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The orders of the reductions of a point
in the Mordell–Weil group of an elliptic curve

by

J. Cheon and S. Hahn (Taejon)

In 1886, A. Bang showed that there exists a constant M > 0 so that
for each non-zero rational number x, x 6= ±1, and every integer n > M ,
there exists a prime number p so that the order of x modulo p is equal
to n (see [1]). Since then his result was extended and generalized by other
mathematicians. In 1892, K. Zsigmondy found a stronger version (see [8],
[3, p. 20]). But most of all, in 1974, A. Schinzel proved that for any number
field K there exists a constant M > 0 so that for each x ∈ K× which is
not a root of unity, and every integer n > M , there exists a prime ideal ℘
of K so that the order of x modulo ℘ is equal to n (see [4]). Motivated by
Y. Ihara’s interpretation of Bang’s theorem (see [2]), in this paper we prove
the following elliptic analogue.

Theorem. Let E be an elliptic curve over a number field K and let
P ∈ E(K) be a point of infinite order. Then for every sufficiently large
integer n there exists a prime ℘ of good reduction so that the order
of P in the group of points of E modulo ℘ is equal to n. More-
over , for all but finitely many P there exists such a prime ℘ for each
n > 0.

J. Silverman proved the above theorem for elliptic curves defined over Q
(see [7]) which we prove first by explicit valuations of division polynomials.
To prove the full theorem, we use essentially the same techniques, namely
formal groups and heights, as Silverman did. In Schinzel’s result the constant
M which depends on the number fieldK was effectively computable. Though
we obtain a stronger result for the elliptic analogue, namely n > 0 is enough
for all but finitely many P , we could not get an effective estimate for those
finitely many exceptions.
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From now on, we use the following notations:

• K : a number field,
• R : the ring of integers of K,
• v : a normalized absolute value on K as described in [5, Ch. VIII, §5],
• ℘v = {x ∈ R | v(x) > 0} : the prime ideal of R associated with v,
• Kv : the quotient field of the completion of R at v.

Consider an elliptic curve E over K. Let S be a finite set of primes
of K, containing the infinite primes, the primes over 2, the primes that are
ramified in K and the primes for which E has bad reduction.

Define a local height function hx,v temporarily for a prime v on K as
follows:

(1) hx,v : E(K) \ {O} → R, (x, y) 7→ 1
2 max{−v(x), 0},

and denote by ĥ the canonical height on E and by hx the Weil height on E.
By [6] there is a constant C, depending only on E, such that

(2) |ĥ(M)− hx(M)| < C

for all M ∈ E(K). We have

(3) hx(M) =
1

[K : Q]

∑
v prime

nvhx,v(M)

where nv denotes the local degree [Kv : Qv] (see [5, Ch. VIII, §5]).
From now on, M mod ℘v denotes the image of M under the reduction

map E(K)→ E(R/℘v) for a finite prime v.

Lemma. Let v be a prime not in S and M be a non-torsion point of
E(K). Suppose that M mod ℘v = O, i.e. hx,v(M) > 0. Then

hx,v(nM) = hx,v(M) + v(n)

for any positive integer n.

P r o o f. Let M = {x ∈ Kv | v(x) > 0}, Ê the formal group associated
with E and Ĝa(M) the additive groupM with its usual addition. We have
an isomorphism [5, Ch. IV, Theorem 6.4(b)]

(4) logÊ : Ê(Mr)→ Ĝa(Mr)

for any r > 0, because v is not in S. Hence we identify Ê(M) with Ĝa(M)
and we get v(z) = v(logÊ z) for z ∈M.

Moreover, letting

E1(Kv) = {M ∈ E(Kv) |M mod ℘v = O},
we have an isomorphism [5, Ch. VII, Proposition 2.2]

(5) z : E1(Kv)→ Ê(M)
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such that v(x[M ]) = −2v(z(M)) for any M ∈ E1(Kv) \ {O}, where x[M ]
denotes the x-coordinate of M .

By (4) and (5), we get v(x[nM ]) = v(x[M ])− 2v(n) for any non-torsion
point M ∈ E1(Kv) \ {O}, because

v(z(nM)) = v(logÊ z(nM)) = v(n logÊ z(M)) = v(n) + v(z(M)).

Since v(x[M ]) < 0 by assumption, we have hx,v(nM) = hx,v(M) + v(n)
by (1).

Using the above Lemma, we can prove the Theorem.

Proof of Theorem. Suppose n does not occur as the order of M mod-
ulo ℘v. That means that for every v with hx,v(nM) > 0, there exists a
prime q dividing n so that hx,v

(
n
qM

)
> 0. Therefore, for every such v 6∈ S,

the Lemma shows that

(6) hx,v(nM) = hx,v

(
n

q
M

)
+ v(q) ≤

∑

q|n

{
hx,v

(
n

q
M

)
+ v(q)

}
.

Combining this estimate with formula (3) we find that

(7) hx(nM) ≤
∑

q|n
hx

(
n

q
M

)
+
∑

v∈S
hx,v(nM) +

∑

q|n

∑

v 6∈S
v(q).

The last term on the right is easily seen to be less than log n. Since M is
not a torsion point, we can apply Siegel’s Theorem [7, Ch. IX, Theorem 3.1]
to the second term: for every ε > 0 and sufficiently large n we have

(8) hx,v(nM) ≤ εhx(nM).

Finally, we use the fact that the difference between the naive height hx
and the canonical height ĥ is bounded on the Mordell–Weil group E(K).
Since the canonical height is a quadratic function, this gives the following
inequality:

(9) n2ĥ(M) ≤ n2ĥ(M)
∑

q|n

1
q2 + #S · n2εĥ(M) + log n+ C,

for some constant C and for sufficiently large n. Therefore

(10)
(

1− ε#S −
∑

q|n

1
q2

)
ĥ(M) ≤ logn+ C

n2 .

Since
∑
q|n 1/q2 ≤ ∑q prime 1/q2 ≤ 1/2, we can choose ε > 0 so small that

the coefficient 1 − ε#S −∑q|n 1/q2 is positive. Since M is not torsion, we

have ĥ(M) > 0 so that the inequality implies that n is bounded, as required.
For the second statement of the Theorem, we observe that for any ε > 0,

Siegel’s inequality hx,v(nM) ≤ εhx(nM) actually holds for all n ≥ 1 if the
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height of M is sufficiently large. Therefore the final inequality implies that
n < 1 whenever the height of M is sufficiently large. Since there are only
finitely many points M ∈ E(K) of bounded height, the second statement
follows.
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