Uniform distribution of primes
having a prescribed primitive root

by

Pieter Moree (Bonn and Amsterdam)

1. Introduction. If S is any set of prime numbers, denote by $S(x)$ the number of primes in S not exceeding x. For given integers a and d, denote by $S(x; a, d)$ the number of primes in S not exceeding x that are congruent to a modulo d. We say that S is weakly uniformly distributed mod d if S is infinite and for every a coprime to d,

$$S(x; a, d) \sim \frac{S(x)}{\varphi(d)},$$

where $\varphi(d)$ denotes Euler’s totient function. In case S is infinite the progressions $a \pmod{d}$ such that the latter asymptotic equivalence holds are said to get their fair share of primes from S. Thus S is weakly uniformly distributed mod d if and only if all the progressions mod d get their fair share of primes from S. W. Narkiewicz [7] has written a nice survey on the state of knowledge regarding the (weak) uniform distribution of many important arithmetical sequences.

In this paper the weak uniform distribution of a class of sequences, apparently not considered in this light before, will be investigated. Let G be the set of non-zero rational numbers g such that $g \neq -1$ and g is not a square of a rational number. Let P_g denote the set of primes p such that g is a primitive root modulo p. Clearly a necessary condition for P_g to be infinite is that $g \in G$. That this is also a sufficient condition was conjectured by Emil Artin in 1927 and is called Artin’s primitive root conjecture. There is no value of g for which P_g is known to be infinite. Presently the best unconditional result on Artin’s conjecture is due to R. Heath-Brown [1]. Heath-Brown’s result implies that there are at most two primes q for which P_q is finite. Assuming GRH, C. Hooley [2] proved in 1967 a quantitative version of Artin’s conjecture (Theorem 4 below with $f = 1$ and $g \in G \cap \mathbb{Z}$). In this note we will make use of the following straightforward generalization.
of Hooley’s result. As usual, \(\mu \) and \(\zeta_n \) denote the Möbius function and a primitive root of unity of order \(n \), respectively.

Theorem 1 [4]. Let \(M \) be Galois and \(g \in G \). Suppose the Riemann Hypothesis holds for the fields \(M(\zeta_k, g^{1/k}) \) for every squarefree \(k \). Then \(N_M(g; x) \), the number of primes \(p \) not exceeding \(x \) that split completely in \(M \) and such that \(g \) is a primitive root mod \(p \), satisfies

\[
N_M(g; x) = \left(\sum_{k=1}^{\infty} \frac{\mu(k)}{[M(\zeta_k, g^{1/k}) : \mathbb{Q}]} \right) \frac{x}{\log x} + O\left(\frac{x \log \log x}{\log^2 x} \right).
\]

For \(g \neq -1,0,1 \) define

\[
\delta(M, g) := \sum_{k=1}^{\infty} \frac{\mu(k)}{[M(\zeta_k, g^{1/k}) : \mathbb{Q}]}.
\]

(Since \([M(\zeta_k, g^{1/k}) : \mathbb{Q}] \gg k\varphi(k) \), the series is seen to converge, even absolutely, and hence \(\delta(M, g) \) is well defined.) Hooley computed \(\delta(\mathbb{Q}, g) \) for \(g \in G \cap \mathbb{Z} \). It turns out that \(\delta(\mathbb{Q}, g) \neq 0 \) for such \(g \) and thus Artin’s conjecture holds true, on GRH. In particular \(\delta(\mathbb{Q}, g) \) is a rational number times

\[
A = \prod_p \left(1 - \frac{1}{p(p-1)} \right) \quad (\approx 0.3739558),
\]

the so-called **Artin constant**. For example, taking \(f = 1, g = 2 \) and \(M = \mathbb{Q} \) in Theorem 4 yields \(\mathcal{P}_2(x) \sim Ax/\log x \). In this paper \(\delta(M, g) \) will be computed for \(M \) cyclotomic (Theorem 4). This result is then used to compute, on GRH, the set \(D_g \) of natural numbers \(d \geq 1 \) such that \(\mathcal{P}_g \) is weakly uniformly distributed mod \(d \). In Theorem 2 simple sets \(S_g \) are indicated such that \(D_g \subseteq S_g \). The work of H. Lenstra [4] is used to prove that \(D_g \supseteq S_g \).

In [9] F. Rodier, in connection with a coding-theoretical result involving Dickson polynomials, made the conjecture that

\[
\mathcal{P}_2(x; 3, 28) + \mathcal{P}_2(x; 19, 28) + \mathcal{P}_2(x; 27, 28) \sim \frac{A}{4} \frac{x}{\log x}.
\]

Note that weak uniform distribution mod 28 of \(\mathcal{P}_2 \) would imply Rodier’s conjecture. In [6] it was shown that, on GRH, \(D_2 = \{1, 2, 4\} \), and thus \(\mathcal{P}_2 \) is not weakly uniformly distributed mod 28. Moreover, it was shown, on GRH, that the true constant in (2) is \(21A/82 \). Another coding-theoretical application of primitive roots in arithmetic progressions occurs in the theory of perfect arithmetic codes [5].

In Theorem 2, \(D_g \) is computed for \(g \in G \). Notice that we can uniquely write \(g = g_1g_2^2 \), with \(g_1 \) a squarefree integer and \(g_2 \in \mathbb{Q}_{>0} \). Let \(h \) be the largest integer such that \(g \) is an \(h \)th power. Notice that \(g \in G \) implies that \(h \) must be odd.
Theorem 2 (GRH). Let \(g \in G \), and let \(h \) be the largest integer such that \(g \) is an \(h \)th power. Assume that either \(g_1 \neq 21 \) or \((h, 21) \neq 7 \). Then \(D_g \), the set of natural numbers \(d \) such that the set of primes \(p \) such that \(g \) is a primitive root mod \(p \) is weakly uniformly distributed mod \(d \), equals

1. \(\{2^n : n \geq 0\} \) if \(g_1 \equiv 1 \pmod{4} \);
2. \(\{1, 2, 4\} \) if \(g_1 \equiv 2 \pmod{4} \);
3. \(\{1, 2\} \) if \(g_1 \equiv 3 \pmod{4} \).

In the remaining case \(g_1 = 21 \) and \((h, 21) = 7 \), we have \(D_g = \{2^n3^m : n, m \geq 0\} \).

For simplicity we call \(g \) exceptional if \(g_1 = 21 \) and \((h, 21) = 7 \) and ordinary otherwise. The following variant of Theorem 2 sheds some light on (i), (ii) and (iii) of Theorem 2:

Theorem 3 (GRH). Let \(g \) and \(h \) be as in Theorem 2 and assume that \(g \) is ordinary. Then \(\mathcal{P}_g \) is weakly uniformly distributed modulo \(d \) if and only if for every squarefree \(k \geq 1 \), \(\mathbb{Q}(\zeta_k, g^{1/k}) \cap \mathbb{Q}(\zeta_d) = \mathbb{Q} \).

Let \(g \) be exceptional and \(d \) be of the form \(2^\alpha 3^\beta \) with \(\beta \geq 1 \). It turns out, on GRH, that \(\mathcal{P}_g \) is weakly uniformly distributed mod \(d \). On the other hand, there exist \(k \) such that \(\mathbb{Q}(\zeta_k, g^{1/k}) \cap \mathbb{Q}(\zeta_d) = \mathbb{Q}(\sqrt{-3}) \) (cf. the remark following Lemma 7). Thus the requirement “\(g \) is ordinary” in Theorem 3 cannot be dropped.

2. The density of primes \(p \equiv 1 \pmod{f} \) having a prescribed primitive root. In this section Theorem 4 will be proved. This result gives, on GRH, for arbitrary \(f \geq 1 \) the density of primes \(p \) such that \(p \equiv 1 \pmod{f} \) and moreover a prescribed integer \(g \) is a primitive root mod \(p \). Theorem 1 relates this density to the degrees of the fields \(\mathbb{M}(\zeta_k, g^{1/k}) \) with \(\mathbb{M} \) cyclotomic (namely \(\mathbb{M} = \mathbb{Q}(\zeta_f) \)). These degrees are computed in Lemma 2, making use of the following well known fact from cyclotomy (see e.g. [10, p. 163]).

Lemma 1. Let \(0 \neq a \in \mathbb{Q} \). Write \(a = a_1a_2^2 \), with \(a_1 \) a squarefree integer and \(a_2 \in \mathbb{Q} \). Then the smallest cyclotomic field containing \(\mathbb{Q}(\sqrt{a}) \) is \(\mathbb{Q}(\zeta_{|a_1|}) \) if \(a_1 \equiv 1 \pmod{4} \) and \(\mathbb{Q}(\zeta_{|a_1|}) \) otherwise.

Lemma 1 can also be phrased as: the smallest cyclotomic field containing \(\mathbb{Q}(\sqrt{a}) \) is \(\mathbb{Q}(\zeta_{\Delta a}) \), with \(\Delta a \) the discriminant of \(\mathbb{Q}(\sqrt{a}) \).

The next result can be proved by a trivial generalization of an argument given by Hooley [2, pp. 213–214].

Lemma 2. Let \(g \in G \), and let \(h \) be the largest positive integer such that \(g \) is an \(h \)th power. Let \(\Delta \) denote the discriminant of \(\mathbb{Q}(\sqrt{g}) \). Suppose that \(k \mid r \) and \(k \) is squarefree. Put \(k_1 = k/(k, h) \) and \(n(k, r) = [\mathbb{Q}(\zeta_r, g^{1/k}) : \mathbb{Q}] \). Then
(i) for k odd, $n(k, r) = k_1\phi(r)$;
(ii) for k even and $\Delta \nmid r$, $n(k, r) = k_1\phi(r)$;
(iii) for k even and $\Delta \mid r$, $n(k, r) = k_1\phi(r)/2$.

Proposition 1. Let $f, h \geq 1$ be integers. Then the function $w : \mathbb{N} \to \mathbb{N}$ defined by

$$w(k) = \frac{k\phi(\text{lcm}(k, f))}{(k, h)\phi(f)}$$

is multiplicative.

Proof. For every multiplicative function g and arbitrary integers $a, b \geq 1$, we obviously have $g(a)g(b) = g(gcd(a, b))g(lcm(a, b))$. Hence, to finish the proof it is enough to show that $\phi((k, f))$ is a multiplicative function of k, which is obvious.

Theorem 4. Let $g \in G$, and let h be the largest integer such that g is an hth power. Let $f \geq 1$ be an arbitrary integer. Let Δ denote the discriminant of $\mathbb{Q}(\sqrt{g})$. Put $b = \Delta/(\Delta, f)$. Let $w(k)$ be as in Proposition 1. Put

$$A(f, h) = \prod_{p|f, p|h} \left(1 - \frac{1}{p-1}\right) \prod_{p|f, p
mid h} \left(1 - \frac{1}{p}\right) \prod_{p|f, p \nmid h} \left(1 - \frac{1}{p(p-1)}\right).$$

Let $N_{\mathbb{Q}(\zeta_f)}(g; x)$ denote the number of primes p not exceeding x that split completely in $\mathbb{Q}(\zeta_f)$ and such that g is a primitive root mod p. If $(f, h) > 1$, then $\delta(\mathbb{Q}(\zeta_f), g) = 0$ and $N_{\mathbb{Q}(\zeta_f)}(g; x)$ is bounded above.

Next assume that $(f, h) = 1$. Then

$$\delta(\mathbb{Q}(\zeta_f), g) = \frac{1}{\varphi(f)} \left(1 - \frac{\mu(|g|)}{\prod_p (w(p) - 1)}\right) \prod_p \left(1 - \frac{1}{w(p)}\right)$$

$$= A(f, h) \frac{1}{\varphi(f)} \left(1 - \frac{\mu(|g|)}{\prod_p (w(p) - 1)}\right)$$

if either $g_1 \equiv 1 \pmod{4}$, or $g_1 \equiv 2 \pmod{4}$ and $8 \nmid f$, or $g_1 \equiv 3 \pmod{4}$ and $4 \mid f$. Otherwise

$$\delta(\mathbb{Q}(\zeta_f), g) = \frac{1}{\varphi(f)} \prod_p \left(1 - \frac{1}{w(p)}\right) = \frac{A(f, h)}{\varphi(f)}.$$

Suppose the Riemann Hypothesis holds for the field $\mathbb{Q}(\zeta_f, \zeta_k, g^{1/k})$ for every squarefree k. Then

$$N_{\mathbb{Q}(\zeta_f)}(g; x) = \delta(\mathbb{Q}(\zeta_f), g) \frac{x}{\log x} + O\left(\frac{x \log \log x}{\log^2 x}\right).$$
Proof. We have to evaluate
\[\delta(Q(\zeta_f), g) = \sum_{k=1}^{\infty} \frac{\mu(k)}{[Q(\zeta_{\text{lcm}(k,f)}, g^{1/k}) : Q]}.
\]
From Lemma 2 it follows that
\[\varphi(f)\delta(Q(\zeta_f), g) = \sum_{k=1}^{\infty} \frac{\mu(k)}{w(k)} + \sum_{k=1}^{\infty} \frac{\mu(2k)}{w(2k)} + 2 \sum_{k=1}^{\infty} \frac{\mu(2k)}{w(2k)}
\]
\[= \sum_{k=1}^{\infty} \frac{\mu(k)}{w(k)} + \sum_{k=1}^{\infty} \frac{\mu(2k)}{w(2k)} = I_1 + I_2.
\]
I claim that
\[(5) \quad I_1 = \prod_{p \mid b} \left(1 - \frac{1}{w(p)} \right) \quad \text{and} \quad I_2 = \frac{\mu(2|b|)}{w(|b|)} \prod_{p \mid b} \left(1 - \frac{1}{w(p)} \right).
\]
Indeed, the arithmetic function \(w \) is multiplicative by Proposition 1 and thus, by Euler's identity, \(I_1 = \prod_p (1 - 1/w(p)) \). Further, if \(b \) is even, then \(I_2 = \mu(2|b|) = 0 \). Next assume that \(b \) is odd. Now \(\Delta \mid \text{lcm}(2k, f) \) is equivalent to \(b \mid 2k/(2k, f) \). Since \((b, (2k, f)) = 1 \) and \(b \) is odd, \(b \mid 2k/(2k, f) \) is equivalent to \(b \mid k \). Thus
\[(6) \quad I_2 = \sum_{k=1}^{\infty} \frac{\mu(2k)}{w(2k)} = \frac{\mu(2|b|)}{w(|b|)} \sum_{k=1}^{\infty} \frac{\mu(k)}{w(k)} = \frac{\mu(2|b|)}{w(|b|)} \prod_{p \mid 2b} \left(1 - \frac{1}{w(p)} \right).
\]
Using the fact that \(b \) is odd and \(w(2) = 2 \) completes the proof of (5).

Using (5) the proof is now easily completed. We distinguish two subcases: \((f, h) > 1 \) and \((f, h) = 1 \).

(i) \((f, h) > 1 \). Since \(g \in G, \) \(h \) is odd. Since \((b, f) \mid 2 \) and \(h \) is odd, there is an odd prime \(p_1 \) such that \(p_1 \mid h, p_1 \mid f \) and \(p_1 \nmid b \). Since \(w(p_1) = 1 \), it follows that \(I_1 = I_2 = 0 \) and thus \(\delta(Q(\zeta_f), g) = 0 \). Let \(p \) be a prime with \(p \equiv 1 \pmod{f} \) and \(p \nmid g \). Then the order of \(g \) mod \(p \) is bounded above by \((p-1)/q_1 \), where \(q_1 \) is the smallest prime dividing \((f, h) \). Hence \(N_{Q(\zeta_f)}(g; x) \) is bounded above.

(ii) \((f, h) = 1 \). Then \(w(p) > 1 \) for every prime \(p \). Adding the product expansions in (5) results, on using the fact that \(w(p) > 1 \), in
\[(7) \quad \delta(Q(\zeta_f), g) = \frac{1}{\varphi(f)} \left(1 + \frac{\mu(2|b|)}{\prod_{p \mid b} (w(p) - 1)} \right) \prod_{p} \left(1 - \frac{1}{w(p)} \right).
\]
Notice that $\prod_{p\mid b}(1 - 1/w(p)) = A(f, h)$ and that
$$\prod_{p\mid b}(w(p) - 1) = \prod_{p\mid b, p\| f}(p - 1) \prod_{p\mid b, p\| f, p\| h}(p - 2) \prod_{p\mid b, p\| f, p\| h}(p^2 - p - 1).$$
Since $(b, f) \mid 2$, the latter identity simplifies to
$$\prod_{p\mid b}(w(p) - 1) = \prod_{p\mid b, p\| h}(p - 2) \prod_{p\mid b, p\| h}(p^2 - p - 1).$$

Inserting this in (7) we find
$$\delta(Q(\zeta_f), g) = \frac{A(f, h)}{\varphi(f)} \left(1 + \frac{\mu(2|h)}{\prod_{p\mid b, p\| h}(p - 2)\prod_{p\mid b, p\| h}(p^2 - p - 1)}\right).$$

On invoking Theorem 1, the proof is easily completed. ■

Let $g \in G$. From [4, Theorem 8.3] it follows that, under GRH, $\delta(Q(\zeta_f), g) = 0$ if and only if either $(f, h) > 1$ or $\Delta \mid f$. Notice that this is an easy consequence of Theorem 4. Assume GRH and, moreover, $(f, h) = 1$. Then the above fact can be reformulated, with the help of Lemma 1, as $\delta(Q(\zeta_f), g) = 0$ if and only if $\sqrt{g} \in Q(\zeta_f)$. This is a particular case of the following result:

THEOREM 5 (GRH). Let $g \in G$, and let h be the largest integer such that g is an hth power. Let M be an abelian number field of conductor f. Let $N_M(g)$ denote the set of primes $p \in \mathcal{P}_g$ such that p splits completely in M. Suppose that $(f, h) = 1$. Then $\delta(M, g) = 0$ if and only if $\sqrt{g} \in M$. Moreover, if $N_M(g)$ is infinite, then $\delta(M, g) > 0$.

We will deduce Theorem 5 from a result of Lenstra [4, Theorem 4.6], which in this context simplifies to:

THEOREM 6. Let $g \in G$ and $M : Q$ be Galois. Let $\pi = \prod_{l\mid h, 1\text{ prime } l}$, where h is the largest integer such that g is an hth power. Then if $N_M(g)$ is infinite, there exists $\sigma \in \text{Gal}(M(\zeta_\pi)/Q)$ with $(\sigma|_M) = \text{id}_M$ and, for every prime l such that $Q(\zeta_\pi, g^{1/l}) \subseteq M(\zeta_\pi)$, $(\sigma|_{Q(\zeta_\pi, g^{1/l})}) \neq \text{id}_{Q(\zeta_\pi, g^{1/l})}$. Conversely, if such a σ exists and GRH is true, then $N_M(g)$ is infinite and $\delta(M, g) > 0$.

In addition we will make use of:

LEMMA 3. Let $Q \not\subseteq Q(\sqrt{d}) \subseteq Q(\zeta_n)$ be a quadratic field of discriminant Δ_d. Then there exists $\sigma \in \text{Gal}(Q(\zeta_n)/Q)$ such that $(\sigma|_{Q(\zeta_n)}) \neq \text{id}_{Q(\zeta_n)}$ for every odd prime l dividing n and, moreover, $\sigma(\sqrt{d}) = -\sqrt{d}$.

Proof. Let $\sigma_a \in \text{Gal}(Q(\zeta_n)/Q)$ with $\sigma_a := \zeta_n^a$ and $(a, n) = 1$. It is well known that $\sigma(\sqrt{d}) = \sqrt{d}$ if and only if $(\Delta_d/a) = 1$, where (Δ_d/a) denotes the Kronecker symbol. Thus the problem reduces to showing that there exists $1 \leq a \leq n$, $(a, n) = 1$ with $a \not\equiv 1 \pmod{l}$ for every odd prime l.
dividing n and $(\Delta_d/a) = -1$. To prove that such an a exists is left to the reader. (If $\Delta_d < 0$, then $a = n - 1$ is such an a.)

Proof of Theorem 5. We first prove the “if and only if” part of the assertion.

\Leftarrow. If $\sqrt{g} \in M$, then there does not exist a σ such that $(\sigma|_M) = \text{id}_M$ and $(\sigma|_{\mathbb{Q}(\zeta_2, \sqrt{g})}) \neq \text{id}_{\mathbb{Q}(\zeta_2, \sqrt{g})}$, thus, by Theorem 6, $\delta(M, g) = 0$.

\Rightarrow. If $l \mid h$ and l is odd, then $\mathbb{Q}(g^{1/l})$ is not normal and hence $\mathbb{Q}(\zeta_1, g^{1/l}) \not\subseteq M(\zeta_\pi)$. If $l \mid h$, then $\mathbb{Q}(\zeta_1, g^{1/l}) = \mathbb{Q}(\zeta_1) \subseteq M(\zeta_\pi)$. Thus the l such that $\mathbb{Q}(\zeta_1, g^{1/l}) \subseteq M(\zeta_\pi)$ are precisely the prime divisors of π and possibly 2. The (easier) case where 2 does not occur is left to the reader, so we may assume that $\sqrt{g} \in M(\zeta_\pi)$. Notice that we are done if we show that if $\sqrt{g} \notin M$, then there exists $\sigma \in \text{Gal}(M(\zeta_\pi)/\mathbb{Q})$ such that $\sigma(\sqrt{g}) = -\sqrt{g}$ and $(\sigma|_{\mathbb{Q}(\zeta_2)}) \neq \text{id}_{\mathbb{Q}(\zeta_2)}$ for every prime divisor l of π.

Since by assumption $\sqrt{g} \in M(\zeta_\pi)$ and $M \subseteq \mathbb{Q}(\zeta_f)$, $\sqrt{g} \in \mathbb{Q}(\zeta_f, \zeta_\pi)$. Put $(\pi, \Delta)^* = (-1)^{(\pi, \Delta)^{-1} - 1/(\pi, \Delta)}$. As π is odd, we see that $\sqrt{(\pi, \Delta)^*} \in \mathbb{Q}(\zeta_\pi)$ and, moreover, $\sqrt{(\pi, \Delta)^* \Delta} \in \mathbb{Q}(\zeta_f)$. We distinguish two cases:

(i) $|\mathbb{Q}(\sqrt{(\pi, \Delta)^*}) : \mathbb{Q}| = 2$. Let $\sigma_1 = \text{id} \in \text{Gal}(\mathbb{Q}(\zeta_f)/\mathbb{Q})$. Let σ_2 be an automorphism whose existence is asserted in Lemma 3 (with $n = \pi$ and $d = (\pi, \Delta)^*$). Since by assumption $(f, h) = 1$, $\mathbb{Q}(\zeta_f)$ and $\mathbb{Q}(\zeta_\pi)$ are linearly disjoint and hence the automorphisms σ_1 and σ_2 can be lifted to an automorphism of $\mathbb{Q}(\zeta_f, \zeta_\pi)$. Take its restriction to $M(\zeta_\pi)$. This automorphism has all the required properties.

(ii) $|\mathbb{Q}(\sqrt{(\pi, \Delta)^*}) : \mathbb{Q}| = 1$. In this case $\sqrt{g} \in \mathbb{Q}(\zeta_f)$. Let $\sigma_1 \neq \text{id}$ be the automorphism of $M(\sqrt{g})$ such that $(\sigma_1|_M) = \text{id}|_M$. Since by assumption $\sqrt{g} \notin M$, σ_1 exists. Let $\sigma_2 \in \text{Gal}(\mathbb{Q}(\zeta_\pi)/\mathbb{Q})$ be defined by $\sigma_2(\zeta_\pi) = \zeta_\pi^{-1}$. Since $M(\sqrt{g})$ and $\mathbb{Q}(\zeta_\pi)$ are linearly disjoint, σ_1 and σ_2 can be lifted to an automorphism of $\text{Gal}(M(\zeta_\pi)/\mathbb{Q})$. Notice that this automorphism has all the required properties.

The assertion regarding $N_M(g)$ is now easily deduced on using the latter part of Theorem 6.

We demonstrate Theorem 5 by determining the set \mathcal{L} of odd primes l such that there are infinitely many primes p satisfying $p \equiv \pm 1 \pmod{l}$ with l a primitive root mod p. Then we have to put $M = \mathbb{Q}(\zeta_1 + \zeta_1^{-1})$ and $g = l$ in Theorem 5. Since $\sqrt{l} \in \mathbb{R}$ and M is the maximal real subfield of $\mathbb{Q}(\zeta_1)$, we find that $\sqrt{l} \in M$ if and only if $\sqrt{l} \in \mathbb{Q}(\zeta_1)$. Thus, using Lemma 1, we see that on GRH, $\mathcal{L} = \{l : l \equiv 3 \pmod{4}\}$. Unconditionally it can be shown [8, Theorem 3.2] that \mathcal{L} equals $\{l : l \equiv 3 \pmod{4}\}$ with at most two primes excluded. The fact that \mathcal{L} is non-empty is used in A. Reznikov’s [8] proof of a weaker version of a conjecture of Lubotzky and Shalev on three-manifolds.
3. Proof of the main result. In this section Theorem 2 will be proved. First we carry out some preparations.

The next two lemmas are well known (cf. [3]).

Lemma 4. Let M be a number field, $\kappa \in M$ and let $n \geq 1$ be an odd integer. If $[M(\zeta_n^\kappa, \kappa^{1/n}) : M] = n\varphi(n)$, then $\Gal(M(\zeta_n) : M)$ is the maximal abelian subextension of $M(\zeta_n, \kappa^{1/n}) : M$.

Proof. Let

$$\mathcal{M}_n = \left\{ \begin{pmatrix} 1 & 0 \\ r & s \end{pmatrix} : r \in \mathbb{Z}/n\mathbb{Z}, s \in (\mathbb{Z}/n\mathbb{Z})^* \right\}.$$

One easily sees that commutators of \mathcal{M}_n are of the form $\begin{pmatrix} 1 & 0 \\ r & s \end{pmatrix}$. On noting that the commutator of $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ equals $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, it is seen that \mathcal{M}_n', the commutator subgroup of \mathcal{M}_n, equals $\{\begin{pmatrix} 1 & 0 \\ r & s \end{pmatrix} : r \in \mathbb{Z}/n\mathbb{Z}\}$. It is enough to show that if the condition of the lemma is satisfied, then $\Gal(M(\zeta_n, \kappa^{1/n}) : M) \cong \mathcal{M}_n$. For then the Galois group of the maximal abelian subextension of $M(\zeta_n, \kappa^{1/n}) : M$ is isomorphic to $\mathcal{M}_n/\mathcal{M}_n' \cong (\mathbb{Z}/n\mathbb{Z})^*$. Since the maximal abelian subextension of $M(\zeta_n, \kappa^{1/n}) : M$ contains $M(\zeta_n) : M$ and the condition of the lemma implies that the latter has Galois group $(\mathbb{Z}/n\mathbb{Z})^*$, we are done.

Let α be a root of $x^n - \kappa$. For any $\sigma \in \Gal(M(\zeta_n, \kappa^{1/n}) : M)$, there exist $l(\sigma) \in (\mathbb{Z}/n\mathbb{Z})$ and $m(\sigma) \in (\mathbb{Z}/n\mathbb{Z})^*$, such that $\sigma(\alpha) = \zeta_n^{l(\sigma)} \alpha$ and $\sigma(\zeta_n) = \zeta_n^{m(\sigma)}$. Now define a map $\psi \mapsto \begin{pmatrix} 1 \\ m(\sigma) \end{pmatrix}$. One checks that it is a monomorphism of $\Gal(M(\zeta_n, \kappa^{1/n}) : M)$ into \mathcal{M}_n. Since $|\mathcal{M}_n| = n\varphi(n)$ and, by assumption, $|\Gal(M(\zeta_n, \kappa^{1/n}) : M)| = n\varphi(n)$, ψ is actually an isomorphism. \blacksquare

Lemma 5. Let $g \in G$ and k be squarefree. Then the maximal abelian subextension of $Q(\zeta_k, g^{1/k})$ is $Q(\zeta_k)$ if k is odd and $Q(\zeta_k, \sqrt{k})$ otherwise.

Proof. Write $g = \gamma_1^h$, $\gamma_1 \in Q$.

(i) k is odd. By Lemmas 2 and 4, $Q(\zeta_k)$ is the maximal abelian subextension of $Q(\zeta_k, \gamma_1^{1/k})$. Since $Q(\zeta_k) \subseteq Q(\zeta_k, g^{1/k}) \subseteq Q(\zeta_k, \gamma_1^{1/k})$, we are done in this case.

(ii) k is even and $\sqrt{k} \notin Q(\zeta_k)$. Taking $M = Q(\sqrt{k})$, $\kappa = \sqrt{k}$ and $n = k/2$ in Lemma 4, we find, on using Lemma 2, that the maximal abelian subextension of $Q(\zeta_n, \kappa^{1/n}) : Q(\sqrt{k})$ equals $Q(\zeta_n, \sqrt{k}) = Q(\zeta_k, \sqrt{\gamma_1})$. Since $Q(\zeta_k, \sqrt{k}) : Q$ is abelian and

$$Q(\zeta_k, \sqrt{k}) \subseteq Q(\zeta_k, g^{1/k}) \subseteq Q(\zeta_k, \gamma_1^{1/k}) = Q(\zeta_n, \kappa^{1/n}),$$

we are done.
(iii) k is even and $\sqrt{71} \in \mathbb{Q}(\zeta_k)$. From Lemma 2 it follows that $\mathbb{Q}(\zeta_k, g^{1/k}) = \mathbb{Q}(\zeta_{k/2}, g^{2/k})$. Since by assumption $4 \nmid k$, we are thus reduced to case (i).

Lemma 6. Let $g \in G$. If $g_1 \equiv 1 \pmod{4}$ and k is squarefree then, for $n \geq 0$, $\mathbb{Q}(\zeta_k, g^{1/k}) \cap \mathbb{Q}(\zeta_{2^n}) = \mathbb{Q}$.

Proof. The intersection of the two fields under consideration must be abelian and is contained in $\mathbb{Q}(\zeta_k, \sqrt{\gamma})$ by Lemma 5. Let d_K denote the discriminant over \mathbb{Q} of the number field K. Since the prime divisors of d_{L_1, L_2} all divide $d_{1, d_{L_1}}$, we see that $d_{\mathbb{Q}(\zeta_k, \sqrt{\gamma})}$ is odd, on noting that $d_{\mathbb{Q}(\sqrt{\gamma})} = g_1$, $d_{\mathbb{Q}(\zeta_k)} = d_{\mathbb{Q}(\zeta_k/2)}$ for $k \equiv 2 \pmod{4}$ and that $d_{\mathbb{Q}(\zeta_k)}$ is not divisible by primes not dividing k. Thus 2 is not ramified at $\mathbb{Q}(\zeta_k, \sqrt{\gamma})$. On the other hand, every subfield of degree > 1 of $\mathbb{Q}(\zeta_{2^n})$ is ramified at 2.

An integer is called y-smooth if all its prime divisors are $\leq y$.

Lemma 7. Let d be 3-smooth, but not 2-smooth. Let $g \in G$ be such that $g_1 = 21$ and $(h, 21) = 7$. Let $k \geq 1$ be squarefree. Then $\mathbb{Q}(\zeta_k, g^{1/k}) \cap \mathbb{Q}(\zeta_d) \subseteq \mathbb{Q}(\sqrt{-3})$.

Proof. Using Lemma 5 it is seen that $\mathbb{Q}(\zeta_k, g^{1/k}) \cap \mathbb{Q}(\zeta_d) \subseteq \mathbb{Q}(\zeta_k, \sqrt{21}) \cap \mathbb{Q}(\zeta_d)$. Let $3^n | d$. Notice that $\mathbb{Q}(\zeta_k, \sqrt{21})$ is not ramified at 2 (cf. the proof of the previous lemma). Thus $\mathbb{Q}(\zeta_k, \sqrt{21}) \cap \mathbb{Q}(\zeta_d) \subseteq \mathbb{Q}(\zeta_k, \sqrt{21}) \cap \mathbb{Q}(\zeta_{3^n})$. Now $\mathbb{Q}(\zeta_k, \sqrt{21}) \cap \mathbb{Q}(\zeta_{3^n}) \subseteq \mathbb{Q}(\zeta_k, \sqrt{21}) \cap \mathbb{Q}(\zeta_{3^n}) = \mathbb{Q}(\zeta_3)$, where the latter equality follows on noticing that $(\text{lcm}(k, 21), 3^n) = 3$.

Remark. Actually under the conditions of Lemma 7, we have $\mathbb{Q}(\zeta_k, g^{1/k}) \cap \mathbb{Q}(\zeta_d) = \mathbb{Q}(\sqrt{-3})$ if $3 | k$ or $14 | k$ and \mathbb{Q} otherwise, but this will not be needed in the sequel.

Lemma 8. Let $g \in G$ and l be an odd prime. Then $\delta(\mathbb{Q}(\zeta_d), g) = \delta(\mathbb{Q}, g)/\varphi(l)$ if and only if g is exceptional and $l = 3$.

Corollary 1 (GRH). Let $g \in G$ and l be an odd prime. Then \mathcal{P}_g is weakly uniformly distributed mod l if and only if g is exceptional and $l = 3$.

Proof (of Lemma 8). Put $P(\alpha, \beta) = \prod_{p | \alpha, p \nmid \beta} (p-2) \prod_{p | \alpha, p \nmid \beta} (p^2 - p - 1)$.

\Leftarrow. By Theorem 4.

\Rightarrow. Notice that $l \nmid h$, for otherwise, by Theorem 4, $\delta(\mathbb{Q}(\zeta_d), g) = 0$, whereas $\delta(\mathbb{Q}, g) > 0$. Notice also that $g_1 \equiv 1 \pmod{4}$, for otherwise $\delta(\mathbb{Q}(\zeta_d), g) = \delta(\mathbb{Q}, g)/\varphi(l)$ implies, by Theorem 4, that $A(l, h) = A(1, h)$ and hence $1 - (l^2 - l + 1) = 1$, which is impossible. Then, since $g_1 \equiv 1 \pmod{4}$, $l \nmid h$ and $\Delta = g_1$, the equality $\delta(\mathbb{Q}(\zeta_d), g) = \delta(\mathbb{Q}, g)/\varphi(l)$ implies, by Theorem 4,

$$
(8) \quad \left(1 - \frac{\mu(|g_1|)}{P(g_1, h)} \right) = \left(1 - \frac{l - 2}{l^2 - l - 1} \right) \left(1 - \frac{\mu(|b|)}{P(b, h)} \right).
$$
Now \(l \) must divide \(g_1 \), for otherwise \(b = g_1 \) and hence \(1 - (l - 2)/(l^2 - l - 1) = 1 \), which is impossible. Hence \(b = g_1/l \) and thus (8) becomes

\[
\left(1 - \frac{\mu([g_1])}{P(g_1, h)} \right) = \left(1 - \frac{l - 2}{l^2 - l - 1} \right) \left(1 + \frac{\mu([g_1])(l^2 - l - 1)}{P(g_1, h)} \right).
\]

Notice that \(\mu([g_1]) = 1 \). We find \(P(g_1, h) = (l^2 - l - 1)(l^2 - 2l + 2)/(l - 2) \). Since \((l^2 - l - 1)(l^2 - 2l + 2), l - 2 \) divides 2 and \(P(g_1, h) \) must be an integer, it follows that \(l = 3 \) and hence \(P(g_1, h) = 25 \). Thus \(g \) is exceptional and \(l = 3 \).

Proof of Theorem 2. Assume that \(g \) satisfies the assumptions of Theorem 2 and, moreover, assume GRH. Then by Theorem 4 with \(f = 1 \) it follows that \(\{1, 2\} \subseteq D_g \). If \(d \in D_g \) and \(\delta \) divides \(d \), then \(\delta \in D_g \).

First consider the case where \(g \) is ordinary. Then this observation together with Corollary 1 shows that \(D_g \subseteq \{2^n : n \geq 0\} \). Suppose that \(g_1 \equiv 3 \) (mod 4). Then Theorem 4 shows that \(P_g \) is not weakly uniformly distributed mod 4. Thus in this case \(D_g = \{1, 2\} \). If \(g_1 \not\equiv 3 \) (mod 4), then it is easy to see, by Theorem 4 again, that \(4 \in D_g \). If \(g_1 \equiv 2 \) (mod 4) then Theorem 4 again yields that \(P_g \) is not weakly uniformly distributed mod 8. Thus in this case \(D_g = \{1, 2, 4\} \). Finally assume that \(g_1 \equiv 1 \) (mod 4). As we have seen, \(D_g \subseteq \{2^n : n \geq 0\} \). Theorem 4 shows that \(\delta(\mathbb{Q}(\zeta_{2^n}), g) = \delta(\mathbb{Q}, g)/\varphi(2^n) \). This is consistent with weak uniform distribution mod \(2^n \). In fact, using a result of Lenstra [4], we will show that \(P_g \) is weakly uniformly distributed mod \(2^n \) for every \(n \geq 3 \). This then completes the proof in the case where \(g \) is ordinary.

Let \(a \) and \(d \) be coprime. The set of primes \(p \) such that \(p \equiv a \) (mod \(d \)), \(p \mid g \), and \(g \) is a primitive root mod \(p \), equals \(M = M(\mathbb{Q}, \mathbb{Q}(\zeta_d), \sigma_a, (g), 1) \), where we used Lenstra’s notation. Here \(\sigma_a \) denotes the automorphism of \(\text{Gal}(\mathbb{Q}(\zeta_d)/\mathbb{Q}) \) determined by \(\sigma_a(\zeta_d) = \zeta_d^a \). Under GRH the natural density \(\delta_a \), of the set \(M \) is, by [4, (2.15)], equal to

\[
\delta_a = \sum_{k=1}^{\infty} \frac{\mu(k)c_a(k)}{[\mathbb{Q}(\zeta_d, \zeta_k, g^{1/k}) : \mathbb{Q}]},
\]

where \(c_a(k) = 1 \) if \(\sigma_a \) fixes \(\mathbb{Q}(\zeta_k, g^{1/k}) \cap \mathbb{Q}(\zeta_d) \) pointwise and \(c_a(k) = 0 \) otherwise. In case \(g_1 \equiv 1 \) (mod 4) and \(d = 2^n \), by Lemma 6 the latter intersection of fields equals \(\mathbb{Q} \) (at least when \(k \) is squarefree) and hence \(c_a(k) = 1 \) for every squarefree \(k \). Thus \(\delta_a = \delta_1 \). This and \(\delta_1 = \delta(\mathbb{Q}(\zeta_{2^n}), g) > 0 \), which follows by Theorem 4 (or alternatively Theorem 5), yield that \(P_g \) is weakly uniformly distributed mod \(2^n \).

It remains to deal with the case where \(g \) is exceptional. By Corollary 1, a necessary condition for \(P_g \) to be weakly uniformly distributed mod \(d \) is that
that then, indeed, if \(a \bar{\equiv} 1 \pmod{3} \), \(g \) is weakly uniformly distributed modulo 2-smooth numbers in case 3-smooth, but not 2-smooth. Let \(d \) be an integer such that \((a, 6) = 1\). By Lemma 7 it follows that \(\mathbb{Q}(z_k, g^{1/k}) \cap \mathbb{Q}(z_d) \subseteq \mathbb{Q}(\sqrt{-3}) \) for squarefree \(k \). Thus, by (9), there exist \(\tilde{\delta}_1 \) and \(\tilde{\delta}_{-1} \) such that \(\delta_a = \tilde{\delta}_1 \) if \(\sigma_a \) fixes \(\mathbb{Q}(\sqrt{-3}) \) (that is, if \(a \equiv 1 \pmod{3} \)) and \(\delta_a = \tilde{\delta}_{-1} \) otherwise. Since, by Corollary 1, \(P_g \) is weakly uniformly distributed mod 3, we see that

\[
\sum_{1 \leq a \leq d, \ (a,d)=1 \atop a \equiv 1 \pmod{3}} \delta_a = \sum_{1 \leq a \leq d, \ (a,d)=1 \atop a \equiv -1 \pmod{3}} \delta_a,
\]

that is, \(\varphi(d)\tilde{\delta}_1/2 = \varphi(d)\tilde{\delta}_{-1}/2 \). Since \(\tilde{\delta}_1 > 0 \) (by Theorem 5 for example), it follows that \(P_g \) is weakly uniformly distributed mod \(d \). □

Remark 1. In the exceptional case the only integers that can be shown to be in \(D_g \) by appealing to Theorem 4 only, are 1, 2, 3, 4, 6 and 12.

Remark 2. It is instructive to try to apply the argument that showed that \(P_g \) is weakly uniformly distributed modulo 2-smooth numbers in case \(g_1 \equiv 1 \pmod{4} \) to \(g \) satisfying \(g_1 \not\equiv 1 \pmod{4} \). Then we already know that \(P_g \) is not weakly uniformly distributed mod \(2^n \) for \(n \) large enough. Thus \(c_a(k) \neq 1 \) for some \(a \) and squarefree \(k \), that is, Lemma 6 must be false in this case. Indeed, if \(g_1 \equiv 3 \pmod{4} \), then \(\mathbb{Q}(z_{2|g_1|}, g^{1/(2|g_1|)}) \cap \mathbb{Q}(z_{2^n}) \supseteq \mathbb{Q}(i) \) for \(n \geq 2 \). If \(g_1 \equiv 2 \pmod{4} \) then, for \(n \geq 3 \), \(\mathbb{Q}(z_{g_1}, g^{1/g_1}) \cap \mathbb{Q}(z_{2^n}) \) contains \(\mathbb{Q}(\sqrt{2}) \) (respectively \(\mathbb{Q}(\sqrt{-2}) \)) if \(g_1/2 \equiv 1 \pmod{4} \) (respectively \(g_1/2 \equiv 3 \pmod{4} \)).

The next lemma together with Theorem 2 immediately implies Theorem 3.

Lemma 9. Let \(d \geq 1 \) and \(g \in G \). We have \(\mathbb{Q}(z_k, g^{1/k}) \cap \mathbb{Q}(z_d) = \mathbb{Q} \) for every squarefree \(k \) if and only if (i), (ii) or (iii) of Theorem 2 is satisfied.

Proof. \(\Rightarrow \). Suppose \(d \) contains an odd prime factor, \(p \). Then \(\mathbb{Q}(z_p) \subseteq \mathbb{Q}(z_{g^{1/p}}) \cap \mathbb{Q}(z_d) \) and thus \(d = 2^n \) for some \(n \geq 0 \). Suppose that \(g_1 \equiv 2 \pmod{4} \). We have to show that \(n \leq 2 \). So assume that \(n \geq 3 \). Then \(\mathbb{Q}(z_{g_1}, g^{1/g_1}) \cap \mathbb{Q}(z_{2^n}) \) contains \(\mathbb{Q}(\sqrt{2}) \) (respectively \(\mathbb{Q}(\sqrt{-2}) \)) if \(g_1/2 \equiv 1 \pmod{4} \) (respectively \(g_1/2 \equiv 3 \pmod{4} \)). Finally suppose that \(g_1 \equiv 3 \pmod{4} \). We have to show that \(n \leq 1 \). So assume that \(n \geq 2 \). Notice that then \(\mathbb{Q}(i) \subseteq \mathbb{Q}(z_{g_1}, g^{1/2|g_1|}) \cap \mathbb{Q}(z_{2^n}) \).
If \(g_1 \equiv 1 \pmod{4} \), then this follows by Lemma 6. The other cases, except \(g_1 \equiv 2 \pmod{4} \) and \(d = 4 \), are trivial. It remains to show that
\[i \not\in \mathbb{Q}(\zeta_k, g_1^{1/k}) \] for \(k \) squarefree and \(g_1 \equiv 2 \pmod{4} \). A way of showing that
\[i \not\in \mathbb{Q}(\zeta_k, g_1^{1/k}) \] is to show that
\[[\mathbb{Q}(\zeta_{\text{lcm}(4,k)}, g_1^{1/k}) : \mathbb{Q}] = 2[\mathbb{Q}(\zeta_k, g_1^{1/k}) : \mathbb{Q}] \]
This now follows by computing these degrees using Lemma 2.

4. Conclusion. Let \(g \in G \) and assume GRH. We have seen that to a large extent the equidistribution of the primes of \(\mathcal{P}_g \) over the residue classes \(\pmod{d} \) can be understood already from knowing whether or not the progression \(1 \pmod{d} \) gets its fair share of primes from \(\mathcal{P}_g \). From Lemma 8 and Corollary 1, one sees that in case \(d \) is an odd prime it is even true that the progression \(1 \pmod{d} \) gets its fair share if and only if all primitive progressions get their fair share. A question that thus naturally arises is whether this holds true for arbitrary \(d \) (if so this would be rather surprising). Despite a considerable computational effort (together with Karim Belabas), I was not able to find a \(d \) for which this is false. On the other hand, I obtained only partial non-existence results for such \(d \).

The author thanks K. Belabas, T. Kleinjung, F. Lemmermeyer, A. Schinzel and P. Stevenhagen for helpful (e-mail) discussions and the referee for his comments (which led to a shortening of some of the proofs). This research was carried out at the Max-Planck-Institut in Bonn, the pleasant research atmosphere of which is gratefully acknowledged.

References

Uniform distribution of primes

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
53225 Bonn, Germany
E-mail: moree@mpim-bonn.mpg.de

Present address:
Faculteit WINS
Universiteit van Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands
E-mail: moree@wins.uva.nl

Received on 7.4.1997
and in revised form on 3.12.1998