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1. Introduction. The history of numerical solution of Diophantine
equations began in 1969, when Baker and Davenport [1] solved completely
a system of two Pell equations. They used the well-known fact that ev-
ery “large” solution gives rise to a “very small” value of a linear form
Λ(b1, b2) = logα0 + b1 logα1 + b2 logα2 (where α0, α1 and α2 are explicitly
given algebraic numbers) at an integral point (b1, b2). Using Baker’s the-
ory of logarithmic forms, they obtained a huge (around 10400) upper bound
for max(|b1|, |b2|). After this, expanding logα2/logα1 into a continued frac-
tion, they showed that |Λ(b1, b2)| cannot be too small when b1 and b2 run
through the integers below the huge bound. Therefore the system cannot
have “large” solutions, while “small” solutions can be easily enumerated.

This idea was developed in various directions by Pethő, Tzanakis,
de Weger, and many other authors. The subject became especially pop-
ular when Lenstra, Lenstra and Lovász [11] suggested a polynomially quick
algorithm for finding an almost shortest vector in a lattice (referred to as
LLL-algorithm in the sequel). The LLL-algorithm made it possible to extend
the idea of Baker and Davenport to logarithmic forms in three or more vari-
ables, when continued fractions are not efficient any more. See [18, 12] for
a detailed description of the methods, history of the subject and extensive
bibliography up to 1989.

In [4] we showed that one can solve Diophantine equations of Thue using
only continued fractions (as Baker and Davenport did), and without involv-
ing the LLL-algorithm. This allowed us to solve completely Thue equations
of rather high degree. In [5] we extended our method to superelliptic Dio-
phantine equations (see also [3]).
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In this paper we show that the method of [4] becomes especially efficient
if the number field related to the Thue equation contains a small subfield of
degree at least 3 over Q. We shall see that in this case one has to deal mainly
with the subfield rather than with the whole field. We were motivated by the
fact that such equations often occur in practice, for instance in the classical
problem of primitive divisors [17, 20].

Using our method we managed to solve many totally real Thue equations
of extremely high degree (up to 2505). See Section 7 for the details.

Acknowledgements. We are pleased to thank Attila Pethő and Benne
de Weger for useful discussions and suggestions.

2. Notations. We consider the Thue equation

(1) F (x, y) = NL/Q(y − αx) = a,

where a = a1/a2 is a rational number, α an algebraic number of degree
n ≥ 3, and L = Q(α). We put

f(y) = F (1, y) = NL/Q(y − α).

We shall assume that the field L has a “small” subfield K, of degree
m ≥ 3.

Let K have s real and 2t complex conjugate embeddings, where s+ 2t =
m. We number the embeddings σ1, . . . , σm so that σ1, . . . , σs are the real
embeddings, and

(2) σs+i = (complex conjugation) ◦ σs+i+t (1 ≤ i ≤ t).
We write Ki = σi(K). We shall assume that s ≥ 1; in particular, K has no
roots of unity distinct from ±1 (in the case s = 0 the equation is trivial;
see [4, Section 2], for instance).

Put l = n/m and fix an ordering α11 = α, α12, α13, . . . , αml of the conju-
gates of α over Q so that for a fixed i the numbers αi1, . . . , αil are conjugate
over Ki.

We use O1(. . .) as a quantitative version of the usual O(. . .): A = O1(B)
means |A| ≤ B.

For practical implementation of the method, one should be able to per-
form the following operations in the number field K:

(U) find a system of fundamental units;
(N) given a fractional ideal I of the field K, find a complete system of

non-associate solutions of the norm equation

(3) NK/Q(β) = a, β ∈ I.
(The units of K act on the solutions of (3) by multiplication. By a com-
plete system of non-associate solutions of the equation (3) we mean any set
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of representatives of this action.) It is well known that any complete sys-
tem of non-associate solutions is finite, and that problems (U) and (N) are
effectively soluble [7, Ch. 2]. However, finding efficient algorithms for the
practical resolution of these problems proved to be difficult, especially for
fields of high degree. This is the main reason why the method is efficient
only when the field K is “not very big”. We do not discuss this problem,
referring to [8, 15, 14].

The purpose of the present paper is to show that the Thue equation (1)
can be practically solved in reasonable time as soon as the problem (U) is
solved and the problem (N) is solved with I = NL/K((1, α)).

Thus, fix once and for all a system η1, . . . , ηr of basic units of the field
K, where r = s+ t− 1, and a complete system M of non-associate solutions
of (3). In the important particular case when |a| = 1 and α is an algebraic
integer, we have M = {1}.

SinceK has no root of unity except±1, for any solution β ∈ I of the equa-
tion (3) there exist µ ∈ ±M and b1, . . . , br ∈ Z such that β = µηb11 . . . ηbrr .
Here ±M = {±µ : µ ∈ M}.

3. General background

3.1. The numbers ϕi. Fix a solution (x, y) ∈ Z2 of the equation (1).

Proposition 3.1.1. Put

X0 =





(
2n−1|a|

minαik 6∈R |f ′(αik)| ·minαik 6∈R |Imαik|
)1/n

if L is not totally real,
1 if L is totally real,

c1 =
2n−1|a|

min(i,k) |f ′(αik)| , c2 = min
(i,k) 6=(i′,k′)

|αik − αi′k′ |, c3 = 1.39c1c−1
2 ,

X1 = max(X0, (2c1c−1
2 )1/n)

(in the definition of X0 both the minima run over the non-real conjugates
of α). Let (x, y) be an integer solution of (1).

(i) If |x| > X0 then for some real conjugate αi0k0 we have

(4) |y/x− αi0k0 | ≤ c1|x|−n.
(ii) If |x| > X1 then

(5) y − αikx = (αi0k0 − αik)xeO1(c3|x|−n) ((i, k) 6= (i0, k0)).

P r o o f. For (i) see [18, Lemma 1.1]. To prove (ii), write

(6) y − αikx = (αi0k0 − αik)x
(

1 +
y/x− αi0k0

αi0k0 − αik

)
.
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Since |x| ≥ X1, we have ∣∣∣∣
y/x− αi0k0

αi0k0 − αik

∣∣∣∣ ≤
1
2
.

But 1 + z = eO1(1.39|z|) if the complex number z satisfies |z| ≤ 1/2 (see [18,
p. 106]). Therefore (5) is a consequence of (6).

In concrete examples the constant X1 is very small, and solutions sat-
isfying |x| ≤ X1 can be easily enumerated. From now on, we assume that
|x| > X1, so that (4) and (5) hold for some (i0, k0). Fix this (i0, k0) and put

ϕi =
l∏

k=1

(y − αikx) (1 ≤ i ≤ m),

ψi =
l∏

k=1

(αi0k0 − αik) (1 ≤ i ≤ m, i 6= i0).

Then ϕ := ϕ1 = NL/K(y − αx) and ϕi = σi(ϕ). Also, immediately from (5)
we deduce that

(7) ϕi = ψix
leO1(c4|x|−n) (i 6= i0),

where c4 = lc3. Since ϕ1 . . . ϕm = a, we also obtain

(8) ϕi0 = ψi0x
(1−m)leO1(c5|x|−n),

where ψi0 = a(
∏
i6=i0 ψi)

−1 and c5 = (m− 1)c4. We unify (7) and (8) in

(9) ϕi = ψix
%ieO1(c5|x|−n) (1 ≤ i ≤ m),

where

%i =
{
l, i 6= i0,
(1−m)l, i = i0.

We conclude this subsection with the following important property of
the numbers ϕi.

Proposition 3.1.2. Among the m− 1 numbers

(10) ϕi/ψi (i 6= i0),

two at least are distinct.

P r o o f. Assume that the numbers (10) are all equal, and write this as

(11) Pi(θ)/Pi(αi0k0) = Pi′(θ)/Pi′(αi0k0) (i, i′ 6= i0),

where θ = y/x and Pi(T ) =
∏l
k=1(T − αik). Note that the polynomials Pi

are pairwise distinct.
Let σi01, . . . , σi0l : L → C be the extensions of σi0 to L defined by

σi0k(α) = αi0k. Then for any k ∈ {1, . . . , l}, the map τk := σi0kσ
−1
i0k0

per-
mutes the polynomials Pi, where i 6= i0, and stabilizes θ, a rational number.
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Hence, acting on (11) by τ1, . . . , τl, we obtain

Pi(θ)/Pi(αi0k) = Pi′(θ)/Pi′(αi0k) (i, i′ 6= i0, 1 ≤ k ≤ l).
Fix distinct i, i′ ∈ {1, . . . ,m} \ {i0} (this is possible since m ≥ 3). Then

Pi(θ)/Pi′(θ) = Pi(αi0k)/Pi′(αi0k) (1 ≤ k ≤ l).
Put φ = Pi(θ)/Pi′(θ). Then the polynomial Pi(T )−φPi′(T ) has l+1 distinct
roots θ, αi01, . . . , αi0l. Since its degree does not exceed l, it is identically
zero. Since its leading coefficient is 1− φ, we have φ = 1. Thus, Pi = Pi′ , a
contradiction. The proposition is proved.

3.2. The numbers bi. Since NK/Q(ϕ) = a, we have

(12) ϕ = µηb11 . . . ηbrr ,

where µ ∈ ±M and b1, . . . , br ∈ Z. Put ηij = σi(ηj) and µi = σi(µ), and let
A = [aij ]1≤i,j≤r be the inverse of the matrix

(13) [log |ηij |]1≤i,j≤r.
(The matrix (13) is non-singular, because its determinant is ±min(1, 21−t)
times the regulator of the field K.) Since

(14) log |ϕi| = log |µi|+ b1 log |ηi1|+ . . .+ br log |ηir| (i 6= i0),

it follows from (12) that

(15) bi =
r∑

j=1

aij log |ϕj/µj | = δi log |x|+ λi +O1(c6|x|−n) (1 ≤ i ≤ r),

where

(16) δi =
r∑

j=1

%jaij , λi =
r∑

j=1

aij log |ψj/µj |, c6 = c5

r∑

j=1

|aij |.

In particular, we obtain the following.

Proposition 3.2.1. If |x| ≥ X2 := max(X1, (2 · 1010c6)1/n) then

(17) B := max(|b1|, . . . , |br|) ≤ c7 log |x|+ c8,

where
c7 = max

1≤i≤r
|δi|, c8 = max

1≤i≤r
|λi|+ 10−10.

3.3. A large upper bound for B. In this subsection we obtain a huge
upper bound for B using Baker’s theory. We apply a result of Baker and
Wüstholz [2, p. 20], formulating it in a form convenient for the present paper.

Theorem 3.3.1 (Baker–Wüstholz). Let β0, . . . , βr be complex algebraic
numbers distinct from 0 and 1, and b1, . . . , br+1 rational integers. Also, let

d ≥ [Q(β0, . . . , βr) : Q],(18)
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hi ≥ max(h(βi), d−1|log βi|, d−1) (0 ≤ i ≤ r),(19)

where h(. . .) is the absolute logarithmic height. Then either

(20) Λ := log β0 + b1 log β1 + . . .+ br log βr + br+1πi = 0,

or

(21) |Λ| ≥ exp(−c9 logB′).

Here B′ = max(|b1|, . . . , |br|, |br+1|, e), and

c9 = 18π · 32r+4(r + 3)!(r + 2)r+3dr+3 log(2d(r + 2))h0 . . . hr.

Remark 3.3.2. The parameters n, h′(α1), . . . , h′(αn), h′(L) of the orig-
inal theorem in [2] correspond to r + 2, h0, . . . , hr, π/d, logB′′ respectively
in Theorem 3.3.1.

We have slightly modified the statement in [2], to allow inequalities in
(18) and (19). It is often much easier (and quicker) to find an upper bound
for the degree of a number field or for the height of an algebraic number,
than to compute them exactly.

The following lemma is the case h = 1 of [13, Lemma 2.2]:

Lemma 3.3.3. Let z and C1 be positive numbers and C2 an arbitrary real
number. If z ≤ C1 log z + C2 then z ≤ 2(C1 logC1 + C2).

By Proposition 3.1.2, there exist i1, i2 ∈ {1, . . . ,m} \ {i0} such that

(22)
ψi2ϕi1
ψi1ϕi2

6= 1.

On the other hand, as follows from (7),

(23)
ψi2ϕi1
ψi1ϕi2

= eO1(2c4|x|−n).

Combining (22) and (23) with (12), we obtain

(24) 1 6= β0β
b1
1 . . . βbrr = eO1(2c4|x|−n),

where

β0 =
ψi2
ψi1
· σi1(µ)
σi2(µ)

, βj =
σi1(ηj)
σi2(ηj)

(1 ≤ j ≤ r).

To compute the constant c9 in this setting, we need to estimate h(β0), . . . ,
h(βr). This can be done using the well-known inequalities h(a± b) ≤ h(a) +
h(b) + log 2 and h(ab±1) ≤ h(a) + h(b):

h(β0) ≤ 2h(µ) + 2l(2h(α) + log 2),

h(βj) ≤ 2h(ηj) (1 ≤ j ≤ r).
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Denote by log the principal branch of the complex logarithm, that is,
−π < Im log z ≤ π. Then

(25) 0 < |log β0 + b1 log β1 + . . .+ br log βr + br+1 · πi| ≤ 2c4|x|−n
for some br+1 ∈ Z. Comparing the imaginary parts, we obtain

(26) |br+1| ≤ 1 + |b1|+ . . .+ |br|+ 2π−1c4X
−n
1 ≤ 1 + 0.45l +Br,

because by the definition of c4 and X1 we have

2π−1c4X
−n
1 ≤ 2 · 1.39l(2π)−1 < 0.45l.

Therefore

(27) B′ ≤ max(e, c10 + c11 log |x|),
where c10 = rc8 + 1 + 0.45l and c11 = rc7.

As follows from (25), (21) and (27), either we have B′ = e, or

exp(c12(c13 −B′)) ≥ exp(−c9 logB′),

where c12 = nc−1
11 and c13 = c10 +c−1

12 log(2c4). Hence either we have B′ = e,
or

B′ ≤ c−1
12 c9 logB′ + c13.

In view of Lemma 3.3.3, this implies that

B ≤ B′ ≤ B0 := max(e, 2(c−1
12 c9 log(c−1

12 c9) + c13)).

4. Reduction of Baker’s bound. In practice, the value of B0 is too
large for directly enumerating all possible (b1, . . . , br). However, B0 may
be significantly reduced using continued fractions. As already mentioned
in the introduction, a method of reduction was suggested by Baker and
Davenport [1]. This method was developed by Tzanakis and de Weger [18],
Pethő [12] and others. In this paper we use another modification of the
Baker–Davenport method, suggested in [3–5].

The algorithm of reduction depends on whether r = 1 or r ≥ 2.

4.1. The case r ≥ 2. Define i1 by the condition

(28) |δi1 | = max
1≤i≤r

|δi| = c7.

(Clearly, δi1 6= 0, because the matrix A is non-singular.) Further, put

δi = δ−1
i1
δi, λi = δ−1

i1
(δiλi1 − δi1λi) (1 ≤ i ≤ r).

By the choice of i1 we have |δi| ≤ 1 for every i. Using (15), we obtain

bi = δi log |x|+ λi +O1(c6|x|−n)(29)

= δiδ
−1
i1

(bi−1 − λi1 +O1(c6|x|−n)) + λi +O1(c6|x|−n)

= δibi1 − λi +O1((1 + |δi|)c6|x|−n) = δibi1 − λi +O1(2c6|x|−n).
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Fix i2 6= i1 and put δ = δi2 and λ = λi2 . Then we can rewrite (29) as

(30) |bi2 − δbi1 + λ| ≤ 2c6|x|−n.
Let κ > 2 be a not very large number (at the end of this subsection we
discuss the practical choice of κ). By the theorem of Dirichlet, there exists
a positive integer q ≤ κB0 such that

(31) ‖qδ‖ ≤ (κB0)−1,

where ‖ ·‖ is the distance to the nearest integer. In practice q can be quickly
found from the continued fraction expansion of δ. Multiplying (30) by q, we
obtain

(32) ‖±bi1‖qδ‖+ qλ‖ ≤ 2c6κB0|x|−n,
where “±” should be “+” if qδ is smaller than the nearest integer and “−”
otherwise.

It follows from (31) that |bi1 | · ‖qδ‖ ≤ κ−1. Therefore (32) implies that

(33) ‖qλ‖ − κ−1 ≤ 2c6κB0|x|−n.
If ‖qλ‖ > κ−1, which is heuristically plausible when κ is large enough, then

(34) |x| ≤
(

2c6κB0

‖qλ‖ − κ−1

)1/n

.

Together with (17) this yields a new estimate for B:

(35) B ≤ c15

(
logB0 + log

c14κ

‖qλ‖ − κ−1

)
,

where c14 = 2c6ec8/c15 and c15 = c7/n. In particular, when ‖qλ‖ ≥ 2κ−1, we
have an estimate

(36) B ≤ c15(logB0 + log(c14κ
2))

(compare this with the lemma from [1, Section 3]).
We took as a starting value κ = 10, and tried the first reduction. If

‖qλ‖ < 2κ−1, then we changed κ to 10κ and repeated the process.
The reduced bound for B can be reduced again, using the same proce-

dure, etc. Since in the case of a Thue equation the constant c15 is usually
rather small, the reduction is very efficient.

4.2. The case r = 1. In this case the method of reduction is more or less
the same as in the Tzanakis–de Weger paper [18]. We include some details
for the sake of completeness.

Since K has a real embedding, we have m = 3, and K has one real
embedding σ1 and a pair of complex conjugate embeddings σ2, σ3. We have
i0 = 1 and {i1, i2} = {2, 3}; for instance, let it be i1 = 2 and i2 = 3.
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Now (24) can be rewritten as

(37) 1 6= β0β
b1
1 = eO1(2c4|x|−n),

where

β0 =
ψ3

ψ2
· σ2(µ)
σ3(µ)

, β1 =
σ2(η1)
σ3(η1)

.

Since σ2 and σ3 are complex conjugate, one has |β0| = |β1| = 1. Also,
β1 is not a root of unity; otherwise, σ2(ηN1 ) = σ3(ηN1 ) for some positive
integer N . It would follow that ηN1 is a Dirichlet unit of the field Q, which
means ηN1 = ±1, a contradiction.

Now rewrite (37) as

0 < ‖λ+ b1δ‖ ≤ 2c4|x|−n
with δ = arg β1/(2π) and λ = arg β0/(2π), and continue as in the case r ≥ 2.

4.3. Pathological reduction. In [4, Subsection 4.6] (see also [9]) we de-
scribed various cases of “pathological” reduction: “semirational” and “to-
tally rational” cases when r ≥ 2, and multiplicative dependence of β0 and β1

when r = 1. The method of reduction in the pathological cases is similar to
that described above, and even more efficient. Since the “pathologies” occur
in practice very seldom, we find it possible to omit their detailed analysis in
this paper; if needed, it can be copied from [4] with insignificant changes.

5. Enumerating small bi. Even when the upper bound forB is reduced,
enumerating all possible (b1, . . . , br) can require extensive computations.
One can imagine several ways to overcome this difficulty:

• using the continued fraction expansions of α (see [12, 18] for the de-
tails);
• sieving modulo several primes, as in [19, 16], for instance;
• using the Fincke–Pohst algorithm for finding all short vectors in a

lattice, as in [21, 19], for instance.

We use a method suggested in [3], with some modifications introduced
in [5].

For 1 ≤ i ≤ r put b′i = δibi1 − λi, where i1 is defined from (28). Then
|bi − b′i| ≤ 2c6|x|−n. Since X2 ≥ (2 · 1010c6)1/n, we obtain

(38) |bi − b′i| < 10−10 (1 ≤ i ≤ r)
as soon as |x| > X2. In particular,

(39) ‖b′i‖ < 10−10 (1 ≤ i ≤ r),
and bi is the nearest integer to b′i.

Now we proceed as follows. Denote by B′0 the reduced bound for B. For
every integer b such that |b| ≤ B′0, we put bi1 = b, and compute the real
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numbers b′i as above. Then for every i we verify whether ‖b′j‖ < 10−10 or
not. This condition trivially holds for i = i1, but for i 6= i1 it need not. If
it is false for at least one i, then there is no solution x with |x| > X2 such
that bi1 = b, and we go to the next b.

The heuristic probability that the integer b passes this severe test is
(2 ·10−10)r−1, quite a small number (when r ≥ 2). For those very few b that
survive after the test, we use the second test, based on the following lemma.
(We define z1/l by −π/l < arg z1/l ≤ π/l.)

Lemma 5.1. For i 6= i0 put ωi = (ϕi/ψi)1/l. Assume that |x| > X3 :=
max(X2, (1.3 · 1010c4)1/(n−1)). If l is odd then

(40) |x− ωi| < 10−10.

If l is even then we have either (40) or

(41) |x+ ωi| < 10−10.

P r o o f. We assume that l is odd; the case of even l is done similarly.
For |z| ≤ 1/2 we have

(42) ez = 1 +O1(c16z),

where c16 = 2(e1/2−1) ≤ 1.3. (This follows from the Schwarz lemma, applied
to the function ez − 1 in the disc |z| ≤ 1/2.) On the other hand,

(43) ωi = xeO1(c4|x|−n),

as follows from (7). Now (40) is an immediate consequence of (42) and (43).
This proves the lemma.

The second test is performed as follows. Fix i 6= i0 and compute ϕi
from (12), where bi are the nearest integers to b′i. Having ϕi, one can compute
ωi and check whether ‖ω2‖ ≤ 10−10 or not. If this fails then we go to the
next b. Otherwise, we compute x as the nearest integer to ω2 and check
whether it corresponds to a solution (x, y) of our equation (1). However,
this option never happened in our computations.

Remark 5.2. In the process of reduction one obtains an upper bound
not only for B but for x as well, due to (34). Quite often, especially when
n is large, this bound does not exceed X3 (or does exceed X3 but is still
reasonable). In this case enumerating small bi becomes superfluous.

6. The algorithm. Now we can summarize the contents of the previous
sections in a formal algorithm. Before giving it, we notice that the numbers
δi depend only on i0, and are independent of µ and k0. Therefore the reduc-
tion and final enumeration can be performed simultaneously for all possible

(1) If l is even then one has also to check the integer nearest to −ωi.
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pairs (k0, µ), when i0 is fixed. To do this, one must unify the constants de-
pending on k0 and µ, by putting ĉ8 := max c8(k0, µ), and redefining c10 by
substituting ĉ8 instead of c8. (This would also affect the definitions of c13,
c14, and B0.)

At the starting point we are given the following data, which will be
referred to as “the data”:

• approximate values of α and all its conjugates;
• a system of fundamental units of the field K (for each unit approximate

values of all its conjugates being required);
• the set M (again, for every µ ∈ M we have to know approximate values

of all its conjugates).

Here “approximate” means, depending on the situation, from fifty to one
thousand decimal digits for both the real and imaginary part. If it turns out
in course of solution that the precision is not sufficient, then the data should
be recomputed with higher precision, and the algorithm re-executed from a
suitable point (see Step 7).

Now we are in a position to describe the algorithm.

1. Compute matrix A, with highest possible precision.
2. Compute constants c1–c6 and X1–X3 with low precision (two decimal

digits OK).
3. Set I0 ← 1.
4. Set i0 ← I0.
5. Compute the numbers δi, with highest possible precision, and the con-

stants c7, ĉ8, c9–c15, and B0 with low precision.
6. For every pair (k0, µ) ∈ {1, . . . , l} ×±M such that αi0k0 ∈ R compute

the corresponding set of λi. If αi0k0 6∈ R for all k0 then go to Step 9.
7. Find a reduced bound for B, as described in Section 4.

If it turns out that the precision of δi is not sufficient, then:
(a) recompute the data with a suitable precision;
(b) set I0 ← i0;
(c) go to Step 4.

8. Enumerate small bi, as described in Section 5.
9. Set i0 ← i0 + 1. If i0 ≤ s then go to Step 5.

10. For any x ∈ Z such that |x| ≤ X3 check whether x corresponds to a
solution of (1).

11. Collect all solutions obtained at Steps 8 and 10.
12. End.
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7. The real cyclotomic equation. As an example, we consider the
real cyclotomic equation

(44) FP (x, y) :=
(P−1)/2∏

k=1

(
y − x · 2 cos

2πk
P

)
= ±1,±P,

where P > 12 is prime number. This equation occurs in the study of primi-
tive divisors of Lucas and Lehmer numbers (see [17, 20]).

7.1. The field K. Since the field L is abelian, for any m dividing (P−1)/2
there exists a subfield K of degree m. Thus, our method would be inefficient
only if n := (P − 1)/2 has no small divisors distinct from 1 and 2, which
happens quite seldom.

Thus, put

m =
{

4 if P ≡ 17 (mod 24),
the least odd prime divisor of n otherwise.

Since the group Gal(L/Q) is cyclic, there exists a single subfield K of L
of degree m. The following lemma was used to compute a generator of K
over Q.

Lemma 7.1.1. Let a be a primitive root modulo P. Then the algebraic
integer

ξ0 =
n/m∑

k=0

2 cos
(

2amkπ
P

)

generates the field K over Q. The conjugates of ξ0 over Q are the numbers

(45) ξi =
n/m∑

k=0

2 cos
(

2amk+iπ

P

)
(0 ≤ i ≤ m− 1).

P r o o f. One verifies immediately that Gal(L/K) stabilizes every ξi, and
that Gal(K/Q) acts on the set {ξ0, . . . , ξm−1} transitively. This means that
ξ0, . . . , ξm−1 ∈ K and that ξi are pairwise conjugate over Q.

It remains to prove that ξ0 generatesK. We shall use the following general
observation.

Let k ⊆ K ⊆ L be a tower of fields of characteristic zero, and assume
that α ∈ L generates L over k. Then the numbers

(46) TrL/K(αj) (1 ≤ j ≤ [L : K])

generate K over k.

(To prove this, notice that
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(i) the field K is generated over k by the coefficients of the minimal
polynomial of α over K, and

(ii) these coefficients can be expressed as polynomials in the numbers (46)
with integral coefficients.)

Now it is easy to complete the proof of the lemma. Since an = a(P−1)/2 ≡
−1 (mod P ), one can rewrite (45) as

(47) ξi =
(P−1)/m∑

k=0

ζa
mk+i

(0 ≤ i ≤ m− 1),

where ζ is a primitive P th root of unity. It follows immediately that
TrQ(ζ)/K(ζj) ∈ {ξ0, . . . , ξm−1} for any j 6≡ 0 (mod P ). Hence K =
Q(ξ0, . . . , ξm−1). Since Gal(K/Q) is cyclic, at least one of the numbers ξi
generates K. Since they are pairwise conjugate, any of them generates K.
The lemma is proved.

The set M is {1} when the right-hand side is ±1, and consists of a single
element when the right-hand side is ±P (because P totally ramifies in K).

7.2. Computing the constants, etc. The following lemmas show how to
compute quickly c1 and c2.

Lemma 7.2.1 ([9, Lemme 3.6]). Let l be an integer in [1, (P − 1)/2], and

Ψ(l) =
(P−1)/2∏

k=1, k 6=l
|2 cos(2kπ/P )− 2 cos(2lπ/P )|.

Put

p0 =
⌊

Acos
(√

3
3

)
P

π

⌋
.

Then

min
1≤l≤(P−1)/2

|Ψ(l)| = min(|Ψ(p0)|, |Ψ(p0 + 1)|).

More precisely , this minimum is equal to |Ψ(p0)| if and only if

sin(2p0π/P ) sin(p0π/P ) ≥ sin(2(p0 + 1)π/P ) sin((p0 + 1)π/P ).

Since minΨ(l) = mini,k |g′(αik)|, this lemma allows one to compute c1
very quickly.

Lemma 7.2.2 ([9, Lemme 3.7]). We have c2 = 4 sin(π/P ) sin(2π/P ).

All the constants are expressed in terms of the roots of F (1, y) rather
than its coefficients. Nevertheless, it is useful to have the following “closed”
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expression for F (x, y), in particular, for enumerating the solutions with |x| ≤
X3 (Step 10 of the algorithm).

Lemma 7.2.3 ([9, Lemme 3.8]). Let φP (x) = (xP − 1)/(x− 1) be the P th
cyclotomic polynomial. Then

FP (x, y) =
(

2x2

y +
√
y2 − 4x2

)(P−1)/2

φP

(
y +

√
y2 − 4x2

2x

)
.

7.3. Numerical results. The computations were done on a PC Pentium
Pro 200MHz, by a program written in C, using the PARI library version
1.915. We give in this table the value of the main constants for a few primes;
the program, complete numerical details, and results for many other values
of P are available from the second author.

The last two columns of the following table contain respectively the total
time of computation, and the time to compute and certify (using PARI) the
fundamental units of K (both the times are in seconds). Compare the 4.3
seconds for the case p = 67 with the 28 minutes of [4].

p m c6 c7 c8 c14 c15 B0
B0

red
X3 Time

Time
(FU)

67 3 8.01 · 1012 4.65 2.00 1.18 · 1014 0.141 2.05 · 1028 7 7 4.3 1.0

311 5 5.56 · 1051 12.0 2.10 9.01 · 1052 0.077 4.08 · 1045 20 4 58.1 43.4

977 4 4.73 · 10153 76.2 7.89 2.50 · 10157 0.156 2.58 · 1042 80 2 60.5 16.5

997 3 3.04 · 10155 6.89 2.00 4.48 · 10156 0.014 4.58 · 1036 8 2 39.0 4.7

5011 3 9.46 · 10761 57.8 3.27 4.95 · 10763 0.024 5.77 · 1040 46 2 479.8 6.6

We found that (for all P above) the solutions of the equation FP (x, y) =
±1 are

(0,±1), (±1, 0), (±1,±1), (±1,∓1), (±1,∓2),

and the solutions of the equation FP (x, y) = ±P are (±1,±2).
Combining this with [20, Lemma 1], we obtain the following result.

Corollary 7.3.1. The 311th, 977th, 997th, 5011th terms of any Lucas
or Lehmer sequence have a primitive divisor.

In the forthcoming paper [6] (jointly with Paul Voutier) we show how
the method of this paper, together with some ideas from [10], leads to the
complete solution of the problem of primitive divisors.
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[13] A. Peth ő and B. M. M. de Weger, Products of prime powers in binary recur-
rence sequences, Part I : The hyperbolic case, with an application to the generalized
Ramanujan–Nagell equation, Math. Comp. 47 (1987), 713–727.

[14] M. E. Pohst, Computational Algebraic Number Theory, DMV Sem. 21, Birkhäuser,
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Université Bordeaux 1
351, cours de la Libération

F-33405 Talence Cedex, France

Current address:
Projet POLKA, INRIA Lorraine

Technopole de Nancy-Brabois
615, rue du Jardin Botanique

B.P. 101
F-54600 Villers-les-Nancy, France

E-mail: Guillaume.Hanrot@loria.fr

Received on 11.4.1997
and in revised form on 4.1.1999 (3167)


