_{f_{k-1}} & (A_{f_{k-1}})_{f_{k-1}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \ldots & (A_0)_{f_{k-1}-1} & (A_{f_{k-1}})_{f_{k-1}} & \ldots & (A_{f_{k-2}})_{f_{k-1}} & (A_{f_{k-1}})_{f_{k-1}} \end{pmatrix}
\]

\[= \det \begin{pmatrix} A_0 & \ldots & A_{f_{k-1}-1} & 0 & \ldots & 0 & A_{f_{k-1}} \\ 0 & \ldots & (A_0)_{f_{k-1}-1} & (A_{f_{k-1}})_{f_{k-1}} & \ldots & (A_{f_{k-2}})_{f_{k-1}} & (A_{f_{k-1}})_{f_{k-1}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \ldots & (A_0)_{f_{k-1}-1} & (A_{f_{k-1}})_{f_{k-1}} & \ldots & (A_{f_{k-2}})_{f_{k-1}} & (A_{f_{k-1}})_{f_{k-1}} \end{pmatrix}.
\]
\[(-1)^{(k-1)k-2} (-1)^{[k-2]/2} \det(A_0A_1 \ldots A_{k-1-1}) + (-1)^kk^{-2} (-1)^{[k-2]/2} + k^{-1} \det(A_{k-1}A_0A_1 \ldots A_{k-1-2}) . \]

Since
\[\varepsilon_0 \varepsilon_1 \ldots \varepsilon_2 k_{k-1-3} = \varepsilon_k \varepsilon_{k+1} \ldots \varepsilon_{k+2 k_{k-1-3}} \]
by Lemma 5, we get
\[\det(A_{k-1}A_0A_1 \ldots A_{k-1-2}) = \det(\varepsilon_{k-1+i+j})_{0 \leq i,j < k_{k-1-1}} = H_{k-1,k_{k-1}-1} . \]
Thus we get
\[H_{0,k_k} = (-1)^{(k-1)k-2} (-1)^{[k-2]/2} H_{0,k_{k-1}} + (-1)^{k_{k-2}} (-1)^{[k-2]/2} + k^{-1} H_{k_{k-1},k_{k-1}-1} = \chi(k:2,3)(H_{0,k_{k-1}} - (-1)^{k_{k-1}} H_{k_{k-1},k_{k-1}-1}) , \]
where we have used the fact that
\[(-1)^{(k-1)k-2} (-1)^{[k-2]/2} = \chi(k:2,3) . \]

Lemma 10. For \(k \geq 2 \), we have
\[H_{k_{k+1}-1,k_k} = \chi(k:1,3,4,5) H_{k_{k+1}-1,k_{k-1}-1} , \]
\[\overline{H}_{k_{k+1}-1,k_k} = \chi(k:2,3) \overline{H}_{k_{k+1}-1,k_{k-1}-1} . \]

Proof. Just as in the proof of Lemma 9, we decompose the matrix \((\varepsilon_{k_{k+1}-1+i+j})_{0 \leq i,j < k_k} \) into three parts:
\[(\varepsilon_{k_{k+1}-1+i+j})_{0 \leq i,j < k_k} = \begin{pmatrix} A \\ A' \\ B \end{pmatrix} , \]
where
\[A = (\varepsilon_{k_{k+1}-1+i+j})_{0 \leq i < k_{k-2}, 0 \leq j < k_k} , \]
\[A' = (\varepsilon_{k_{k+1}-1+k_{k-2}-1+i+j})_{0 \leq i < k_{k-3}, 0 \leq j < k_k} , \]
\[B = (\varepsilon_{k_{k+1}-1+k_{k-1}-1+i+j})_{0 \leq i < k_{k-2}, 0 \leq j < k_k} . \]
By Lemma 5, the following two subwords of \(\varepsilon \):
\[\varepsilon_{k_{k+1}-1} \varepsilon_{k_{k+1}} \ldots \varepsilon_{k_{k+1}+k_{k-2}+k_{k-3}} \] and
\[\varepsilon_{k_{k+1}-1+k_{k-1}} \varepsilon_{k_{k+1}+k_{k-1}-1} \ldots \varepsilon_{k_{k+1}+k_{k-1}+k_{k-2}+k_{k-3}} \]
differ only at two places. Namely, \(\varepsilon_{k_{k+1}+k_{k-2}} \neq \varepsilon_{k_{k+1}+k_{k-1}+k_{k-2}} \) and \(\varepsilon_{k_{k+1}+k_{k-1}} \neq \varepsilon_{k_{k+1}+k_{k-1}+k_{k-1}} \). Therefore, we get
\[B - A = \begin{pmatrix} 0 & (-1)^k & (-1)^{k-1} \\ (-1)^k & \ddots & (-1)^{k-1} \\ (-1)^k & (-1)^{k-1} & 0 \end{pmatrix} . \]
Thus, we have
\begin{equation}
\det(\varepsilon_{f_{k+1}+1+i+j})_{0 \leq i, j < f_k} = \det\begin{pmatrix}
A_0 & A_1 & \ldots & A_{f_k-2} & A_{f_k-1} \\
0 & \ldots & \ldots & \ldots & \ldots \\
(-1)^k & (-1)^{k-1} & \ldots & 0
\end{pmatrix}
= (-1)^{k-2}(-1)^{(f_k-2)/2}\det(A_0A_1\ldots A_{f_k-1})
= \chi(k : 1, 3, 4, 5)H_{f_{k+1}-1, f_{k-1}}.
\end{equation}

Lemma 11. For any \(k \geq 2 \), we have
\[H_{f_{k+1}-1, f_{k-1}} = \chi(k : 2, 5)H_{0, f_{k-1}}, \]
\[\overline{H}_{f_{k+1}-1, f_{k-1}} = \chi(k : 2, 5)\overline{H}_{0, f_{k-1}}. \]

Proof. Since, by Lemma 5,
\[\varepsilon_{f_{k+1}}\varepsilon_{f_{k+1}}\ldots\varepsilon_{f_{k+1}+f_k-1-2} = \varepsilon_{f_{k+1}+f_{k-1-1}}\varepsilon_{f_{k+1}+f_{k-1}}\ldots\varepsilon_{f_{k+1}+2f_k-1-2}, \]
we get
\[(\varepsilon_{f_{k+1}+1+i+j})_{0 \leq i, j < f_k} = \begin{pmatrix}
0 & 0 & 1 \\
1 & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
0 & 1 & 0
\end{pmatrix}(\varepsilon_{f_{k+1}+1+i+j})_{0 \leq i, j < f_k-1}. \]

Also, by Lemma 5,
\[(\varepsilon_{f_{k+1}+i+j})_{0 \leq i, j < f_k} = (\varepsilon_{i+j})_{0 \leq i, j < f_k}. \]

Thus we obtain
\[H_{f_{k+1}-1, f_{k-1}} = \det(\varepsilon_{f_{k+1}+1+i+j})_{0 \leq i, j < f_k-1} = (-1)^{f_k-1} \det(\varepsilon_{f_{k+1}+1+i+j})_{0 \leq i, j < f_k-1} = \chi(k : 2, 5)H_{0, f_{k-1}}. \]

Lemma 12. For any \(k \geq 3 \), we have
\[H_{0, f_k} = \chi(k : 2, 3)H_{0, f_{k-1}} + \chi(k : 2, 4)H_{0, f_{k-2}}, \]
\[\overline{H}_{0, f_k} = \chi(k : 1, 3, 4, 5)\overline{H}_{0, f_{k-1}} + \chi(k : 0, 1, 2, 3)\overline{H}_{0, f_{k-2}}. \]

Proof. Clear from Lemmas 9–11.

Lemma 13. For any \(k \geq 0 \), we have
\[H_{0, f_k} = \chi(k : 2)_{f_{k-1}}, \]
\[\overline{H}_{0, f_k} = \chi(k : 1, 2, 4)_{f_{k-2}}. \]
Proof. We have

\[H_{0,f_0} = 1, \quad H_{0,f_1} = 1, \quad H_{0,f_2} = -2, \]
\[\overline{H}_{0,f_0} = 0, \quad \overline{H}_{0,f_1} = -1, \quad \overline{H}_{0,f_2} = -1. \]

Thus, the assertion holds for \(k = 0, 1, 2 \). For \(k \geq 3 \), we can prove it by induction on \(k \) using Lemma 12.

Lemma 14. For any \(k \geq 1 \), we have

\[H_{0,f_k-1} = \chi(k : 0, 4)f_{k-2}, \]
\[\overline{H}_{0,f_k-1} = \chi(k : 2, 3, 4, 5)f_{k-3}. \]

Proof. Since the matrix \((\varepsilon_{i+j})_{0 \leq i, j < f_k - 1}\) is obtained from \((\varepsilon_{i+j})_{0 \leq i, j < f_k}\) by removing the last row and the last column, for any \(k \geq 2 \) we have by (17),

\[H_{0,f_k-1} = \det \begin{pmatrix} A_0 & A_1 & \ldots & A_{f_k-1} & 0 & \ldots & 0 & 0 & (-1)^k & (-1)^{k-1} \\ 0 & \ldots \\ (-1)^k & (-1)^{k-1} & \ldots \\ \end{pmatrix} \]

\[= (-1)^k(f_{k-2})((-1)^{(f_{k-2}-1)/2}) \det(A_0A_1\ldots A_{f_k-1-1}) \]

\[= (-1)^k(f_{k-2})((-1)^{(f_{k-2}-1)/2})H_{0,f_k-1}. \]

Hence, in view of Lemma 13, we obtain the formula for \(H_{0,f_k-1} \).

Theorem 2. For any \(m, k \geq 1 \) with \(f_{k-1} < m \leq f_k \) and \(n \in \mathbb{N} \) with \(n \equiv k+1 \mod 0 \), we have

\[H_{n,m} = \begin{cases} \chi(k : 2)f_{k-1} & \text{if } m = f_k, \\ \chi(k : 0, 4)f_{k-2} & \text{if } m = f_k - 1, \\ 0 & \text{otherwise}, \end{cases} \]

\[\overline{H}_{n,m} = \begin{cases} \chi(k : 1, 2, 4)f_{k-2} & \text{if } m = f_k, \\ \chi(k : 2, 3, 4, 5)f_{k-3} & \text{if } m = f_k - 1, \\ 0 & \text{otherwise}. \end{cases} \]

Proof. By Lemmas 3 and 7, the matrix for \(H_{n,m} \) coincides with that for \(H_{0,m} \) so that \(H_{n,m} = H_{0,m} \). Thus, the first two cases follow from Lemmas 13 and 14. For the last case, by Corollary 1, there exist two identical rows in the matrix \((\varepsilon_{i+j})_{0 \leq i, j < m}\), so that \(H_{0,m} = 0 \).
THEOREM 3. For any \(k, n, i \in \mathbb{N} \) with \(n \equiv k+1 i \) and \(0 \leq i \leq f_{k+1} - 1 \), we have

\[
H_{n, f_k} = \begin{cases}
\chi(k : 2) \chi(k : 1, 4)^i f_{k-1} \\
\quad \text{if either } \tau_{k+1}(n) = 0 \text{ and } 0 \leq i < f_{k-1} \\
\quad \text{or } \tau_{k+1}(n) = 1 \text{ and } 0 \leq i < f_k, \\
\chi(k : 1, 2, 4)^i f_{k-2} \\
\quad \text{if either } \tau_{k+1}(n) = 0 \text{ and } i = f_{k-1} \\
\quad \text{or } i = f_{k+1} - 1, \\
0 \\
\quad \text{otherwise,}
\end{cases}
\]

\[
\Pi_{n, f_k} = \begin{cases}
\chi(k : 1, 2, 4)^i \chi(k : 1, 4)^i f_{k-2} \\
\quad \text{if either } \tau_{k+1}(n) = 0 \text{ and } 0 \leq i < f_{k-1} \\
\quad \text{or } \tau_{k+1}(n) = 1 \text{ and } 0 \leq i < f_k, \\
\chi(k : 2)^i f_{k-3} \\
\quad \text{if either } \tau_{k+1}(n) = 0 \text{ and } i = f_{k-1} \\
\quad \text{or } i = f_{k+1} - 1, \\
0 \\
\quad \text{otherwise.}
\end{cases}
\]

Proof. The assertion holds for \(k = 0 \). Let \(k \geq 1 \).

Assume that either \(\tau_{k+1}(n) = 0 \) and \(0 \leq i < f_{k-1} \) or \(\tau_{k+1}(n) = 1 \) and \(0 \leq i < f_k \). Then by Lemmas 3 and 7 we have

\[
\varepsilon_{i+j} = \varepsilon_{n+j} \quad (j = 0, 1, \ldots, f_k - i - 1),
\]

\[
\varepsilon_{i+j-f_k} = \varepsilon_{n+j} \quad (j = f_k - i, f_k, \ldots, 2f_k - 2),
\]

\[
\varepsilon_j = \varepsilon_{j+f_k} \quad (j = 0, 1, \ldots, f_k - 1).
\]

Hence, the columns of the matrix \((\varepsilon_{n+j})_{0 \leq h, j \leq f_k}\) coincide with those of \((\varepsilon_{h+j})_{0 \leq h, j \leq f_k}\). The \(j \)th column of the former is the \((i+j) \text{ (mod } f_k)\)th column of the latter for \(j = 0, \ldots, f_k - 1 \). Therefore, we get

\[
H_{n, f_k} = (-1)^{i(f_k-i)} H_{0, f_k},
\]

which leads to the first case of our theorem by Theorem 2.

Assume that \(i = f_{k+1} - 1 \). Then \(H_{n, f_k} = H_{f_{k+1}-1, f_k} \) by Lemmas 3 and 7. Thus, by Lemmas 10–12 we get

\[
H_{n, f_k} = \chi(k : 1, 2, 4)^i f_{k-2}.
\]

Assume that \(\tau_{k+1}(n) = 0 \) and \(i = f_{k-1} \). Then, since \(n \equiv k+2 i \), we have

\[
H_{n, f_k} = H_{f_{k+1}-1, f_k} \text{ by Lemmas 3 and 7. By Lemma 1,}
\]

\[
\xi := \varepsilon_{f_{k-1}} \varepsilon_{f_{k-1}+1} \cdots \varepsilon_{f_{k-1}+2f_k-2} <_1 W_{k-2}W_{k-1}W_kW_{k-1}W_{k-2},
\]

\[
\eta := \varepsilon_{f_{k+1}-1} \varepsilon_{f_{k+1}} \cdots \varepsilon_{f_{k+1}+2f_k-3} <_{f_k} W_{k-2}W_{k-1}W_kW_{k-1}W_{k-2}.
\]

Since the last letter of \(\eta \) comes one letter before the last letter of the palindrome word \(W_{k-2}W_{k-1}W_kW_{k-1}W_{k-2} \), it follows that \(\xi \) is the mirror image of \(\eta \), so that
\((\varepsilon_{f_k-1+i+j})_{0 \leq i,j < f_k}\)

\[
\begin{pmatrix}
0 & 1 \\
\vdots & \ddots \\
1 & 0
\end{pmatrix} \quad \begin{pmatrix}
0 & 1 \\
\vdots & \ddots \\
1 & 0
\end{pmatrix}
\]

Thus, we obtain \(H_{f_k-1, f_k} = H_{f_k+1-1, f_k}\) and

\[
H_{n, f_k} = \chi(k : 1, 2, 4)f_{k-2}.
\]

Assume that \(n\) does not belong to the above two cases. Then, since \(\tau_{k+1}(n) = 1\) implies \(i < f_k\), we have the following condition:

\[
\tau_{k+1}(n) = 0 \quad \text{and} \quad f_k - 1 < i \leq f_k - 1 - 2.
\]

This condition is nonempty only if \(k \geq 2\), which we assume. Then the condition (2) of Theorem 1 is satisfied with \(f_k\) (resp. \(i - f_k\)) in place of \(m\) (resp. \(i\)). Thus, by Corollary 3, \(H_{n, f_k} = 0\).

Lemma 15. For any \(k, n, i \in \mathbb{N}\) with \(k \geq 1\) and \(n \equiv_{k+1} i\), assume that either \(\tau_{k+1}(n) = 0\) and \(0 \leq i < f_k - 1\) or \(\tau_{k+1}(n) = 1\) and \(0 \leq i < f_k\). Then

\[
H_{n, f_k} = \begin{cases}
\chi(k : 1, 2, 4)f_{k-2} & (i = 0), \\
\chi(k : 2, 3)\chi(k : 1, 2, 4, 5)^iH_{i+f_k, f_k-1} & (0 < i \leq f_k-2), \\
\chi(k : 2, 3)\chi(k : 1, 2, 4, 5)^iH_{i+f_k, f_k-1} & (f_k-2 < i \leq f_k-1), \\
\chi(k : 2, 3, 4, 5)^iH_{i+f_k, f_k-1} & (f_k-1 < i < f_k).
\end{cases}
\]

\[
\overline{H}_{n, f_k} = \begin{cases}
\chi(k : 2, 3, 4, 5)^iH_{i+f_k, f_k-1} & (i = 0), \\
\chi(k : 1, 3, 4, 5)^iH_{i+f_k, f_k-1} & (0 < i \leq f_k-2), \\
\chi(k : 1, 3, 4, 5)^iH_{i+f_k, f_k-1} & (f_k-2 < i \leq f_k-1), \\
\chi(k : 2, 3, 4, 5)^iH_{i+f_k, f_k-1} & (f_k-1 < i < f_k).
\end{cases}
\]

Proof. If \(i = 0\), then the statement follows from Theorem 2. Let

\[
A_i = (\varepsilon_j, \varepsilon_{j+1}, \ldots, \varepsilon_{j+f_k-1-1}),
\]

\[
A_i' = (\varepsilon_j, \varepsilon_{j+1}, \ldots, \varepsilon_{j+f_k-2-1}),
\]

\[
B_j = (\varepsilon_{j+f_k-1}, \varepsilon_{j+f_k-1+1}, \ldots, \varepsilon_{j+f_k-1}) \quad (j = 0, 1, \ldots).
\]

Then, by the same argument as in the proof of Theorem 3, we obtain

\[
H_{n, f_k-1} = \det \begin{pmatrix}
A_i & \ldots & A_{i+f_k-1-1} & A_{i-f_k-1} & \ldots & A_{i-1} \\
B_i' & \ldots & B_{i+f_k-1-1}' & B_{i-f_k-1}' & \ldots & B_{i-1}'
\end{pmatrix}
\]

\[
= (-1)^{(i-1)(f_k-1)} \det \begin{pmatrix}
A_0 & \ldots & A_{i-2} & A_i & \ldots & A_{f_k-1} \\
B_0' & \ldots & B_{i-2}' & B_i' & \ldots & B_{f_k-1}'
\end{pmatrix}.
\]
Therefore, if $f_{k-2} < i \leq f_{k-1}$, then by the same argument as for (17), we obtain

\[
(-1)^{(i-1)(f_{k-2}-i)} H_{n,f_{k-1}}
\]

\[
= \det \begin{pmatrix}
A_0 \ldots A_{i-2} A_1 \ldots A_{f_{k-1}-1} & 0 & \ldots & 0 & A_{f_{k-1}-1} \\
0 & \ddots & \vdots & \vdots & \vdots \\
-1^{k-1} & \vdots & \ddots & \vdots & \vdots \\
0 & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots & \cdots
\end{pmatrix}.
\]

Since by Lemma 5,

\[
A_{f_{k-1}} - A_{f_{k-2}} = \begin{pmatrix}
0 \\
\vdots \\
0 \\
(-1)^{k}
\end{pmatrix},
\]

we get

\[
(-1)^{(i-1)(f_{k-2}-i)} H_{n,f_{k-1}}
\]

\[
= \det \begin{pmatrix}
A'_0 \ldots A'_{i-2} A'_1 \ldots A'_{f_{k-1}-1} & 0 & \ldots & 0 & 0 \\
0 & \ddots & \vdots & \vdots & \vdots \\
-1^{k-1} & \vdots & \ddots & \vdots & \vdots \\
0 & \ddots & \vdots & \ddots & \vdots \\
0 & \cdots & \cdots & \cdots & \cdots
\end{pmatrix}
\]

\[
= (-1)^{k} H_{i+f_{k},f_{k-1}-1}.
\]

Thus we obtain

\[
H_{n,f_{k-1}} = \chi(k : 2,3) \chi(k : 1,2,4,5)^i H_{i+f_{k},f_{k-1}-1}.
\]

Assume that $f_{k-1} < i < f_k$. Then as above we have

\[
(-1)^{(i-1)(f_{k-1}-i)} H_{n,f_{k-1}}
\]

\[
= \det \begin{pmatrix}
A_0 \ldots A_{f_{k-1}-1} & 0 & \ldots & 0 & A_{f_{k-1}-1} \\
0 & \ddots & \vdots & \vdots & \vdots \\
0 & \ddots & \vdots & \vdots & \vdots \\
0 & \ddots & \vdots & \ddots & \vdots \\
(-1)^{k} & \cdots & \cdots & \cdots & \cdots
\end{pmatrix}
\]

\[
= (-1)^{k(i-f_{k-1}-1)+(k-1)(f_{k-1}-i)+(f_{k-2}-1)/2} \det(A_0 \ldots A_{f_{k-1}-1}).
\]
Hence, by Lemma 13,
\[H_{n, f_k - 1} = \chi(k : 0, 3, 4)\chi(k : 1, 4)^t H_{0, f_k - 1} = \chi(k : 0, 4)\chi(k : 1, 4)^t f_{k-2}. \]

Assume that \(0 < i < f_k - 2\). Then, since \(A_{i-1 + f_k - 1} = A_{i-1}\), by the same arguments as above we get
\[
(-1)^{(i-1)(f_k-2)} H_{n, f_k - 1} = \begin{vmatrix}
 A_0' \ldots A_{i-2}' A_i' \ldots A'_{f_k - 1 - 1} & 0 & \ldots & 0 \\
 \vdots & \ddots & \ddots & \vdots \\
 0 & \ldots & 0
\end{vmatrix}
\]
\[= (-1)^k \begin{vmatrix}
 0 \\
 0 \\
 \vdots \\
 0
\end{vmatrix}
\]
\[= (-1)^k f_{k-2} (-1)^{\lfloor f_k - 2/2 \rfloor} \det(A_0' \ldots A_{i-2}' A_i' \ldots A'_{f_k - 1 - 1})
\]
\[+ (-1)^k (i-1)+(k-1)(f_k-2-i)(-1)^{i-1+\lfloor (f_k-2-1)/2 \rfloor}
\times \det(A_0 \ldots A_{i-2} A_i \ldots A_{f_k - 1 - 1} A_{i-1}).
\]

Since
\[\det(A_0 \ldots A_{i-2} A_i \ldots A_{f_k - 1 - 1} A_{i-1}) = (-1)^{i-1} f_{k-1} H_{0, f_k - 1},\]
by Lemma 13 we obtain
\[(21) \quad H_{n, f_k - 1} = \chi(k : 2, 3)\chi(k : 1, 2, 4, 5)^t H_{i+f_k, f_k - 1 - 1}
\]
\[+ \chi(k : 1, 2, 3, 5)\chi(k : 1, 4)^t f_{k-2}.\]

Note that (21) holds also for \(i = f_k - 2\) since in this case,
\[H_{n, f_k - 1} = (-1)^{k(f_k-2-i-1)}(-1)^{f_k-2-i+\lfloor (f_k-2-1)/2 \rfloor}
\times \det(A_0 \ldots A_{f_k-2} A_{f_k-2} \ldots A_{f_k-1} A_{f_k-1})
\]
and
\[A_{f_k-1} = A_{f_k-1} + i(0, \ldots, 0, (-1)^k). \]

Lemma 16. For any \(k, n, i \in \mathbb{N}\) with \(k \geq 1\) and \(n \equiv_{k+1} i\), assume that either \(\tau_{k+1}(n) = 0\) and \(0 \leq i < f_k - 1\) or \(\tau_{k+1}(n) = 1\) and \(0 \leq i < f_k\). Then
\[H_{n, f_k - 1} = \begin{cases}
 \chi(k : 0, 4)^t f_{k-2} & (i = 0), \\
 \chi(k : 1, 2, 3, 5)\chi(k : 1, 4)^t f_{k-3} & (0 < i < f_k - 1), \\
 \chi(k : 0, 4)\chi(k : 1, 4)^t f_{k-2} & (f_k - 1 < i < f_k),
\end{cases}
\]
\[\overline{H}_{n, f_k - 1} = \begin{cases}
 \chi(k : 2, 3, 4, 5)^t f_{k-3} & (i = 0), \\
 \chi(k : 0, 1)\chi(k : 1, 4)^t f_{k-4} & (0 < i < f_k - 1), \\
 \chi(k : 2, 3, 4, 5)\chi(k : 1, 4)^t f_{k-3} & (f_k - 1 < i < f_k).
\end{cases}
\]
Proof. The first and third cases have already been proved in Lemma 15. Consider the second case where \(0 < i \leq f_{k-1} \). We divide it into two subcases, and use induction on \(k \).

Case 1: \(i = 1 \). If \(k = 1 \), then
\[
H_{n,f_{k-1}} = H_{n,1} = \varepsilon_n = 0
\]
since \(n \equiv 2 \) and \(\tau_0(n) = 1 \). On the other hand, \(f_{k-3} = f_{k-2} = 0 \), and hence, we get the statement. Assume that \(k \geq 2 \) and the assertion holds for \(k - 1 \). Then, by Lemma 15 and the induction hypothesis, we get
\[
H_{n,f_{k-1}} = \chi(k : 2, 3)\chi(k : 1, 2, 4, 5)^i H_{i + f_k, f_{k-1} - 1}
\]
\[
+ \chi(k : 1, 2, 3, 5)\chi(k : 1, 4)^i f_{k-2}
\]
\[
= \chi(k : 1, 3, 4, 5)H_{1 + f_k, f_{k-1} - 1} + \chi(k : 2, 3, 4, 5)f_{k-2}
\]
\[
= \chi(k : 1, 3, 4, 5)\chi(k - 1 : 2, 3, 4, 5)f_{k-4} + \chi(k : 2, 3, 4, 5)f_{k-2}
\]
\[
= \chi(k : 0, 1)f_{k-4} + \chi(k : 2, 3, 4, 5)f_{k-2}
\]
\[
= \chi(k : 2, 3, 4, 5)f_{k-3},
\]
which is the desired statement.

Case 2: \(i \geq 2 \). If \(f_{k-2} < i \leq f_{k-1} \), then it follows from the third case and then the fourth case of Lemma 15 that
\[
H_{n,f_{k-1}} = \chi(k : 2, 3)\chi(k : 1, 2, 4, 5)^i H_{i + f_k, f_{k-1} - 1}
\]
\[
= \chi(k : 2, 3)\chi(k : 1, 2, 4, 5)^i \chi(k - 1 : 0, 4)\chi(k - 1 : 1, 4)^i f_{k-3}
\]
Assume that \(i \leq f_{k-2} \) and the statement holds for \(k - 1 \). Then by Lemma 15, we get
\[
H_{n,f_{k-1}} = \chi(k : 2, 3)\chi(k : 1, 2, 4, 5)^i H_{i + f_k, f_{k-1} - 1}
\]
\[
+ \chi(k : 1, 2, 3, 5)\chi(k : 1, 4)^i f_{k-2}
\]
\[
= \chi(k : 2, 3)\chi(k : 1, 2, 4, 5)^i \chi(k - 1 : 1, 2, 3, 5)\chi(k - 1 : 1, 4)^i f_{k-4}
\]
\[
+ \chi(k : 1, 2, 3, 5)\chi(k : 1, 4)^i f_{k-2}
\]
\[
= \chi(k : 0, 4)\chi(k : 1, 4)^i f_{k-2} + \chi(k : 2, 3, 4, 5)\chi(k : 1, 4)^i f_{k-2}
\]
\[
= \chi(k : 2, 3, 4, 5)f_{k-3}.
\]

Lemma 17. For any \(k, n \in \mathbb{N} \) with \(k \geq 2 \) and \(\tau_{k+1}(n) = 0 \), we have
\[
H_{n,f_{k-1}} = \begin{cases}
\chi(k : 2, 3, 4, 5)f_{k-3} & (n \equiv_{k+1} f_{k-1}), \\
\chi(k : 0, 4)f_{k-2} & (n \equiv_{k+1} f_{k-1} + 1),
\end{cases}
\]
\[
\bar{H}_{n,f_{k-1}} = \begin{cases}
\chi(k : 0, 4)f_{k-4} & (n \equiv_{k+1} f_{k-1}), \\
\chi(k : 2, 3, 4, 5)f_{k-3} & (n \equiv_{k+1} f_{k-1} + 1).
\end{cases}
\]
Proof. Assume that \(n \equiv k + 1 \). Then since \(\tau_{k+1}(n) = 0 \), we have \(n \equiv k + 2 \). Therefore, by Lemmas 3 and 7, we get

\[
H_{n, f_k - 1} = \det \begin{pmatrix}
A_{f_k - 1} & \ldots & A_{f_k - 1} & A_{f_k - 1} & \ldots & A_{f_k + 1 - 2} \\
B'_{f_k - 1} & \ldots & B'_{f_k - 1} & B'_{f_k - 1} & \ldots & B'_{f_k + 1 - 2}
\end{pmatrix},
\]

where we use the notation (20). By Lemma 5, the following two subwords of \(\varepsilon \):

\[
\varepsilon_{n+1} \varepsilon_{n+f_k - 2+k-3} \quad \text{and} \quad \varepsilon_{n+f_k - 1} \varepsilon_{n+f_k - 1+1} \varepsilon_{n+f_k - 1+f_k - 2+k-3}
\]
differ only at two places, namely, at the \((f_k - 2 - f_k - 1)\)th and the \((f_k - 1 - f_k - 1)\)th places. Hence, we have

\[
H_{n, f_k - 1} = \det \begin{pmatrix}
A_{f_k - 1} & \ldots & A_{f_k - 1} & A_{f_k - 1} & \ldots & A_{f_k + 1 - 2} \\
B'_{f_k - 1} & \ldots & B'_{f_k - 1} & B'_{f_k - 1} & \ldots & B'_{f_k + 1 - 2}
\end{pmatrix}
\]

\[
= \det \begin{pmatrix}
A_{f_k - 1} & \ldots & \ldots & A_{f_k - 1} & A_{f_k - 1} & \ldots & A_{f_k + 1 - 2} \\
0 & \ldots & \ldots & 0 & \ldots & \ldots & 0 \\
(-1)^k & \ldots & \ldots & (-1)^k & \ldots & \ldots & (-1)^k
\end{pmatrix}.
\]

By adding the first \(f_k - 2 \) columns and subtracting the last \(f_k - 2 \) columns to and from the column beginning by \(A_{f_k - 1} \), we get the column

\[
t(A_{f_k - 1} 0 \ldots 0) + t((-1)^{k-1} 0 \ldots 0(-1)^k 0 \ldots 0),
\]

where \((-1)^k\) is at the \((f_k - 2 - 1)\)th place. Since, by Lemma 5,

\[
(A_{f_k - 1} \ldots A_{f_k - 2}) - (A_{2f_k - 1} \ldots A_{f_k - 2})
\]

\[
= \begin{pmatrix}
0 & \ldots & (-1)^{k-1} & \ldots & (-1)^k \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
(-1)^{k-1} & \ldots & \ldots & 0 \\
(-1)^k & \ldots & \ldots & \ldots
\end{pmatrix},
\]

we get

\[
H_{n, f_k - 1} = (-1)^{k(f_k - 2 - 1)}(-1)^{f_k - 1(f_k - 2 - 1) + (f_k - 2 - 1)/2}
\]

\[
\times \left\{ \det(A_{f_k - 1} A_{f_k} \ldots A_{f_k + 1 - 2}) + (-1)^{k-1} \det(A_{f_k} \ldots A_{f_k + 1 - 2}) + (-1)^{k+f_k - 2} \det(A_{f_k} \ldots A_{f_k + 1 - 2}) \right\}.
\]
\[A''_j := t(\varepsilon_{j+1} \cdots \varepsilon_{j+f_k-1}-1), \]
\[A'''_j = t(\varepsilon_j \cdots \varepsilon_{j+f_k-2} \varepsilon_{j+f_k-1} \cdots \varepsilon_{j+f_k-1}). \]

Here, we have
\[
\begin{align*}
\det(A_{f_k} A_{f_k} \cdots A_{f_{k+1}-2}) &= H_{f_{k-1}, f_{k-1}}, \\
\det(A'''_{f_k} A'''_{f_{k+1}-2}) &= H_{f_{k+1}, f_{k-1}-1},
\end{align*}
\]
and by Lemma 5,
\[
\det(A'''_{f_k} \cdots A'''_{f_{k+1}-2})
= \begin{pmatrix}
 0 & (1)^{k-1} & (1)^k \\
 A''''_{f_k} \cdots A''''_{f_k+f_k-2} & \cdots & \cdots \\
 & \cdots & \cdots \\
 & \cdots & \cdots \\
 & & \cdots \\
 C_{f_k+1-1} & (1)^k & 0 \\
\end{pmatrix},
\]
where we put
\[C_j = (\varepsilon_j \varepsilon_{j+1} \cdots \varepsilon_{j+f_k-1}). \]

Since \(C_{f_k+f_k-2+j} = C_{f_k+j} \) for \(j = 0, 1, \ldots, f_k-3 - 2 \) by Lemma 5, we have
\[
\det(A'''_{f_k} \cdots A'''_{f_{k+1}-2})
= (-1)^{(k-1)(f_k-3) + f_k-3 - 1 + (f_k-3-1)/2} \det \begin{pmatrix}
 C_{f_k} \\
 \vdots \\
 C_{f_k+f_k-2} \\
 C_{f_{k+1}-1} \\
\end{pmatrix}.
\]
Moreover it follows from Lemma 5 that
\[
\det \begin{pmatrix} C_{f_{k}} & & \\ \vdots & & \\ C_{f_{k}+f_{k-2}-2} & & \\ C_{f_{k+1}-1} & & \\ & \vdots & \\ & & C_{f_{k+1}+f_{k-2}-2} & \\ & & & C_{f_{k+1}-1} \end{pmatrix} = \det \begin{pmatrix} C_{f_{k+1}} & & \\ \vdots & & \\ C_{f_{k+1}+f_{k-2}-2} & & \\ C_{f_{k+1}-1} & & \\ & \vdots & \\ & & C_{f_{k+1}+f_{k-2}-2} & \\ & & & C_{f_{k+1}-1} \end{pmatrix} = (-1)^{f_{k-2}-1}H_{f_{k+1}-1,f_{k-2}},
\]
which implies
\[
\det(A'' \ldots A''_{f_{k+1}-2}) = \chi(k : 0, 3, 5)H_{f_{k+1}-1,f_{k-2}}.
\]
Thus by (22), (23), Theorem 3 and Lemma 16, we obtain
\[
H_{n,f_k-1} = \chi(k : 4)H_{f_{k-1}, f_{k-1}} + \chi(k : 0, 2)H_{f_{k+1}, f_{k+1}-1} + \chi(k : 1, 3, 4)H_{f_{k+1}-1, f_{k-2}} = \chi(k : 2, 3, 4, 5)f_{k-3} + \chi(k : 2, 3, 4, 5)f_{k-4} + \chi(k : 0, 1)f_{k-4} = \chi(k : 2, 3, 4, 5)f_{k-3},
\]
which is the first case of our lemma.

To prove the second case, assume that \(n \equiv_{k+1} f_{k-1} + 1\). Then as above we get
\[
H_{n,f_k-1} = \det \begin{pmatrix} A_{f_{k-1}+1} \ldots A_{f_{k-1}}A_{f_{k}} \ldots A_{f_{k+1}-1} \\ B'_{f_{k-1}+1} \ldots B'_{f_{k-1}}B'_{f_{k}} \ldots B'_{f_{k+1}-1} \end{pmatrix} = \det \begin{pmatrix} A_{f_{k-1}+1} & \ldots & \ldots & A_{f_{k-1}} & A_{f_{k}} & \ldots & A_{f_{k+1}-1} \\ 0 & \ldots & \ldots & 0 \\ \vdots & \ddots & \ddots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots & \ddots & \ddots & \vdots \\ (-1)^k & \ldots & \ldots & (-1)^k \\ (-1)^{k-1} & \ldots & \ldots & (-1)^{k-1} \end{pmatrix} = (-1)^{(k-1)(f_{k-2}-1)}(-1)^{(f_{k-2}-1)f_{k-1}+(f_{k-2}-1)/2} \times \det(A_{f_{k}} \ldots A_{f_{k+1}-1}).
\]
Therefore, by Theorem 3 we get
\[
H_{n,f_k-1} = \chi(k : 0, 3, 4)\chi(k - 1 : 2)f_{k-2} = \chi(k : 0, 4)f_{k-2}. \quad \blacksquare
\]

Theorem 4. For any \(k, n, i \in \mathbb{N}\) with \(k \geq 1\), \(n \equiv_{k+1} i\) and \(0 \leq i < f_{k+1}\), we have
Therefore by Theorem 1,
\[i \text{ and } f \text{ independent of } \tau \text{ for } i \text{ and } n\]

If those used in the proof of Lemma 15, we get, with the notation (20),

Therefore, by Theorems 3 and 4,

Proof. The first four cases follow from Lemmas 16 and 17. Note that for \(i = f_{k-1}\), the assertions in these lemmas coincide, so that \(H_{n,fk-1}\) is independent of \(\tau_{k+1}(n)\). Consider the last case, where \(\tau_{k+1}(n) = 0 \text{ and } f_{k-1} + 2 \leq i \leq f_{k+1} - 1\). We may assume that \(k \geq 2\). Then, with \(m = f_k - 1\) and \(i - f_k\) in place of \(i\) there, the condition (2) of Theorem 1 is satisfied. Therefore by Theorem 1, \(n \in R_m\), which implies that \(H_{n,fk-1} = 0\). ■

Lemma 18. For any \(n,m \in \mathbb{N}\) such that \(f_{k-2} + 1 \leq m \leq f_k - 2\), \(i \leq n\) and \(n - i \equiv k+1 \mod 0\) for some \(i,k \in \mathbb{Z}\) with \(k \geq 2\) and \(m + i = f_k\), we have

\[H_{n,m} = \chi(k : 2)\chi(k : 3, 4, 5)(-1)^{i/2}f_{k-3},\]

\[\overline{H}_{n,m} = \chi(k : 1, 4)\chi(k : 0, 1, 2)(-1)^{i/2}f_{k-3}.\]

Proof. First, we consider the case \(i < f_k - 2\). By arguments similar to those used in the proof of Lemma 15, we get, with the notation (20),

\[H_{n,m} = \det \begin{pmatrix} A_i A_{i+1} & \ldots & A_{f_k-1} & 0 & \ldots & 0 & A_{f_k-1} \\ 0 & \ldots & 0 & (-1)^k & (-1)^{k-1} & \ldots & 0 \end{pmatrix}.\]

Therefore, by Theorems 3 and 4,

\[H_{n,m} = (-1)^k(f_{k-2}-i+1) + [(f_{k-2}-i+1)/2]H_{i,f_k-1} - (-1)^{(k-1)}(f_{k-2}-i) + [(f_{k-2}-i)/2]H_{i,f_k-1}.
\]

If \(i = f_k - 2\), then the statement follows from Theorem 3.
Finally, we consider the case $f_{k-2} < i < f_{k-1}$. Then, setting
\begin{equation}
A'_j = \epsilon_j \epsilon_{j+1} \ldots \epsilon_{j+r-1},
\end{equation}
by Theorem 3 we obtain
\[H_{n,m} = \det(A'_{i+1}^{-1} A'_{i+2}^{-1} \ldots A'_{i+m-1}^{-1})
\]
\[
= \det\begin{pmatrix}
A'_{i+1}^{-1} & A'_{i+2}^{-1} & \ldots & A'_{i+2}^{-1} & A'_{i+3}^{-1} & \ldots & A'_{i+m-1}^{-1} \\
0 & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) \\
(\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) \\
(\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) \\
(\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) \\
(\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) \\
\end{pmatrix}
\]
\[
= (-1)^{k-1}(f_{k-2}-i)(-1)(f_{k-2}-i)f_{k-2}+(f_{k-2}-i)/2) H_{f_{k-2},f_{k-1}}
\]
\[
= \chi(k : 2) \chi(k : 3, 4, 5)^i(-1)^{[i/2]} f_{k-1}. \]

\textbf{Lemma 19.} For any $n, m \in \mathbb{N}$ such that $f_{k-1} + 1 \leq m \leq f_{k-2}$, $i \leq n$, $n - i \equiv k f_{k-1}$ for some $i, k \in \mathbb{Z}$ with $k \geq 2$ and $m + i = f_k$, we have
\[H_{n,m} = \chi(k : 1, 2, 4) \chi(k : 0, 1, 2)^i(-1)^{[i/2]} f_{k-2}, \]
\[\bar{H}_{n,m} = \chi(k : 2) \chi(k : 3, 4, 5)^i(-1)^{[i/2]} f_{k-3}. \]

\textbf{Proof.} By the same arguments and in the same notations as in the second part of the proof of Lemma 18, we obtain
\[H_{n,m} = \det(A'_{i+1}^{-1} A'_{i+2}^{-1} \ldots A'_{i+m-1}^{-1})
\]
\[
= \det\begin{pmatrix}
A'_{i+1}^{-1} & A'_{i+2}^{-1} & \ldots & A'_{i+2}^{-1} & A'_{i+3}^{-1} & \ldots & A'_{i+m-1}^{-1} \\
0 & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) \\
(\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) \\
(\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) \\
(\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) \\
(\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) & (\ldots) \\
\end{pmatrix}
\]
\[
= (-1)^{k-2}(f_{k-2}-i)(-1)(f_{k-2}-i)f_{k-2}+(f_{k-2}-i)/2) H_{f_{k-2},f_{k-1}}
\]
\[
= \chi(k : 1, 2, 4) \chi(k : 0, 1, 2)^i(-1)^{[i/2]} f_{k-2}. \]

\textbf{Lemma 20.} For any $n, m \in \mathbb{N}$ such that $f_{k-1} + 1 \leq m \leq f_{k-2}$, $i \leq n$ and $n - i \equiv k f_{k-1}$ for some $i, k \in \mathbb{Z}$ with $k \geq 2$ and $m + i = f_k - 1$, we have
\[H_{n,m} = \chi(k : 0, 4) \chi(k : 3, 4, 5)^i(-1)^{[i/2]} f_{k-2}, \]
\[\bar{H}_{n,m} = \chi(k : 2, 3, 4, 5) \chi(k : 0, 1, 2)^i(-1)^{[i/2]} f_{k-3}. \]
Proof. The proof is similar to the first part of the proof of Lemma 18. With the notation in (20), we get

\[
H_{n,m} = \det \begin{pmatrix}
A_i A_{i+1} & \cdots & A_{f_k-1+i-1} & 0 & 0 & \cdots & 0 \\
0 & \cdots & 0 & (\chi k) & (\chi k) & \cdots & (\chi k) \\
(\chi k) & (\chi k) & \cdots & (\chi k) & (\chi k) & \cdots & (\chi k) \\
\end{pmatrix}
\]

Hence, by Theorem 3

\[
H_{n,m} = \chi(k : 0, 4)\chi(k : 3, 4, 5)i(\chi k) f_k - 2. \quad \Box
\]

Lemma 21. For any \(n, m \in \mathbb{N}\) such that \(f_k + 1 \leq m \leq f_k - 2\), \(i \leq n\) and \(n - i \equiv k f_k - 1\) for some \(i, k \in \mathbb{Z}\) with \(k \geq 2\) and \(m + i = f_k - 1\), we have

\[
H_{n,m} = \chi(k : 2, 3, 4, 5)\chi(k : 0, 1, 2)i(\chi k) f_k - 3,
\]

\[
\bar{H}_{n,m} = \chi(k : 0, 4)\chi(k : 3, 4, 5)i(\chi k) f_k - 4.
\]

Proof. Since \(i = f_k - 1 - m\), we get \(1 \leq i \leq f_k - 1 - 2\). If \(i = f_k - 1\), then \(m = f_k - 1\) and \(n \equiv k f_k - 1\). Therefore, by Theorem 3, we get

\[
H_{n,m} = \chi(k : 0, 4) f_k - 3,
\]

which coincides with the required identity since

\[
\chi(k : 0, 1, 2)f_k - 1 = \chi(k : \{0, 1, 2\} \cap \{0, 3\}) = \chi(k : 0),
\]

\[
(\chi k) f_k - 2 = \chi(k : 0, 4).
\]

If \(i = f_k - 2\), then \(m = f_k - 1 - 1\) and \(n \equiv 0\). Therefore, by Theorem 4, we get

\[
H_{n,m} = \chi(k : 1 : 2, 4) f_k - 3,
\]

which coincides with the required statement since

\[
\chi(k : 0, 1, 2)f_k - 2 = \chi(k : \{0, 1, 2\} \cap \{1, 2, 4, 5\}) = \chi(k : 1, 2),
\]

\[
(\chi k) f_k - 2 = \chi(k : 3, 4).
\]

If \(f_k + 1 \leq i \leq f_k - 1 - 2\), then \(m + i \equiv 0\) with \(i' := i - f_k - 2\). Then, since \(m + i' = f_k - 1\) and \(f_k - 2 + 1 \leq m \leq f_k - 1 - 2\), applying Lemma 20, we obtain

\[
H_{n,m} = \chi(k : 1 : 0, 4) f_k - 3
\]

\[
= \chi(k : 1, 5) \chi(k : 0, 4, 5)i(\chi k : \{0, 4, 5\} \cap \{1, 2, 4, 5\})(\chi k) f_k - 3
\]

\[
= \chi(k : 1, 4) \chi(k : 0, 4, 5)i(\chi k : \{0, 4, 5\} \cap \{1, 2, 4, 5\})(\chi k) f_k - 3
\]

\[
= \chi(k : 2, 3, 4, 5) \chi(0, 1, 2)i(\chi k) f_k - 3.
\]
Now, we consider the case $1 \leq i \leq f_{k-2} - 2$. Then, with the notations in (24) and in (20), we get
\[
H_{n,m} = \det(A_{f_{k-1}+i}^{f_{k-1}} \cdots A_{f_{k-1}}^{f_{k-1}}A_{f_k}^{f_{k-1}} \cdots A_{f_{k+1}-1}^{f_{k+1}-1}) \\
= \det \begin{pmatrix} A_{f_{k-1}+i} & A_{f_{k-1}+i+1} & \cdots & A_{f_{k-2}} & A_{f_{k-1}+1}^{f_{k-1}} & \cdots & 0 \\ 0 & (1)^k & (1)^{k-1} & \cdots & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ (1)^k & (1)^{k-1} & \cdots & \cdots & 0 & \cdots & \cdots \\ \end{pmatrix}.
\]
Therefore, by arguments similar to those used in the first part of the proof of Lemma 17, we get
\[
H_{n,m} = (-1)^{(f_{k-2}-1-i)}(-1)^{f_{k-1}}(f_{k-2}-1-i)+[f_{k-2}-1-i)/2] \\
\times \{\det(A_{f_{k-1}}^{f_{k-1}}A_{f_{k}}^{f_{k}} \cdots A_{f_{k+1}-1}^{f_{k+1}-1}) + (-1)^{k-1} \det(A_{f_{k}}^{f_{k}} \cdots A_{f_{k+1}-1}^{f_{k+1}-1}) \\
+ (-1)^{k+f_{k-2}-1-i} \det(A_{f_{k}}^{f_{k}} \cdots A_{f_{k+1}-1}^{f_{k+1}-1})\},
\]
where we use the same notations as in the proof of Lemma 17 except for $A_j''s$ which are defined by
\[
A_j'' = t(\varepsilon_j \cdots \varepsilon_{j+f_{k-2}-i-2} \varepsilon_j+f_{k-2}-i \cdots \varepsilon_j+f_{k-1}-1).
\]
Then, following the arguments there, we get
\[
H_{n,m} = \chi(k:4)\chi(k:0, 1, 2)^i(-1)^{[i/2]}\{H_{f_{k-1},f_{k-1}} \\
+ (-1)^{k-1}H_{f_{k+1},f_{k-1}} + (-1)^{k+f_{k-2}-1-i}E\}
\]
with
\[
E := \det(A_{f_{k}}^{f_{k}} \cdots A_{f_{k+1}-1}^{f_{k+1}-1}) \\
= \det(A_{f_{k}}^{f_{k}} \cdots A_{f_{k+1}+f_{k-2}-i-2}^{f_{k+1}+f_{k-2}-i-2}A_{f_{k+1}+f_{k-2}-i}^{f_{k+1}+f_{k-2}-i} \cdots A_{f_{k+1}-1}^{f_{k+1}-1}) \\
= (-1)^{(f_{k-2}-i-1)(f_{k-3}+i)} \det(A_{f_{k}+f_{k-2}-i}^{f_{k}+f_{k-2}-i} \cdots A_{f_{k+1}+f_{k-2}-i}^{f_{k+1}+f_{k-2}-i-2}) \\
= (-1)^{(f_{k-2}-2-i-1)(f_{k-3}+i)}H_{f_{k-2}-i, f_{k-1}-1},
\]
where we have used Lemma 5. Therefore, by Theorems 3 and 4, we have
\[
H_{n,m} = \chi(k:4)\chi(k:0, 1, 2)^i(-1)^{[i/2]}\{\chi(k-1:1, 2, 4)f_{k-3} \\
+ (-1)^{k-1}\chi(k-1:2, 3, 4, 5)f_{k-4} \\
+ (-1)^{k+f_{k-2}-1-i}(-1)^{(f_{k-2}-i-1)(f_{k-3}+i)} \\
\times \chi(k-1:1, 2, 3, 5)\chi(k-1:1, 4)f_{k-4} \\
= \chi(k:2, 3, 4, 5)\chi(k:0, 1, 2)^i(-1)^{[i/2]}f_{k-3}. \quad \blacksquare
\]
4. Tiling for $H_{n,m}$ and $\overline{H}_{n,m}$. In this section, we collect the values of $H_{n,m}$ and $\overline{H}_{n,m}$ obtained in the last section and arrange them in the quarter plane $\Omega := \{0, 1, \ldots\} \times \{1, 2, \ldots\}$. We will tile Ω by the following tiles on which the values $H_{n,m}$ are written in. That is, $U_1 := V_1 := \{(1, -1)\}$, and for $k \geq 2$,

$$U_k := \{(i, j) \in \mathbb{Z}^2 : 0 \leq i + j \leq f_{k-1} - 1, \ -f_{k-1} \leq j \leq -1\},$$

$$V_k := \{(i, j) \in \mathbb{Z}^2 : 0 \leq i + j \leq f_{k-2} - 1, \ -f_{k-2} \leq j \leq -1\},$$

with the written-in values $u_k : U_k \rightarrow \mathbb{Z}$ and $v_k : V_k \rightarrow \mathbb{Z}$ given by $u_1(1, -1) := 0$, $v_1(1, -1) := 1$, and for $k \geq 2$,

$$u_k(i, j) := \begin{cases}
\chi(k : 2)\chi(k : 3, 4, 5)^i(-1)^{i/2}f_{k-3} & (i + j = 0), \\
\chi(k : 0, 3, 4)\chi(k : 0, 3)^i f_{k-3} & (j = -f_{k-1}), \\
\chi(k : 3, 5)\chi(k : 2, 3, 4)^i(-1)^{i/2}f_{k-3} & (i + j = f_{k-1} - 1), \\
\chi(k : 1, 2, 3, 5)\chi(k : 1, 4)^i f_{k-3} & (j = -1), \\
0 & \text{(otherwise)},
\end{cases}$$

$$v_k(i, j) := \begin{cases}
\chi(k : 1, 2, 4)\chi(k : 0, 1, 2)^i(-1)^{i/2}f_{k-2} & (i + j = 0), \\
\chi(k : 2, 3, 5)\chi(k : 2, 5)^i f_{k-2} & (j = -f_{k-2}), \\
\chi(k : 0, 1, 2, 3)\chi(k : 1, 2, 3)^i(-1)^{i/2}f_{k-2} & (i + j = f_{k-2} - 1), \\
\chi(k : 0, 1)\chi(k : 1, 4)^i f_{k-2} & (j = -1), \\
0 & \text{(otherwise)},
\end{cases}$$

and with $\overline{u}_k : U_k \rightarrow \mathbb{Z}$ and $\overline{v}_k : V_k \rightarrow \mathbb{Z}$ given $\overline{u}_1(1, -1) := 1$, $\overline{v}_1(1, -1) := 0$, and for $k \geq 2$,

$$\overline{u}_k(i, j) := \begin{cases}
\chi(k : 1, 4)\chi(k : 0, 1, 2)^i(-1)^{i/2}f_{k-4} & (i + j = 0), \\
\chi(k : 0, 1, 2)\chi(k : 0, 3)^i f_{k-4} & (j = -f_{k-1}), \\
\chi(k : 1, 2, 3, 4)\chi(k : 0, 1, 5)^i(-1)^{i/2}f_{k-4} & (i + j = f_{k-1} - 1), \\
\chi(k : 0, 1)\chi(k : 1, 4)^i f_{k-4} & (j = -1), \\
0 & \text{(otherwise)},
\end{cases}$$

$$\overline{v}_k(i, j) := \begin{cases}
\chi(k : 2)\chi(k : 3, 4, 5)^i(-1)^{i/2}f_{k-3} & (i + j = 0), \\
\chi(k : 3)\chi(k : 2, 5)^i f_{k-3} & (j = -f_{k-2}), \\
\chi(k : 2, 4)\chi(k : 0, 4, 5)^i(-1)^{i/2}f_{k-3} & (i + j = f_{k-2} - 1), \\
\chi(k : 1, 2, 3, 5)\chi(k : 1, 4)^i f_{k-3} & (j = -1), \\
0 & \text{(otherwise)}.
\end{cases}$$

For $k \geq 1$ let

$$U_k := \{(n, f_k) : n \in \mathbb{N} \text{ and } n \equiv_k 1\},$$

$$V_k := \{(n, f_k) : n \in \mathbb{N} \text{ and } n \equiv_k 2f_{k+1} + f_k - 1\},$$

$$T_k := (V_k + (-f_{k-2}, f_k)) \cap \Omega,$$

where $V + (x, y) := \{(v + x, w + y) : (v, w) \in V\}$ for $V \subset \mathbb{Z}^2, (x, y) \in \mathbb{Z}^2$.

Theorem 5. We have
\[\Omega = \bigcup_{k=1}^{\infty} \left(\bigcup_{(i,j) \in U_k} (U_k + (i,j)) \cup \bigcup_{(i,j) \in V_k} (V_k + (i,j)) \cup T_k \right), \]
where the right hand side is a disjoint union, so that \(\Omega \) is tiled by the \(U_k \)'s, \(V_k \)'s and \(T_k \)'s. Moreover, for any \((n,m) \in \Omega\), if \((n,m) = (i,j) + (i',j')\) with \((i,j) \in U_k\) and \((i',j') \in U_k\), then \(H_{n,m} = u_k(i,j) \) and \(\overline{H}_{n,m} = \overline{u}_k(i,j) \). Also, if \((n,m) = (i,j) + (i',j')\) with \((i,j) \in V_k\) and either \((i',j') \in V_k\) or \((i',j') = (-f_{k-2},f_k)\), then \(H_{n,m} = v_k(i,j) \) and \(\overline{H}_{n,m} = \overline{v}_k(i,j) \). Furthermore, in this tiling, the tiles \(U_k, V_k \) and \(T_k \) with \(k \geq 2 \) are followed by the sequences of smaller tiles \(U_{k-1}V_{k-1}U_{k-1}, U_{k-1} \) and \(U_{k-1} \), respectively, as shown in Figure 1.

\[\text{Fig. 1. Tiling for } H_{n,m}. \]

Proof. Take an arbitrary point \((n,m) \in \Omega\). Let \(f_{k-1} \leq m < f_k \). If \(n + m - f_k \geq 0 \), define \(0 \leq i < f_{k+2} \) by \(i \equiv_{k+2} n \).

Case 1: \(n + m - f_k < 0 \). We get \((n,m) \in T_k\).

Case 2: \(0 \leq i < f_{k-1} \). We get \((n,m) \in U_k + (n + m - i - f_k, f_k)\).
Case 3: $f_{k-1} \leq i < f_{k+1}$. We get $(n,m) \in U_{k+1} + (n+m-i-f_{k+1}, f_{k+1})$.

Case 4: $f_{k+1} \leq i < f_{k+1} + f_{k-1}$. We get $(n,m) \in U_k + (n+m-i+f_{k-1}, f_k)$.

Case 5: $f_{k+1} + f_{k-1} \leq i < f_{k+2}$. We get $(n,m) \in V_k + (n+m-i+2f_{k-1}, f_k)$.

The fact that the written-in values coincide with $H_{n,m}$ and $\bar{H}_{n,m}$ follows from Lemma 18 (first case in u_k and π_k), Theorem 3 (second case), Lemma 21 (third case), Theorem 4 (fourth case), Corollary 3 (fifth case), Lemma 19 (first case in v_k and \bar{v}_k), Theorem 3 (second case), Lemma 20 (third case), Lemma 20 (fourth case) and Corollary 3 (fifth case). The m in the preceding lemmas and theorems coincides with $f_k + j$ in Theorem 5 while the meaning of the symbols k,i,n is not necessarily the same. ■

5. Padé approximation. Let $\varphi = \varphi_0 \varphi_1 \ldots$ be an infinite sequence over a field \mathbb{K}, $\hat{H}_{n,m} := H_{n,m}(\varphi)$ be the Hankel determinant (3), and $\varphi(z)$ the formal Laurent series (4) with $h = -1$. We also denote the Hankel matrices

\[
\hat{M}_{n,m} := (\varphi_{n+i+j})_{i,j=0,1,...,m-1} \quad (n = 0,1,...; m = 1,2,...),
\]

so that $\hat{H}_{n,m} = \det \hat{M}_{n,m}$.

The following proposition is well known ([1], for example). But we give a proof for self-containment.

Proposition 1. (1) For any $m = 1,2,...$, a Padé pair (P,Q) of order m for φ exists. Moreover, for each m, the rational function $P/Q \in \mathbb{K}(z)$ is determined uniquely for such Padé pairs (P,Q).

(2) For any $m = 1,2,...$, m is a normal index for φ if and only if $\hat{H}_{0,m}(\varphi) \neq 0$.

Proof. Let

\[
P = p_0 + p_1 z + p_2 z^2 + \ldots + p_m z^m,
Q = q_0 + q_1 z + q_2 z^2 + \ldots + q_m z^m.
\]

Then the condition $\| Q \varphi - P \| < \exp(-m)$ is equivalent to

\[
-q_m \varphi_0 = 0, \quad -p_m = 0,
q_m \varphi_0 - p_m = 0, \quad \ldots
\]

(26)

\[
q_0 \varphi_0 + \ldots + q_m \varphi_{m-1} - p_0 = 0, \quad q_0 \varphi_1 + \ldots + q_m \varphi_m = 0, \quad \ldots
\]

\[
q_0 \varphi_{m-1} + q_1 \varphi_{m-2} + \ldots + q_m \varphi_{2m-1} = 0.
\]
Furthermore, the system (26) for \((q_0 q_1 \ldots q_m)\) is equivalent to

\[
(q_0 q_1 \ldots q_{m-1}) \hat{M}_{0,m} + q_m (\varphi_m \varphi_{m+1} \ldots \varphi_{2m-1}) = (00 \ldots 0),
\]

where \((p_0 p_1 \ldots p_m)\) is determined by \((q_0 q_1 \ldots q_m)\) by the upper half of (26).

There are two cases.

Case 1: \(\hat{H}_{0,m} = 0\). In this case, since \(\det \hat{M}_{0,m} = \hat{H}_{0,m} = 0\), there exists a nonzero vector \((q_0 q_1 \ldots q_{m-1})\) such that \((q_0 q_1 \ldots q_{m-1}) \hat{M}_{0,m} = 0\). Then (27) is satisfied with this \((q_0 q_1 \ldots q_{m-1})\) and \(q_m = 0\).

Case 2: \(\hat{H}_{0,m} \neq 0\). In this case, since \(\det \hat{M}_{0,m} = \hat{H}_{0,m} \neq 0\), there exists a unique vector \((q_0 q_1 \ldots q_{m-1})\) such that

\[
(q_0 q_1 \ldots q_{m-1}) \hat{M}_{0,m} = -(\varphi_m \varphi_{m+1} \ldots \varphi_{2m-1}).
\]

Then (27) is satisfied with this \((q_0 q_1 \ldots q_{m-1})\) and \(q_m = 1\).

Thus, a Padé pair of order \(m\) exists. Moreover, by the above arguments, a Padé pair \((P, Q)\) of order \(m\) with \(\deg Q < m\) exists if and only if \(\hat{H}_{0,m} = 0\), since if \(\hat{H}_{0,m} \neq 0\), then by (27), \(q_m = 0\) implies \((q_0 q_1 \ldots q_{m-1}) = (00 \ldots 0)\), and hence \(Q = 0\).

Now we prove that for any Padé pairs \((P, Q)\) and \((P', Q')\) of order \(m\), we have \(P/Q = P'/Q'\). By (5), we have

\[
\|\varphi - P/Q\| < \exp(-n - \deg Q), \quad \|\varphi - P'/Q'\| < \exp(-m - \deg Q').
\]

Hence,

\[
\|P/Q - P'/Q'\| < \exp(-m - \deg Q \land \deg Q').
\]

Therefore,

\[
\|PQ' - P'Q\| < \exp(-m + \deg Q \lor \deg Q') \leq 1.
\]

Since \(PQ' - P'Q\) is a polynomial of \(z\), \(\|PQ' - P'Q\|\) is either 0 or not less than 1. Hence, the above inequality implies \(PQ' - P'Q = 0\). ■

In view of (26), without loss of generality, we can put

\[
P = p_0 + p_1 z + p_2 z^2 + \ldots + p_{m-1} z^{m-1},
Q = q_0 + q_1 z + q_2 z^2 + \ldots + q_m z^m.
\]

Theorem 6. Let \((P, Q)\) be the normalized Padé pair for \(\varphi\) with \(\deg Q\) as its normal index \(m\) with \(P, Q\) given by (29). Then
(1) \(Q(z) = \hat{H}_{0,m}^{-1} \det(z \hat{M}_{0,m} - \hat{M}_{1,m}). \)

(2) \(\det(zI - \hat{M}_{0,m}) \) is equal to

\[
\begin{array}{ccccccccccccccccccccccccccc}
z & z & 1 \\
\vdots & \vdots & \vdots \\
z & z & 1 \\
p_0 & \ldots & p_{m-2} & q_0 & \ldots & q_{m-1} & 1 \\
p_1 & \ldots & p_{m-1} & q_2 & \ldots & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
p_0 & \ldots & : & : & : & : & : & : & : & : & : & 1
\end{array}
\]

where \(I \) is the unit matrix of size \(m \).

(3) We have

\[
\hat{H}_{0,m} = (-1)^{\lfloor m/2 \rfloor} \prod_{z; Q(z) = 0} P(z) = (-1)^{\lfloor m/2 \rfloor} p_k^m \prod_{z; P(z) = 0} Q(z),
\]

where \(\prod_{z; R(z) = 0} \) denotes the product over all the roots of the polynomial \(R(z) \) with their multiplicity and \(p_k \) is the leading coefficient of \(P(z) \), that is, \(p_{m-1} = \ldots = p_{k+1} = 0, p_k \neq 0 \) if \(P(z) \) is not the zero polynomial, otherwise \(p_k = 0 \).

Proof. (1) Note that \(q_m = 1 \) by the assumption that \((P,Q)\) is the normalized Padé pair. By (28), we have

\[
\begin{pmatrix}
0 & 1 & 1 \\
0 & 1 & \ddots \\
-q_0 & -q_1 & \ldots & -q_{m-2} & -q_{m-1} & 1
\end{pmatrix}
\]

\[
\hat{M}_{0,m} = \hat{M}_{1,m}.
\]

Since

\[
\hat{H}_{0,m} = \det \hat{M}_{0,m} \neq 0
\]
by the normality of the index m, it follows that

$$Q(z) = \det \left(zI - \begin{pmatrix} 0 & 1 & & & \\ 0 & 1 & & & \\ & & \ddots & & \\ -q_0 & -q_1 & \ldots & -q_{m-2} & -q_{m-1} \end{pmatrix} \right)$$

$$= \det(zI - \hat{M}_{1,m} \hat{M}_{0,m}^{-1})$$

$$= \hat{H}_{0,m}^{-1} \det(z \hat{M}_{0,m} - \hat{M}_{1,m}).$$

(2) We define the matrices:

$$P_m := \begin{pmatrix} p_{m-1} & p_{m-2} & \cdots & p_1 & p_0 \\ p_{m-2} & & \cdots & p_0 & \\ \vdots & & \ddots & \vdots & \\ p_1 & & \cdots & 0 & \\ p_0 & & & & \end{pmatrix},$$

$$P'_{m-1} := \begin{pmatrix} p_{m-1} & p_{m-2} & \cdots & p_2 & p_1 \\ & & \ddots & \vdots & \vdots \\ & \ddots & \ddots & \vdots & \vdots \\ & & & & p_2 \\ & & & & \end{pmatrix},$$

$$Q_m := \begin{pmatrix} 1 & q_{m-1} & 1 & 0 \\ \vdots & & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ q_1 & q_2 & \cdots & q_{m-1} & 1 \end{pmatrix},$$

$$Q'_m := \begin{pmatrix} 0 & 1 & q_{m-1} \\ & \ddots & \vdots & \vdots \\ & \ddots & \vdots & \vdots \\ 1 & q_{m-1} & \cdots & q_2 & q_1 \end{pmatrix}.$$
\[
Q''_{m-1} := \begin{pmatrix}
1 & 1 & 0 \\
q_{m-1} & \ddots & \\
\vdots & \ddots & \ddots \\
q_2 & \cdots & q_{m-1} & 1
\end{pmatrix},
\]

\[
Q_{m,m-1} := \begin{pmatrix}
q_1 & q_2 & \cdots & q_{m-2} & q_{m-1} \\
q_0 & q_1 & \cdots & q_{m-3} & q_{m-2} \\
q_0 & q_1 & \cdots & q_{m-3} & \\
\vdots & \ddots & \ddots & \ddots & \\
0 & \cdots & q_1 & q_0
\end{pmatrix},
\]

\[
\Phi_{m-1} := \begin{pmatrix}
0 & \varphi_0 & \varphi_1 \\
\varphi_0 & \varphi_1 & \cdots & \cdots & \varphi_{m-3} \\
\varphi_1 & \cdots & \cdots & \cdots & \varphi_{m-2}
\end{pmatrix},
\]

We denote by \(O\) the zero matrices of various sizes. We also denote by \(I_n\) the unit matrix of size \(n\). By (26), we have

\[
\det(zI - \hat{M}_{0,m}) = \det \left(z \begin{pmatrix} O & O & O \\ O & I_m & \end{pmatrix} - \begin{pmatrix} -I_{m-1} & 0 \\ Q_{m}^{-1}Q_{m,m-1} & \hat{M}_{0,m} \end{pmatrix} \right)
\]

\[
= \det \left(\begin{pmatrix} I_{m-1} & O \\ O & Q_{m} \end{pmatrix} \begin{pmatrix} z \begin{pmatrix} O & O \\ O & I_m \end{pmatrix} - \begin{pmatrix} -I_{m-1} & 0 \\ Q_{m}^{-1}Q_{m,m-1} & \hat{M}_{0,m} \end{pmatrix} \end{pmatrix} \right)
\]

\[
= \det \left(z \begin{pmatrix} O & O \\ O & Q_{m} \end{pmatrix} - \begin{pmatrix} -I_{m-1} & 0 \\ Q_{m,m-1} & \hat{M}_{0,m} \end{pmatrix} \right)
\]

\[
= \det \left(\begin{pmatrix} z \begin{pmatrix} O & O \\ O & Q_{m} \end{pmatrix} - \begin{pmatrix} -I_{m-1} & 0 \\ Q_{m,m-1} & \hat{M}_{0,m} \end{pmatrix} \end{pmatrix} \begin{pmatrix} I_{m-1} & O \Phi_{m-1} \\ O & I_m \end{pmatrix} \right)
\]

\[
= \det \left(z \begin{pmatrix} O & O \\ O & Q_{m} \end{pmatrix} - \begin{pmatrix} -I_{m-1} & 0 \Phi_{m-1} \\ Q_{m,m-1} & P_m \end{pmatrix} \right),
\]

where we use (26) to get the last equality. Hence

\[
\det(zI - \hat{M}_{0,m}) = \det \left(z \begin{pmatrix} O & O \\ O & Q_{m} \end{pmatrix} - \begin{pmatrix} -I_{m-1} & 0 \Phi_{m-1} \\ Q_{m,m-1} & P_m \end{pmatrix} \right)
\]
Hankel determinants and Padé approximation

\[
= \det \left(\begin{pmatrix} Q''_{m-1} & O \\ O & I_m \end{pmatrix} \right) \left(\begin{pmatrix} O & O \\ O & Q_m \end{pmatrix} - \begin{pmatrix} -I_{m-1} & O \\ Q_{m,m-1} & \Phi_{m-1} \end{pmatrix} \right)
\]

\[
= \det \left(z \begin{pmatrix} O & O \\ O & Q_m \end{pmatrix} - \begin{pmatrix} -Q''_{m-1} & O \\ Q_{m,m-1} & -P'_{m-1} \end{pmatrix} \right)
\]

\[
= (-1)^m \det \left(\begin{pmatrix} Q''_{m-1} & P'_{m-1} \\ Q_{m,m-1} & P_m \end{pmatrix} - z \begin{pmatrix} O & O \\ O & Q_m \end{pmatrix} \right)
\]

\[
= (-1)^m \det \left(\begin{pmatrix} I_m & O & zI_m \\ O & Q''_{m-1} & O \\ Q'_{m} & Q_{m,m-1} & P_{m} \end{pmatrix} \right),
\]

which implies (2).

(3) By (2), we have

\[
\hat{H}_{0,m} = (-1)^m \det (0I - \hat{M}_{0,m})
\]

\[
= (-1)^{[m/2]} \left| \begin{array}{cccc}
p_{m-1} & p_{m-2} & \cdots & q_{m-1} \\
p_{m-2} & p_{m-1} & \cdots & \cdots \\
p_1 & \cdots & p_{m-1} & q_2 \\
p_0 & \cdots & p_{m-2} & p_{m-1} & q_1 & \cdots & q_{m-1} \\
p_0 & \cdots & p_{m-2} & q_0 & \cdots & q_{m-2} \\
p_0 & p_1 & \cdots & \cdots & q_1 \\
p_0 & \cdots & p_0 & q_0 \\
\end{array} \right|
\]

which completes the proof since the last determinant is Sylvester’s determinant for \(P(z)\) and \(Q(z)\).

For a finite or infinite sequence \(a_0(z), a_1(z), \ldots\) of elements in \(K((z^{-1}))\), we use the notation

\[
[a_0(z); a_1(z), a_2(z), \ldots, a_n(z)] := a_0(z) + \frac{1}{a_1(z) + \frac{1}{a_2(z) + \cdots + \frac{1}{a_n(z)}}}
\]

and

\[
[a_0(z); a_1(z), a_2(z), \ldots] := \lim_{n \to \infty} [a_0(z); a_1(z), a_2(z), \ldots, a_n(z)]
\]

provided that the limit exists, where the limit is taken with respect to the metric induced by the nonarchimedean norm in \(K((z^{-1}))\).
We denote by T admissible. We say a continued fraction is admissible if and only if (32) holds. We remark that a continued fraction (33) is admissible if and only if $g_n(z) = 0$, and

$$p_n(z) = |a_0(z); a_1(z), a_2(z), \ldots, a_n(z)| \in \mathbb{K}((z^{-1})) \cup \{\infty\} \quad (n \geq 0),$$

where we mean $\psi/0 := \infty$ for $\psi \in \mathbb{K}((z^{-1})) \setminus \{0\}$, and $\psi + \infty := \infty, \psi/\infty := 0$ for $\psi \in \mathbb{K}((z^{-1}))$. By using (31), it can be shown that the limit (30) always exists in the set $\mathbb{K}((z^{-1}))$ as far as

$$a_n(z) \in \mathbb{K}[z] \quad (n \geq 0), \quad \deg a_n(z) \geq 1 \quad (n \geq 1).$$

For $\varphi(z) \in \mathbb{K}((z^{-1}))$ given by (4), we denote by $[\varphi(z)]$ the polynomial part of $\varphi(z)$, which is defined as follows:

$$[\varphi(z)] := \sum_{k=0}^{h} \varphi_h z^{-k+h} \in \mathbb{K}[z].$$

We denote by T the mapping $T : \mathbb{K}((z^{-1})) \setminus \{0\} \to \mathbb{K}((z^{-1}))$ defined by

$$T(\psi(z)) := \frac{1}{\psi(z)} - \left[\frac{1}{\psi(z)} \right] \quad (\psi(z) \in \mathbb{K}((z^{-1})) \setminus \{0\}).$$

Then, for any given $\varphi(z) \in \mathbb{K}((z^{-1}))$, we can define the continued fraction expansion of $\varphi(z)$:

$$\varphi(z) = \left\{ \begin{array}{ll} [a_0(z); a_1(z), a_2(z), \ldots, a_{N-1}(z)] & \text{if } \varphi(z) \in \mathbb{K}(z), \\ [a_0(z); a_1(z), a_2(z), a_3(z), \ldots] & \text{otherwise} \end{array} \right.$$

with $a_n(z)$ satisfying (32) according to the following algorithm.

Continued Fraction Algorithm:

$$a_0(z) = [\varphi(z)], \quad a_n(z) = \left\lfloor \frac{1}{T^{n-1}(\varphi(z) - a_0(z))} \right\rfloor,$$

$$N = N(\varphi(z)) := \inf\{m : T^{m-1}(\varphi(z)) = 0\} \quad (\inf \emptyset := \infty).$$

We note that if $\varphi(z) \in \mathbb{K}(z)$, then $N < \infty$; if $\varphi(z) \in \mathbb{K}((z^{-1})) \setminus \mathbb{K}(z)$, then $N = \infty$ and the continued fraction (33) converges to the given $\varphi(z) \in \mathbb{K}(z)$. We say a continued fraction is admissible if it is obtained by the algorithm. We remark that a continued fraction (33) is admissible if and only if (32) holds.

The following proposition is known [2], but we give a proof for completeness.
PROPOSITION 2. The set of all $P/Q \in \mathbb{K}(z)$ for Padé pairs (P,Q) for $\varphi(z) \in \mathbb{K}(z)$ coincides with the set of convergents $p_n(z)/q_n(z)$ ($0 \leq n < N$) of the continued fraction expansion of $\varphi(z)$. Moreover, m is a normal index if and only if m is a degree of $q_n(z)$ for some $n = 0, 1, 2, \ldots$ (with $n < N$ if $\varphi(z) \in \mathbb{K}(z)$).

Proof. Note that

$$\varphi(z) = \frac{(a_n(z) + T^n(\varphi(z) - a_0))p_{n-1}(z) + p_{n-2}(z)}{(a_n(z) + T^n(\varphi(z) - a_0))q_{n-1}(z) + q_{n-2}(z)},$$

$$(-1)^n = p_{n-1}(z)q_{n-2}(z) - p_{n-2}(z)q_{n-1}(z).$$

Hence, we have

$$\|q_n(z)\varphi(z) - p_n(z)\| = \left\| \frac{(-1)^nT^n(\varphi(z) - a_0(z))}{q_n(z) + T^n(\varphi(z) - a_0(z))q_{n-1}(z)} \right\|$$

$$= \exp(-\deg a_{n+1}(n) - \deg q_n(z)),$$

so that

$$\|q_n(z)\varphi(z) - p_n(z)\| < \exp(-\deg q_n(z)) \quad (n < N).$$

In the case $N < \infty$, the left-hand side of (34) turns out to be 0 for $n = N - 1$. Therefore, $(p_n(z), q_n(z))$ is a Padé pair of order $m = \deg q_n(z)$ for all $m \in \{\deg q_n(z) : 0 \leq n < N\}$.

Conversely, for any $k = 1, 2, \ldots$, let (P,Q) be a Padé pair of order k. Let $\deg q_n(z) \leq k < \deg q_{n+1}(z)$ for some $n = 0, 1, 2, \ldots$ with $n < N$ (deg $q_N(z) := \infty$). Then, since $\deg Q \leq k < \deg q_{n+1}$, it follows from (34) that

$$\|\varphi(z) - p_n(z)/q_n(z)\| = \exp(-\deg q_n(z) - \deg q_{n+1}(z))$$

$$< \exp(-\deg q_n(z) - \deg Q).$$

Since (P,Q) is a Padé pair of order k, we have

$$\|\varphi(z) - P/Q\| < \exp(-k - \deg Q) \leq \exp(-\deg q_n(z) - \deg Q).$$

Therefore,

$$\left\| \frac{P}{Q} - \frac{p_n(z)}{q_n(z)} \right\| < \exp(-\deg q_n(z) - \deg Q).$$

On the other hand, if $P/Q \neq p_n(z)/q_n(z)$, then

$$\left\| \frac{P}{Q} - \frac{p_n(z)}{q_n(z)} \right\| = \left\| \frac{Pq_n(z) - Qp_n(z)}{Qq_n(z)} \right\|$$

$$\geq \exp(-\deg q_n(z) - \deg Q),$$

which is a contradiction. Thus $P/Q = p_n(z)/q_n(z)$.

Note that $p_n(z)/q_n(z)$ is irreducible for any $n = 1, 2, \ldots$ with $n < N$, since $p_nq_{n-1} - p_{n-1}q_n = (-1)^{n-1}$. Let $m = \deg q_n(z)$ for some $n = 1, 2, \ldots$ with $n < N$. Take any Padé pair (P,Q) of order m. Then $\deg Q \leq m$. On the
other hand, by the above argument, \(P/Q = p_n(z)/q_n(z) \). Since \(p_n(z)/q_n(z) \) is irreducible, this implies that \(\deg Q \geq \deg q_n(z) = m \). Thus, \(m \) is a normal index.

Conversely, let \(m \geq 0 \) be any normal index. Take any Padé pair \((P,Q)\) of order \(m \). Then, by the above argument, there exists \(n = 0,1,2,\ldots \) with \(n < N \) such that \(P/Q = p_n(z)/q_n(z) \). Hence the irreducibility of \(p_n(z)/q_n(z) \) implies \(\deg q_n(z) \leq \deg Q \leq m \). Hence, \((p_n(z),q_n(z))\) is a Padé pair of order \(m \). Since \(m \) is a normal index, \(\deg q_n(z) = m \).

We now obtain the continued fraction expansions for

\[\varphi_\varepsilon(z) = \hat{\varepsilon}_0 z^{-1} + \hat{\varepsilon}_1 z^{-2} + \hat{\varepsilon}_2 z^{-3} + \ldots \in \mathbb{Q}(z^{-1}) \]

corresponding to the Fibonacci words \(\hat{\varepsilon} = \varepsilon(a,b) \) with \((a,b) = (1,0) \) and \((a,b) = (0,1) \). As in Section 3, we use the notations \(\varepsilon \) and \(\hat{\varepsilon} \) for them. The proofs in the following theorems are given only for \(\varepsilon \), since the proof is similar for \(\hat{\varepsilon} \). In [3], J. Tamura gave the Jacobi–Perron–Parusnikov expansion for a vector consisting of Laurent series with coefficients given by certain substitutions, which contains the following as its special case (cf. the footnote on p. 301 of [3]):

Proposition 3. We have

\[(z-1)\varphi_\varepsilon(z) = [0; z^{f_{-2}}, z^{f_{-1}}, z^{f_0}, z^{f_1}, z^{f_2}, \ldots]. \]

Theorem 7. We have the following admissible continued fraction for \(\varphi_\varepsilon(z) \) and \(\varphi_{\hat{\varepsilon}}(z) \):

\[\varphi_\varepsilon(z) = [0; a_1, a_2, a_3, \ldots], \quad \varphi_{\hat{\varepsilon}}(z) = [0; \bar{a}_1, \bar{a}_2, \bar{a}_3, \ldots] \]

with

\[
\begin{align*}
 a_1 &= z, \quad a_2 = -z + 1, \quad a_3 = -\frac{1}{2}(z + 1), \\
 a_{2n+2} &= (-1)^{n-1} f_n^2 (z^{f_n-1} + z^{f_n-2} + \ldots + 1), \\
 a_{2n+3} &= (-1)^{n-1} \frac{1}{f_n f_{n+1}} (z - 1) \quad (n = 1, 2, \ldots),
\end{align*}
\]

and

\[
\begin{align*}
 \bar{a}_1 &= z^2, \quad \bar{a}_2 = -z, \\
 \bar{a}_{2n+1} &= (-1)^{n-1} f_{n-1}^2 (z^{f_{n-1}-1} + z^{f_{n-2}} + \ldots + 1), \\
 \bar{a}_{2n+2} &= (-1)^{n-1} \frac{1}{f_{n-1} f_n} (z - 1) \quad (n = 1, 2, \ldots).
\end{align*}
\]

Proof. We put

\[
\begin{align*}
 \theta_n &:= [0; z^{f_n}, z^{f_{n+1}}, z^{f_{n+2}}, \ldots] \quad (n \geq -2), \\
 \xi_n &:= (-1)^{n-1} \frac{f_n^2 z^{f_n} + f_{n-1} f_n + f_{n-1} f_{n+1}}{z - 1} \quad (n \geq 1),
\end{align*}
\]
ηₙ := \((-1)^{n-1} \frac{z - 1}{fₙf_{n+1} + fₙ²\theta_{n+1}} \) (\(n \geq 1\)),
cₙ := \((-1)^{n-1} fₙ²(z fₙ⁻¹ + z fₙ⁻² + \ldots + 1) \) (\(n \geq 1\)),
dₙ := \((-1)^{n-1} \frac{1}{fₙf_{n+1}}(z - 1) \) (\(n \geq 1\)).

Then

\begin{align*}
ξₙ &= [cₙ; ηₙ] \quad (= cₙ + 1/ηₙ),
ηₙ &= [dₙ; ξₙ].
\end{align*}

Using

\begin{align*}
θ⁻¹ &= z fₙ + θ_{n+1}
\end{align*}

and Proposition 3, we get

\(\varphi_ε(z) = \frac{θ₋²}{z - 1} \quad (∥θ₋²/(z - 1)∥ < 1)\)

\[
= [0; (z - 1)θ₋¹]
= [0; z - 1 + (z - 1)θ₋₁] \quad (∥1 + (z - 1)θ₋₁∥ < 1)
= \left[0; z, \frac{θ₋¹}{θ₋₁ + z - 1} \right] = \left[0; z, \frac{z + θ₀}{z - 1 - θ₀} \right]
= \left[0; z, -z + 1 + \frac{1 + (-z + 2)θ₀}{-1 - θ₀} \right] \quad (\left\| \frac{1 + (-z + 2)θ₀}{-1 - θ₀} \right\| < 1)
= \left[0; z, -z + 1, \frac{-1 - θ₀⁻¹}{-z + 2 + θ₀⁻¹} \right]
= \left[0; z, -z + 1, \frac{-z - 1 - θ₁}{2 + θ₁} \right]
= \left[0; z, -z + 1, \frac{1}{2} (z + 1), \frac{4θ₀⁻¹ + 2}{z - 1} \right]
= \left[0; z, -z + 1, \frac{1}{2} (z + 1), \frac{4z + 2 + 4θ₂}{z - 1} \right].
\]

Hence, we have

\begin{align*}
f(z) &= [0; z, -z + 1, -\frac{1}{2} (z + 1), ξ₁] \quad (∥ξ⁻¹∥ < 1).
\end{align*}

From (35) and (36), it follows that

\[
f(z) = [0; z, -z + 1, -\frac{1}{2} (z + 1)c₁, d₁, \ldots, cₙ, dₙ, ξₙ₊₁]
= [0; z, -z + 1, -\frac{1}{2} (z + 1)c₁, d₁, c₂, d₂, \ldots]
\]

which completes the proof for \(\varphi_ε(z)\).

Starting from the identity \(\varphi_ε(z) = (1 - θ₋²)/(z - 1)\) instead of \(\varphi_ε(z) = θ₋²/(z - 1)\), we can get the admissible continued fraction for \(\varphi_ε(z)\) in a similar fashion. ■
Theorem 8. The numerator \(p_n := p_n(z) \) (\(\overline{p}_n := \overline{p}_n(z) \), resp.) and the denominator \(q_n := q_n(z) \) (\(\overline{q}_n := \overline{q}_n(z) \), resp.) of the \(n \)-th convergent of the continued fraction expansion for \(\varphi(z) \) (and \(\varphi(x) \), resp.) are given as follows:

\[
\begin{align*}
p_0 &= 0, \quad p_1 = 1, \quad p_2 = -z + 1, \\
q_0 &= 1, \quad q_1 = z, \quad q_2 = -z^2 + z + 1, \\
p_{2n-1} &= \frac{1}{f_{n-1}}(\varepsilon_0 z f_{n-1} + \varepsilon_1 z f_{n-2} + \ldots + \varepsilon f_{n-1}), \\
p_{2n} &= (-1)^n \{ f_{n-1} z f_n (\varepsilon_0 z f_{n-1} + \varepsilon_1 z f_{n-2} + \ldots + \varepsilon f_{n-1}) \\
&\quad - f_{n-2} (\varepsilon_0 z f_{n-1} + \varepsilon_1 z f_{n-2} + \ldots + \varepsilon f_{n-1}) \}/(z - 1), \\
q_{2n-1} &= \frac{1}{f_{n-1}}(z f_n - 1), \\
q_{2n} &= (-1)^n \{ f_{n-1} z f_n (z f_{n-1} + z f_{n-2} + \ldots + 1) \\
&\quad - f_{n-2} (z f_{n-1} + z f_{n-2} + \ldots + 1) \} \quad (n = 2, 3, \ldots),
\end{align*}
\]

and

\[
\begin{align*}
\overline{p}_0 &= 0, \quad \overline{p}_1 = 1, \\
\overline{q}_0 &= 1, \quad \overline{q}_1 = z^2, \\
\overline{p}_{2n-2} &= -\frac{1}{f_{n-2}}(\varepsilon_0 z f_{n-1} + \varepsilon_1 z f_{n-2} + \ldots + \varepsilon f_{n-1}), \\
\overline{p}_{2n-1} &= (-1)^{n-1} \{ f_{n-2} z f_n (\varepsilon_0 z f_{n-1} + \varepsilon_1 z f_{n-2} + \ldots + \varepsilon f_{n-1}) \\
&\quad - f_{n-3} (\varepsilon_0 z f_{n-1} + \varepsilon_1 z f_{n-2} + \ldots + \varepsilon f_{n-1}) \}/(z - 1) + f_{n-2},
\end{align*}
\]

\[
\begin{align*}
\overline{q}_{2n-2} &= -\frac{1}{f_{n-2}}(z f_n - 1), \\
\overline{q}_{2n-1} &= (-1)^n \{ f_{n-2} z f_n (z f_{n-1} + z f_{n-2} + \ldots + 1) \\
&\quad - f_{n-3} (z f_{n-1} + z f_{n-2} + \ldots + 1) \} \quad (n = 2, 3, \ldots),
\end{align*}
\]

where \(p_{2n} \) and \(\overline{p}_{2n-1} \) are polynomials since the numerators are divisible by \(z - 1 \).

Proof. The values for \(p_0, p_1, p_2, q_0, q_1, q_2 \) are obtained from Theorem 7 by direct calculations. For a general \(n \), we can prove the formula for \(p_n, q_n \) by induction on \(n \) using (31) and Theorem 7 without difficulty. ■

Remark 4. From Proposition 2 and Theorem 8, it follows that the set of normal indices for \(\varphi(z) \) (and \(\varphi(x) \), resp.), is \(\{0, f_0 = f_1 - 1, f_1 = f_2 - 1, f_2, f_3 - 1, \ldots\} \) \(\{0, f_1 = f_2 - 1, f_2, f_3 - 1, \ldots\} \), and which together with Proposition 1 gives another proof of the third cases of Theorem 2 with \(n = 0 \).

Remark 5. In [4], the continued fraction expansion for Laurent series corresponding to infinite words over \(\{a, b\} \) generated by substitutions of “Fibonacci type” is considered, where \(a, b \) are viewed as independent variables.
References

Department of Mathematics
Osaka City University
Osaka, 558-8585 Japan
E-mail: kamae@sci.osaka-cu.ac.jp

Department of Applied Mathematics
Tsinghua University
Beijing 430072, P. R. China
E-mail: wenzy@mail.tsinghua.edu.cn

Faculty of General Education
International Junior College
Ekoda 4-5-1, Nakano-ku
Tokyo, 165 Japan
E-mail: tamura@rkmath.rikkyo.ac.jp

Received on 23.3.1998
and in revised form on 29.10.1998 (3353)