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Averages of short exponential sums
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Alexandru Zaharescu (Cambridge, Mass. and Bucureşti)

1. Introduction. Let p be a large prime number, let r(X) be a ra-
tional function with coefficients in Fp = Z/pZ and consider the complete
exponential sum

S(r, p) =
∑

xmod p

∗
e

(
r(x)
p

)

where
∑∗ means that the poles of r(X) are excepted.

An upper bound for S(r, p) is provided by the Bombieri–Weil inequality
(see [2]). In the convenient form given by Moreno and Moreno [3] it states
that if r is not constant and r(X) = f(X)/g(X) with f(X), g(X) ∈ Fp[X]
and (f(X), g(X)) = 1 then:

|S(r, p)| ≤ Dp1/2

where
D = deg g(X) + max{deg f(X), deg g(X)} − 1.

If we consider an incomplete sum

SN (r, p) =
∑

1≤n≤N
e

(
r(n)
p

)

then all that is known is an upper bound of the form

|S(r, p)| � Dp1/2 log p

which holds true if r(X) is not a linear polynomial and which is derived in
a standard way (see e.g. Serre [5], Appendice) from the previous bound for
complete sums.

Here we expect that for all rational functions r(X) with the exception
of certain polynomials for which SN (r, p) is obviously large one still has a
square root type cancellation in this sum, so we expect

(1.1) |SN (r, p)| �ε,D N1/2pε.
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To study the distribution of the sequence of fractional parts

N = {{r(n)/p} : 1 ≤ n ≤ N}
one also considers the sums

SN (m, r, p) =
∑

1≤n≤N

∗
e

(
mr(n)
p

)
, m = 1, 2, . . .

In the following we are concerned with estimating |SN (m, r, p)| in average
over m ∈ {1, . . . ,M} via the second moment

M2(N,M, r, p) =
M∑
m=1

|SN (m, r, p)|2.

Our intention is to find circumstances under which our upper bounds for
M2(N,M, r, p) imply a square root type cancellation in SN (m, r, p) in aver-
age over m ∈ {1, . . . ,M}, or at least imply in average a cancellation which
is stronger than the p1/2-bound which we know individually for any m.

Usually the quality of these upper bounds for M2 depends on M : the
larger M , the better the results. In particular, it is easy to see that∑

mmod p

|SN (m, r, p)|2 �D pN

so we indeed get a square root type upper bound in average for SN (m, r, p)
if we allow M be as large as p.

In this paper we consider smaller values for M , usually as small as N . So
we might have N = M = pα where α is some fixed small positive number.

One possible way to obtain information about such short sums is to
estimate higher moments, but this seems to be difficult in general.

In this paper we allow p to vary in some interval of the form [P, 2P ] with
P ≥ N .

In order for these things to make sense we start with a rational function
r(X) = f(X)/g(X) where f(X), g(X) ∈ Z[X] and (f, g) = 1 and with pos-
itive integers N , M , P with N,M ≤ P ; then by reducing the coefficients of
f(X) and g(X) modulo p for p prime in [P, 2P ] we form the above moments
M2(N,M, r, p).

In the following we present a systematic method to obtain bounds for
the second moment

M2(N,M,P, r) =
∑

P≤p≤2P

M2(N,M, r, p);

these bounds turn out to be essentially best possible if M ≥ N .
First we need to exclude some trivial cases when our exponential sums

are obviously large. This is the case when r(X) is constant, and also when
r(X) = aX + b in which case we get geometric progressions which might
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also be large. In fact we might get large exponential sums even if r(X) is a
higher degree polynomial. For example, if r(X) = Xk and Nk+2 ≤ P then
any exponential sum appearing in M2(N,N,P, r) will be as large as N .

In the following we will assume that r(X) is not a polynomial.
Concerning the coefficients of r(X) our method is very flexible and we

may allow them to be larger than P . However, an upper bound for them
needs to be assumed, otherwise one can use the Chinese Remainder Theorem
to find (huge) coefficients for r(X) which produce images mod p at our
disposal for any prime p ∈ [P, 2P ] and so we will not get anything by
averaging over p: it is like working with each p individually. For example,
if r(X) = (X + a)/(X + 1) say, where a − 1 is divisible by the product of
primes p from [P, 2P ] then all our sums will be trivial.

In the following we assume that all the coefficients of r(X) are bounded
by PK1 for some fixed number K1. So our upper bounds will depend on
K1. They will also depend on deg f and deg g which are also assumed to be
bounded by some fixed positive number K2, say.

Now we can state our main results.

Theorem 1. Let ε > 0, N ≤ P and M be positive integers and let
r(X) = f(X)/g(X) be a rational function with deg f, deg g ≤ K2 with inte-
ger coefficients bounded by PK1 , r(X) not a polynomial. Then

M2(N,M,P, r)�ε,K1,K2 N(N +M)P 1+ε.

As a consequence, for M ≥ N we get the desired square root type can-
cellation in average for our exponential sums:

Corollary 2. Under the hypotheses of Theorem 1, if M ≥ N then for
almost all pairs (p,m) with p prime, p ∈ [P, 2P ], m ∈ {1, . . . ,M} (in the
sense that the exceptional set has density < P−ε) one has∣∣∣∣

∑

1≤n≤N

∗
e

(
mr(n)
p

)∣∣∣∣�ε,K1,K2 N
1/2P ε.

As an application of the above results we note that almost all the sets
Np,m defined mod 1 by {mr(n)/p}1≤n≤N are uniformly distributed in [0, 1].
To measure how far is a given finite sequence N = {xn : 1 ≤ n ≤ N} of
points in [0, 1] from being uniformly distributed one defines the discrepancy
of N by:

D(N ) = sup
0≤α<β≤1

|#(N ∩ [α, β])−N(β − α)|.
Concerning the discrepancy of our sequences we have the following result:

Theorem 3. Under the hypotheses of Theorem 1 for almost all pairs
(p,m) with p prime, p ∈ [P, 2P ] and m ∈ {1, . . . ,M} we have

D(Np,m)�ε,K1,K2 (NM−1/2 +N1/2)P ε.
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In particular, if N = Pα and M ≥ N then we get a square root type
saving in average in the discrepancy, no matter how small the fixed positive
number α is.

A problem originally proposed by Hardy and Littlewood and intensively
studied later concerns the distribution of fractional parts of polynomials (see
Schmidt [4] and Baker [1]). In particular, one is interested in finding small
values of such fractional parts.

If we consider the analogous problem in which instead of a polynomial
we have a rational function r(X), where by {mr(n)/p} we understand that
r(n) is to be computed in Fp and not in Q, then Theorem 3 implies

Corollary 4. Under the hypotheses of Theorem 1 assume also that
M ≥ N . Then for almost all pairs (p,m) with p prime, p ∈ [P, 2P ] and
m ∈ {1, . . . ,M} the following holds true:

For any β ∈ [0, 1] there exists 1 ≤ n ≤ N such that

(1.2)
∣∣∣∣
{
mr(n)
p

}
− β

∣∣∣∣�ε,K1,K2 N
−1/2P ε.

2. Exponential sums and pair correlations. There are two main
ideas in the proof of Theorem 1.

The first idea is to bring into play the pair correlations for the original
sequence Np = {{r(n)/p} : 1 ≤ n ≤ N} to bound the second moments
M2(N,M, r, p). The other idea, which will be explained in the next section,
provides us with an alternative way to estimate these pair correlations when
we vary the modulus p.

We work here with a general sequence N = {xn}1≤n≤N of points in
[0, 1] and then we apply the results to the above sets Np for all our places
p ∈ [P, 2P ].

We let T ≥ 2 be a parameter to be chosen later and define the function
h periodic mod 1 and which on [−1/2, 1/2] is given by

h(t) =
{
T (1− T |t|), |t| ≤ 1/T ,
0, 1/T ≤ |t| ≤ 1/2.

We expand h in a Fourier series:

h(t) =
∑

m∈Z
cme(mt).

Here c0 = 1 and for any m 6= 0 we have

cm =
T 2

π2m2 sin2
(
πm

T

)
.

Note that for |m| ≤ T/2 we have |cm| � 1.
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Now let

E(T ) = #{1 ≤ n1, n2 ≤ N : |xn1 − xn2 | ≤ 1/T}
and

Eh =
∑

1≤n1,n2≤N
h(xn1 − xn2).

Then obviously Eh ≤ TE(T ). On the other hand, we have

Eh =
∑

1≤n1,n2≤N
h(xn1 − xn2) =

∑

1≤n1,n2≤N

∑

m∈Z
cme(m(xn1 − xn2))

=
∑

m∈Z
cm

∑

1≤n1,n2≤N
e(m(xn1 − xn2)) =

∑

m∈Z
cm

∣∣∣
∑

1≤n≤N
e(mxn)

∣∣∣
2
.

We now let T = 2M . Since cm ≥ 0 for any m and cm � 1 for |m| ≤M ,
we derive

(2.1)
∑

1≤m≤M

∣∣∣
∑

1≤n≤N
e(mxn)

∣∣∣
2
� Eh �ME(2M).

We note in passing that here we could add the term m = 0 to the left
hand side. This would contribute an N2 and so we see that by this method
it is not possible to obtain a square root type cancellation in Corollary 2
above if M is smaller than N since in that case all the terms m = 1, . . . ,M
together will be dominated by the single term m = 0.

3. Averaging over the modulus P . For any p ∈ [P, 2P ] we consider
the set Np = {{r(n)/p}1≤n≤N} for which we apply (2.1), where E(2M) =
Ep(2M) that appears on its right hand side depends on p also. We add these
inequalities to get

(3.1)
∑

P≤p≤2P

∑

1≤m≤M

∣∣∣∣
∑

1≤n≤N
e

(
mr(n)
p

)∣∣∣∣
2

�M
∑

P≤p≤2P

Ep(2M).

Here for any p we have

(3.2) Ep(2M)

= #{(n, n′) : 1 ≤ n, n′ ≤ N, r(n)− r(n′) = h mod p, |h| ≤ p/(2M)}.
Therefore∑

p

Ep(2M) = #{(n, n′, h, p) : 1 ≤ n, n′ ≤ N, P ≤ p ≤ 2P,(3.3)

|h| ≤ p/(2M); r(n)− r(n′) = h mod p}.
The above congruence is equivalent to

(3.4) g(n′)f(n)− g(n)f(n′) = hg(n′)g(n) mod p.
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Now the point is that for any given n, n′ and h the integer A = g(n′)f(n)−
g(n)f(n′)− hg(n′)g(n) has very few prime divisors p unless A = 0 in which
case any prime is a divisor and so any prime P ≤ p ≤ 2P will contribute to
a tuple (n, n′, h, p) as above.

So we distinguish two types of admissible tuples, according as A = 0 or
not.

Now |A| is clearly bounded by P 2kN2k′(P/M + 1) which is < P 2k+2k′+1

so if A 6= 0 then the triplet (n, n′, h) can appear in at most 2k+2k′+1 tuples
(n, n′, h, p). Therefore the total number of such tuples is �k,k′ N

2P/M . It
remains to estimate the number of triplets (n, n′, h) for which A = 0, in
other words, to estimate the number of pairs (n, n′) for which r(n) − r(n′)
is an integer h which belongs to the interval [−P/M,P/M ].

First of all, we have the N diagonal solutions n = n′. Assume now that
n 6= n′.

Let us first treat the special case r(X) = aX + b/X, i.e. the case of
so-called Kloosterman sums. We have r(n)− r(n′) = a(n−n′) + b/n− b/n′.
Put z = n′−n. Then r(n′)− r(n) = az− bz/(n(n+ z)). If this is an integer
then n has to divide bz. Now for any fixed z the number bz cannot have too
many divisors. More precisely, since |bz| ≤ PKN ≤ PK+1 the number of
divisors of bz will be �ε,K P ε.

Therefore the number of such pairs (n, n′) is �ε,K NP ε. It follows that

(3.5)
∑
p

Ep(2M)�ε,K,K′

(
N2P

M
+NP 1+ε

)
.

Therefore the right hand side of (3.1) is �ε,K,K′ P
1+εN(N +M).

The left hand side of (3.1) equals M2(N,M,P, r). Thus Theorem 1 is
proved for Kloosterman sums.

Actually in this case we can weaken the hypothesis on the coefficients a
and b; more precisely, it is enough to assume that |a|, |b| ≤ exp(pε).

The point is that if one of |a|, |b| is large (larger than pK , say) then the
other has to be large too, otherwise az−bz/(n(n+z)) will be itself too large
for the constraint that we have for it, i.e. that it lies in [−P/M,P/M ]. Now if
both a and b are large then for any z there will be at most one admissible n,
in the sense that for at most one value of n the quantity |az− bz/(n(n+z))|
is smaller than P/M .

It would be nice to have this part of the proof generalized such that it
can be applied to a general r(X).

For r(X) = aX + b/X there is no upper bound for |a|, |b| needed to be
assumed in this last part of the proof, i.e. when A = 0. But when A 6= 0
we need the number of prime divisors p of A with P ≤ p ≤ 2P to be < P ε

so that their contribution in Theorem 1 could be neglected, in the sense
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that it could be swallowed in the factor P ε and that is why we assume
|a|, |b| < exp(pε).

We now return to the proof of Theorem 1. Take a general r(X) =
f(X)/g(X) with (f, g) = 1. Let f(X) = arX

r + ar−1X
r−1 + . . . + a0 and

g(X) = bsg
s + . . . + b0. Then the resultant R(f, g) of f and g is a nonzero

integer. From its expression as a determinant whose nonzero entries are
coefficients of f(X) and g(X) we obtain

|R(f, g)| �K′ p
2KK′ .

On the other hand, we have f(X)F (X)− g(X)G(X) = R(f, g) for some
polynomials F (X), G(X) ∈ Z[X].

From the assumption that

f(n)
g(n)

− f(n′)
g(n′)

∈ Z

we derive in order the following:

g(n)
(
f(n)
g(n)

− f(n′)
g(n′)

)
∈ Z;

g(n)f(n′)
g(n′)

∈ Z;
g(n)f(n′)F (n′)

g(n′)
∈ Z;

g(n)(R(f, g) + g(n′)G(n′))
g(n′)

∈ Z;
g(n)R(f, g)

g(n′)
∈ Z.

Now let us fix an n and see how many n′ satisfy the last relation. The
numerator is a nonzero integer, as n was not a pole of r(x), which is bounded
by p2KK′NspK and therefore its number of divisors is Oε,K,K′(pε). Moreover
for any such divisor d there are at most s distinct values for n′ such that
g(n′) = d.

In conclusion there are at mostOε,K,K′(pεN) admissible triplets (n, n′, h)
of second type (A = 0). Therefore

∑
p

Ep(2M)�ε,K,K′

(
N2P

M
+NP 1+ε

)

as in the case r(X) = aX + b/X and this is enough to finish the proof of
Theorem 1 as before.

4. Proof of Theorem 3. To prove Theorem 3 we use for each set
Np,m the Erdős–Turán inequality which provides an upper bound for the
discrepancy of the set in terms of exponential sums:

D(Np,m) ≤
∑

1≤l≤L

3
l
|SN (ml, r, p)|+ N

L+ 1
,

which is valid for any positive integer L. We sum these inequalities over the
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corresponding ranges for m, p:
∑

P≤p≤2P

∑

1≤m≤M
D(Np,m)≤

∑

P≤p≤2P

∑

1≤m≤M

( ∑

1≤l≤L

3
l
|SN (ml, r, p)|+ N

L+ 1

)

where L is a parameter to be chosen later. Now we change the order of
summation and then use Cauchy’s inequality to bound the inner sum:∑

P≤p≤2P

∑

1≤m≤M
D(Np,m)

≤ PMN

L+ 1
+
∑

1≤l≤L

3
l

∑

P≤p≤2P

∑

1≤m≤M
|SN (ml, r, p)|

≤ PMN

L+ 1
+
∑

1≤l≤L

3
l
(MP )1/2

( ∑

P≤p≤2P

∑

1≤m≤M
|SN (ml, r, p)|2

)1/2
.

Note that SN (ml, r, p) = SN (m, lr, p). Thus
∑

P≤p≤2P

∑

1≤m≤M
|SN (ml, r, p)|2 = M2(N,M,P, lr),

which is bounded by N(N + M)P 1+ε by Theorem 1 applied to lr(X). We
obtain∑

P≤p≤2P

∑

1≤m≤M
D(Np,m)

�ε,k,deg r
PMN

L
+
∑

1≤l≤L

M1/2N1/2(N +M)1/2P 1+ε

l
.

If we take L = N , the right hand side above is

�ε,k,deg r M
1/2N1/2(N +M)1/2P 1+ε.

It now follows that for almost all pairs p,m we have

D(Np,m)�ε,k,deg r (NM−1/2 +N1/2)P ε,

which completes the proof of Theorem 3.
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