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Solutions of cubic equations in quadratic fields

by

K. Chakraborty (Chennai) and Manisha V. Kulkarni (Bangalore)

Let K be any quadratic field with OK its ring of integers. We study the
solutions of cubic equations, which represent elliptic curves defined over Q,
in quadratic fields and prove some interesting results regarding the solutions
by using elementary tools. As an application we consider the Diophantine
equation r + s + t = rst = 1 in OK . This Diophantine equation gives an
elliptic curve defined over Q with finite Mordell–Weil group. Using our study
of the solutions of cubic equations in quadratic fields we present a simple
proof of the fact that except for the ring of integers of Q(i) and Q(

√
2),

this Diophantine equation is not solvable in the ring of integers of any other
quadratic fields, which is already proved in [4].

1. Introduction. Let K = Q(
√
d) be a quadratic number field, where

d is a square-free rational integer, and let OK denote the ring of integers of
K. We write R = OK [S−1], where S is a finite set of primes in OK . Hence
OK ⊂ OK [S−1] ⊂ K. For any s ∈ K we let s denote the conjugate of s over
Q. We study the elliptic curve E defined over Q with Weierstraß equation

(1) E : y2 = x3 +Ax+B

in the ring of S-integers of K. As an application we consider the Diophantine
system of equations r + s + t = rst = 1. From this equation one gets an
elliptic curve

(2) y2 = x3 + 621x+ 9774.

Using the solutions of the cubic equation (2) in Q, the equation r+ s+ t =
rst = 1 can also be solved.

Let E(K) denote the group of K rational points of E with identity
element denoted as O. We write P = (s, t) for an element P = (s, t) ∈ E(K).
The symbol E(R) will always denote the set of solutions (s, t) of E with
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s, t ∈ R. We are influenced by the treatment of M. Laska in [3], where he
handled the equation y2 = x3 + k in quadratic fields. Following him, we call
an element P = (s, t) ∈ E(R) exceptional if s 6∈ Q. Hence E(R) consists
of two parts, exceptional and non-exceptional. We study these two parts
separately.

We state the results of this paper:

Theorem 1.1. Let E be an elliptic curve defined over Q. Then there
exist infinitely many distinct quadratic fields K such that E(Q) is properly
contained in E(K).

Theorem 1.2. Let K be a quadratic field and Q = (s, t) ∈ E(K). Let
P = (u, v) = Q+Q ∈ E(Z). Then Q is ℘-integral for every inert or ramified
prime ℘ in OK .

Proposition 1.3. Let E be an elliptic curve defined over Q with finite
Mordell–Weil group. Then there are only finitely many imaginary quadratic
fields K for which E(K) contains integral points (s, t) with s 6∈ Q.

Theorem 1.4. If K = Q(
√
d) is a quadratic field with d a square-free

integer , then except for d = −1 and 2, the equation r + s+ t = rst = 1 has
no solution in the ring of integers of K.

In Section 2, we study non-exceptional elements of E(R) and prove The-
orem 1.1. Section 3 is devoted to exceptional elements of E(R) along with
the proof of Theorem 1.2 and Proposition 1.3 as stated above. In Section 4
we give an application and present a simple proof of Theorem 1.4, which is
already proved more generally in [4].

2. Non-exceptional solutions of E in R. Let P = (s, t) ∈ E(R)
be such that s = s. Then from the Weierstraß equation of E we get t =
±t. Hence either P ∈ E(Q) or P + P = O. The following obvious lemma
characterizes those P ’s in E(R) such that P + P = O.

Lemma 2.1. Let K = Q(
√
d), where d is a square-free rational integer.

Then

{P ∈ E(R) | P + P = O}
= {(d−1x, d−2y

√
d) : (x, y) ∈ Ed(R ∩Q), x ∈ d(R ∩Q) and y ∈ d2(R ∩Q)}

where Ed is the twist of E by d over Q and “ + ” is the usual addition law
on E.

Remark 2.1. The set Ed(R ∩ Q) is finite by Siegel’s theorem (cf. [7],
p. 255). Now one can write down Ed(R∩Q) for a given d and for particular
S by using SIMATH. Thus one gets all non-exceptional solutions of E in R
for that d and S.
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Now we use these non-exceptional elements to prove Theorem 1.1.

Proof of Theorem 1.1. Let a ∈ Z and define l as

(3) l2d = a3 + aA+B

for square-free integer d.
Then (a, l

√
d) ∈ E(K) and these are non-exceptional elements in OK . If

we could show that there exist infinitely many d in (3) as a varies in Z, then
we would have proved the theorem. We prove this fact through a couple of
claims.

Let P be the set of primes p that divide f(a) = a3 + aA + B for some
a in Z. The first claim is that P is an infinite set. Suppose that P is finite,
and P = {p1, . . . , pr}. We look at the sets {f(a) : a ≤ N} and {pα1

1 . . . pαrr :
αi ≤ 6 logN}. The cardinality of the first set is greater than or equal to
N/3 as f(a) is of degree 3 and that of the second is at most (6 logN)r. For
large N this is a contradiction, as the first set is properly contained in the
second. Thus P is an infinite set.

Now if possible suppose that, as a varies in Z, the numbers f(a) are
equal to a square times one of the square-free numbers d1, . . . , dt. Choose a
prime p ∈ P which divides neither d1 . . . dt nor the discriminant of f . Since
p ∈ P , we have p | f(a) and p | f(a+ p) for some a.

The next claim is that it is not possible that p2 | f(a) and p2 | f(a + p).
For if this were possible, then p2 divides f(a+ p)− f(a), so that p2 | pf ′(a).
Thus p divides both f(a) and f ′(a). This implies that x − a is a double
root of f(x) in Fp[x], contrary to the assumption that p does not divide the
discriminant of f . Hence the second claim.

Thus p exactly divides either f(a) or f(a + p). In either case p has to
appear in the square-free part, and thus p appears at least in one of the di’s.
This contradicts the fact that p does not divide any of the di’s. Hence the
theorem.

3. Exceptional solutions of E in R. Throughout this section E is
an elliptic curve defined over Q with Weierstraß form (1). We locate the
elements Q = (s, t) ∈ E(R) such that s 6= s by using the known non-trivial
solutions E in Q. Now we come to the proof of Theorem 1.2.

Proof of Theorem 1.2. Let ℘ be a prime in OK which is either ramified
or inert. The elements in E(K) that reduce to non-singular points modulo
℘ form a subgroup E0(K) of E(K). The kernel of the reduction map is a
subgroup E1(K) of E0(K). The set E1(K) contains the elements (s, t) for
which s and t have denominators divisible by ℘.

As Q ∈ E1(K) and since ℘ is either ramified or inert, its Galois conjugate
Q also belongs to E1(K). Thus if Q is not ℘ integral, neither is Q. Hence
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Q + Q is not ℘ integral either, as E1(K) is a group. This contradicts the
fact that Q+Q = P is integral. Hence the theorem.

From now on S is a finite set of primes in OK which are ramified or inert.
Thus for any elliptic curve defined over Q, exceptional solutions in the ring
of S-integers of quadratic fields are in fact integral.

Although Siegel’s theorem ensures that E(R) is finite, there is no effective
method to write down all the solutions. We show in course of the proof of
Proposition 1.3 that in imaginary quadratic fields, one can explicitly write
down all the exceptional solutions in E(R).

Proof of Proposition 1.3. Let (s, t) be an integral point over some quad-
ratic field K = Q(

√
d). Assume that s 6∈ Q. This implies that (s, t) +

(s, t) = (u, v) is a non-trivial element of E(Q). As E(Q) is finite, (u, v) is a
torsion point and therefore by Nagell–Lutz it has integer coordinates. Let
s = a + b

√
d and t = k + l

√
d, with a, b, k and l either integers or half

integers (i.e. a/2, . . . etc. are integers).
We prove the proposition when a, b, k, l are integers; the other case can

be tackled similarly.
Clearly b 6= 0 and we have the following equations:

a3 + 3ab2d+ aA+B − k2 − l2d = 0,(4)

b2d+ 3a2 − 2kλ+A = 0,(5)

u+ 2A− λ2 = 0,(6)

v + k + λ(λ2 − 3a) = 0.(7)

The first two relations hold as (s, t) ∈ E(OK) and the last two come from
the fact that (s, t) = (u, v).

Now from (6) we see that λ2 is an integer, and as λ is a rational number, it
is in fact an integer. We eliminate k and a in equation (5) by using equations
(7) and (6) respectively and get

(8) (2b)2d = λ4 − 6uλ2 − 8vλ− 3u2 − 4A.

Since d < 0, the equation (8) becomes

(9) λ4 − 6uλ2 − 8vλ− 3u2 − 4A < 0.

For each u, v and A the strict inequality (9) is satisfied for finitely many
λ ∈ Z. A trivial bound of λ may be

λ ≤
√

18|u|+ (24|v|1/3 + (12A+ 9u2)1/2).

For these λ’s we get at most finitely many d for which (8) is satisfied.
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4. An application. The equation

(10) r + s+ t = rst = 1

was studied over the rationals by Cassels [1], over finite fields by Small [8]
and over the ring of integers of quadratic fields by Mollin et al. [4]. For ex-
ample, Cassels [1] proved that the system of equations (10) has no solution
in Q. The main part of Cassels’ proof consists in showing that (2) has no
rational solutions (x, y) with x 6= 3; he proved it by using the arithmetic
of cubic fields. Some time later Sierpiński [6] gave a simpler proof of im-
possibility of integer solutions (x, y) of (2) with x 6= 3. Again Sansone and
Cassels [5] gave an elementary proof of the impossibility of rational solutions
of (10). Mollin et al. [4] studied a more general equation r+ s+ t = rst = u,
where u is a unit, and showed that except for Q(

√
5), Q(

√
2) and Q(i)

this equation has no solution in the ring of integers of any other quadratic
field.

In this section first we derive the elliptic curve with Weierstraß form (2)
from the Diophantine equation (10). Then we study the equation (10) via
the elliptic curve (2) in OK .

4.1. Weierstraß form. Clearly (10) is the same as

r + s+
1
rs

= 1.

Putting r = −1/x and s = −y/x reduces this to

(11) y2 + y + xy = x3.

To get rid of the xy term in (11) we change x = x1 − 1/12 and y = y1 −
x1/2− 1/2. Thus we get

(12) y2
1 = x3

1 +
23
48
x1 +

362
1728

.

Finally, if one puts x1 = X/36 and y1 = Y/216, one gets the required
Weierstraß form (2).

The only Q rational points of (2) are O and (3,±108). This fact is bor-
rowed from Cremona’s table [2].

The inverse transformation

r = 36/(3−X) and s = (Y − 3X − 99)/(6(3−X))

allows us to pass from (2) to (10).

4.2. Ring of integers of K. Here we give a simpler and direct proof of
Theorem 1.4 which has already been proved in [4], where a more general
equation is considered.

Proof of Theorem 1.4. We claim that one of the (r, s, t) satisfying (10)
belongs to Q. If P = (a + b

√
d, k + l

√
d) is a non-exceptional solution, i.e.,
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P + P = O, then b = 0 and k = 0. Thus P = (a, l
√
d) and in this case

r = 36/(3− a) ∈ Q. Now if P is exceptional then P + P = (3,±108).
Our elliptic curve (2) has exactly three points over Q and they are points

of order 3. Call them O, ω and 2ω. If P + P = ω, then clearly P + ω is
non-exceptional, since

(P + ω) + P + ω = P + P + 2ω = 3ω = O.
Now if P + P = 2ω, similarly one can show that P + 2ω is also non-
exceptional. As the claim is valid for non-exceptional elements, it is true
for P + ω. Hence it is true for P itself.

Now, without loss of generality assume that r ∈ Q. As rst = 1 with
r, s, t ∈ OK , r, s, t are units. As r ∈ Q, it follows that r = ±1.

When r = 1, from (10) we have s+t = 0 and st = 1. Thus (s, t) = (i,−i).
Now when r = −1, then s+ t = 2 and st = 1 give

(s, t) = (1 +
√

2, 1−
√

2).

Thus (1, i,−i), (−1, 1+
√

2, 1−√2) and their permutations are the only
solutions of (10) in the algebraic integers of quadratic fields.
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and René Schoof for many fruitful discussions that helped us to improve the
presentation and simplify the proofs. We are grateful to Dipendra Prasad for
his constant encouragement with valuable comments and to Swarup Mohalik
for his kind help in some computations.

Work on this paper began when both the authors were in Mehta Re-
search Institute and was completed when the second author was visiting the
Institute of Mathematical Sciences. The second author wishes to acknowl-
edge the hospitality of the Institute of Mathematical Sciences during her
stay there.

References

[1] J. W. S. Casse l s, On a diophantine equation, Acta Arith. 6 (1960), 47–52.
[2] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press,

Cambridge, 1992.
[3] M. Laska, Solving the equation x3−y2 = r in number fields, J. Reine Angew. Math.

333 (1981), 73–85.
[4] R. A. Mol l in, C. Smal l, K. Varadara jan and P. G. Walsh, On unit solutions of

the equation xyz = x+ y + z in the ring of integers of a quadratic field , Acta Arith.
48 (1987), 341–345.

[5] G. Sansone et J. W. S. Casse l s, Sur le problème de M. Werner Mnich, ibid. 7
(1962), 187–190.



Solutions of cubic equations 43

[6] W. Sierp ińsk i, Remarques sur le travail de M. J. W. S. Cassels “On a diophantine
equation”, ibid. 6 (1961), 469–471.

[7] J. H. S i lverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106,
Springer, 1986.

[8] C. Smal l, On the equation xyz = x + y + z = 1, Amer. Math. Monthly 89 (1982),
736–749.

Institute of Mathematical Sciences Department of Mathematics
C.I.T. Campus, Taramani Indian Institute of Science
Chennai 600113, India Bangalore 560012, India
E-mail: kalyan@imsc.ernet.in E-mail: manisha@math.iisc.ernet.in

Received on 23.9.1997
and in revised form on 29.9.1998 (3265)


