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1. Introduction. Let a, b be integers such that the polynomial f(z) =
23 + ax + b has discriminant A(f) # 0. In [3] Evertse and Silverman proved
that the number Z(f) of integer solutions of the equation y* = f(z) satisfies

Z(f) < 7[L:Q](4+93)h2(L)2 + 3’

where s is the cardinality of the set containing the usual absolute value of
Q and the p-adic absolute values |- |, for which |A(f)|, # 1, L the splitting
field of f(x) and ha(L) the order of the subgroup of the ideal class group of
L consisting of the ideal classes [A] with [4]? = 1. Using this result Schmidt
[7] proved that given £ > 0 there is a constant ¢(e) depending on € such that

Z(f) < cle)| A(HIM2.

In the case of the Mordell equation (i.e. a = 0), it follows that Z(f) <
c(e)[b|**e. Moreover, Schmidt conjectured that the number of solutions
x,y € Z of an irreducible equation F(z,y) = 0 defining a curve of posi-
tive genus having coefficients in Z and total degree N is at most

c(N,e)H(F)",

where ¢(IV, ) is a constant depending on N and ¢.

In this paper we improve on the estimate of Schmidt for the Mordell
equations by showing that the number of integer solutions of y? = 23 +
b depends only on the prime divisors of b. More precisely, we prove the
following result:

THEOREM 1. Let k be a nonzero rational integer. Denote by w(k) the
number of prime divisors of k and by P(k) the product of all the prime
divisors p of k with p > 3. If k has no prime divisors > 3, put P(k) = 1.

1991 Mathematics Subject Classification: 11D25, 11G05.

[173]



174 D. Poulakis

Then the number of solutions (x,y) € Z* of the equation y* = x® + k is
< 1011w(k)+48P(]{;)_

COROLLARY 1. Let k be a nonzero rational integer and II(k) be the
product of the prime divisors of k. Then for every € > 0 there is a constant
2(¢), independent of k, such that the number of solutions (x,y) € Z? of the
equation y? = 3 + k is

< Q(e)II(k)*e.
The above theorem is a consequence of the following effective version of

Shafarevich’s theorem ([5, p. 222], [8, p. 263]):

THEOREM 2. Let S be a finite set of rational primes with 2,3 € S. Denote
by P(S) the product of all the primes p in S with p > 3. If S = {2,3}, put
P(S) = 1. Then the number of Q-isomorphism classes of elliptic curves over
Q with good reduction outside S is

< 1M+ p(g),

In [1] there is an effective proof of Shafarevich’s theorem using the esti-
mate of [3]. Our approach is completely different and has the advantage that
does not use the results of [3]. The only Diophantine approximation result
we use is the estimate for the number of solutions of the S-units equation
x +y =1 due to Evertse [2].

2. Auxiliary results. In this section we give some lemmas which will
be useful for the proof of our results.

LEMMA 1. Let S be a finite set of rational primes with 2 € S and f(x) =
2% + Ax + B be a polynomial of Z[z] with distinct roots. Suppose that the
elliptic curve E : y* = f(z) has good reduction outside S. Let L = Q(),
where 0 is a root of f(x). Suppose that L # Q. Then the discriminant Dy,
of L has the form

D =+2°3° [ p™,
P
where the product is taken over all the primes p > 5, with s, = 0 for p
outside S and 0 < s, < degL—1 forp € S. Moreover, « =0,2,3 and 3 < 1
ifdeg L =2, while 3 =0,1,3,4,5 if deg L = 3.

Proof. The nonzero points of 2-torsion of E are the points (0,6;) (i =
1,2, 3) where 61, 02, 03 are the roots of f(x). By [5, Theorem 1, p. 113], the
extension Q(01,602,03)/Q is unramified outside S. Then the extension L/Q
is unramified outside S, whence the prime divisors of Dy are primes in 5.
Hence,

Dy =+223 ][ p*r,
P
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where the product is taken over all the primes p > 5, with s, = 0 for p
outside S. If L is a quadratic extension, then a = 0,2 or 3, § < 1 and
sp < 1for p e S.If L is a cubic extension, [6, Theorem 2] implies that
a=0,20r3,3=0,1,3,40or5and s, <2forpeS.

LEMMA 2. Let D be an integer. Then the number of cubic fields of dis-
criminant D is at most 546|D|'/2.

Proof. Let K be a cubic field of discriminant D. Then [4, pp. 620-625]
implies that |D| > 23. Let 01, 02, 03 be the embeddings of K into the field C
of complex numbers. We denote by s and 2t the number of real and complex
embeddings respectively. If s =t = 1, let 09, 03 be the complex embeddings.
As usual denote complex conjugation by bars and define 7;(z) = o;(x). Thus
o3 = 09 . The map o : K — R® x C* given by o(x) = (01(z),...,03-¢(x))
defines an embedding of K into R® x C!. The image o(O) of the ring
Ok of algebraic integers of K is a lattice in R® x C'. In [4, Chapter 28,
§1] a structure of Euclidean space is defined on R* x C!. The fundamental
parallelotope of the lattice 0(Og) has content |D|'/? with respect to this
Euclidean metric [4, p. 538].

Let A be the convex region in R® x C! determined by the inequalities

lz| + |yl + 121 <o |e+y+zl<d <o if(st)=(30)

and
[ +lyl+Hl <o lr+y+7l <o <o if(st)=(L1).
By [4, p. 623], the content of the region A is

4 (7 ¢
> 3<4> o' 0%

47Tt/2 1/2
3lz)@e > 8|D|'/*.

Putting o' = 0/2, we can take o = (4/7)%/312'/3|D|'/%. Hence, Minkowski’s
lattice point theorem [5, p. 601] implies that there exists an algebraic integer
¢ of K satisfying

We choose g so that

4\"? 1/31(1/6 14t/313 1/6
aletal< (1) 12P0Pe, lararal <y (1) 2R
where &1, &5, &3 are the conjugates of &.

The arithmetic-geometric inequality implies
16265] < | DI,
For arbitrary real numbers a, b, ¢ we have the inequality

ab+bc+ac< i(a+b+c)
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Hence

6162 + als + &163] < 2|DJM3.
Let f(z) = 23 + Ax? + Bz + C be the irreducible polynomial of £. Then
Al <2[D|'/°,|B| <2|D|'?, |C| <|D|'2.
The discriminant of f(x) is
A=—4A°C + A’B” + 18ABC — 4B* — 27C*.

Thus, the inequalities for A, B, C give |A| < 179|D|. We denote by i({) the
index of £&. We have A = i(£)2D, whence |i(£)] < 13.
We now consider the surface given by the equation

F(X,Y,Z)= —4X?Z + X?Y? +18XY Z —4Y® - 277Z% — DL* = 0,
where L is a positive integer with L < 13. The number of triples (u,v,w) €
7?3 with |u| < 2|D|Y/8, |v| < 2|D|'/? and |w| < |D|'/? satisfying F(u,v,w) =
0 is less than 2(4|D|Y/% + 1)(4|D|*/3 +1) < 42|D|'/? (we have used the fact
that |D| > 23). Since we have at most 13 choices for L, the lemma follows.

LEMMA 3. Let K be an algebraic number field of degree d and S be a
finite set of places on K containing all the infinite places of K. Then the
equation x +y =1 has at most

3. 7d+248

solutions in S-units x, y of K.
Proof. See [2].

LEMMA 4. Let K be an algebraic number field and L be a Galois extension
of K of degree l. Then each L-isomorphism class of elliptic curves defined
over K splits into at most 6! K -isomorphism classes.

Proof. Let E and A be two elliptic curves defined over K and let « :
E — A be an isomorphism over L. Then we have a map F(«a) : Gal(L/K) —
Aut(F) defined by

F(a)(c)=a"toa’ forevery o € Gal(L/K).

Suppose now that B is another elliptic curve defined over K and §: E — B
an L-isomorphism with F'(a) = F(f3). It follows that

atoa”=p"10op” forevery o € Gal(L/K).
Setting A = Boa™!, we have A2 = X for every 0 € Gal(L/K). So,
the isomorphism A is defined over K, whence A and B are K-isomorphic.
Thus, given an L-isomorphism class C' of elliptic curves defined over K,

the map a@ — F(«) defines an injection from the set of pairwise distinct
K-isomorphism classes belonging to C' into the set of maps from Gal(L/K)
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to Aut(E). Since the cardinality of Gal(L/K) is [ and that of Aut(E) is at
most 6, the lemma follows.

3. Proof of Theorem 2. Let E : y? = 2% + Az + B, where A, B € Z,
be an elliptic curve having good reduction outside S. We denote by L the
field obtained by adjoining to Q the points of order 2 of E. It is the field
generated over Q by the roots of 23 + Ax + B. We have the following cases.

1. L = Q. Then F is isomorphic over Q to an elliptic curve in Legendre
form

Ey: y=z(x—1)(z—N),
where A € Q. The j-invariant of F) is

(A =A+1)°
A2(A—1)?

Since E has good reduction outside S, j is a S-integer of Q. Let |- |, be a
p-adic absolute value with p outside S. If |A|, # 1, then |j|, > 1 from the
equation for j, contradicting the fact that j is a S-integer. It follows that
A is a S-unit. Similarly for 1 — A. Thus, A and g = 1 — A are two S-units
satisfying A + ¢ = 1. By Lemma 3, the number of S-units x, y of Q with
z+y=11is at most 3- 737245 whence there are at most 3 - 731245 choices
for X. Hence, there are at most 3 - 73125 Q-isomorphism classes of elliptic
curves F over QQ with good reduction outside S such that the points of order
2 of E are defined over Q.

2. [L : Q] = 2. Let X be the set of prime ideals of L lying above the
elements of S. The curve E is isomorphic over L to an elliptic curve in
Legendre form

j=2°

Ey: y?=z(z—1)(z—-N\),

where A\ € L. Then we deduce as in case 1 that there are at most 3 - 74124
choices for A. Hence, there are at most 3 - 74t4#9 L-isomorphism classes of
elliptic curves E over Q with good reduction outside S. Let L = Q(v/d),
where d is a squarefree rational integer. Then the discriminant Dy, of L is d
or 4d. On the other hand, Lemma 1 yields

Dp =+2°3° [ »,
P
where the product is taken over all the primes p > 5, with s, = 0 for
p outside S, 0 < s, < 1forp € S and o < 3, B < 1. It follows that
there exist 24T#5 choices for L. Furthermore, Lemma 4 implies that every
L-isomorphism class of elliptic curves over Q is divided into at most 36
pairwise distinct Q-isomorphism classes of elliptic curves over Q. Thus, we
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conclude that there are less than
108 . 74+4ﬁs . 24+ﬁS

Q-isomorphism classes of elliptic curves E over (Q with good reduction out-
side S with exactly one nonzero point of order 2 defined over Q.

3. [L:Q] =3 or6. Let K =Q(#), where 6 is a root of the polynomial
23 4+ Az + B. By Lemma 1, the discriminant of K is

Dk = 23 [ p,
P
where « = 0,2 or 3, 3 =0,1, 3,4 or 5 and the product is over all primes p >
5, with s, = 0 for p outside S and 0 < s, <2 for p € S. If S # {2,3}, then
we denote by P(S) the product of the primes of S —{2,3} and if S = {2, 3},
we put P(S) = 1. By Lemma 2, there are at most 24570P(.S) cubic fields
of given discriminant Dy . On the other hand, there are at most 10 - 3#5~1
choices for Dk . Hence, the number of choices for K and therefore for L is

< 81900 - 3*9P(S).

If [L : Q] = 3, we conclude, as in the previous cases, that there are
less than 3 - 791645 choices for the L-isomorphism class of £ and Lemma 4
implies that every such class splits into 63 L-isomorphism classes of elliptic
curves over Q. It follows that the number of Q-isomorphism classes of elliptic
curves E over Q with good reduction outside S such that their 2-torsion
points generate over (Q a cubic extension is

< 3-10% .38 . 755 p(39),

If [L : Q] = 6, we deduce that there are less than 3 - 71841245 choices for
the L-isomorphism class of ' and Lemma 4 yields that every such class splits
into 6% L-isomorphism classes of elliptic curves over Q. Thus, the number
of Q-isomorphism classes of elliptic curves E over Q with good reduction
outside S such that their 2-torsion points generates over Q an extension of
degree 6 is

<2.10% .38 . 7125 p(9).

Summarizing our estimates, we deduce that the number of Q-isomor-
phism classes of elliptic curves E over Q with good reduction outside S is

< 101185426 p(g),

4. Proof of Theorem 1. We shall follow the idea of [8, Remark 6.5,
p. 265]. Let (u,v) € Z? be a solution of the Mordell equation y? = 2%+ k. We
associate with this solution the elliptic curve E(u,v) defined by the equation

Y? = X3 - 3uX + 20.
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The discriminant of E(u,v) is
16(4(3u)® — 27(20)%) = —203%k.

It follows that E(u,v) has good reduction outside 2, 3 and the primes di-
viding k. Suppose now that (w,z) € Z? is another solution such that the
curves E(w, z) and E(u,v) are isomorphic over Q. Then there is a € Q such
that u = a*w and v = a%z, whence we get

k=02 —ud =a'?(y? — 23) = a'k.

Since a € Q, we obtain a = £1. So (u,v) = (w, z). Hence, distinct solutions
(u,v) of the Mordell equation correspond to distinct Q-isomorphism classes
of elliptic curves with good reduction outside 2, 3 and the primes dividing
k. Let w(k) be the number of prime divisors of k and P(k) be the product
of the prime divisors p of k& with p > 3. If the divisors of k are among 2 and
3, we put P(k) = 1. Thus, Theorem 2 implies that the number of solutions
(z,y) € Z? to the equation y? = 2 + k is < 101« F)+48 p(k).

Acknowledgements. The author wishes to thank the referee for several
helpful suggestions and comments.

References

[1] A.BrumerandJ. Silverman, The number of elliptic curves over Q with conductor
N, Manuscripta Math. 91 (1996), 95-102.

[2] J. H. Evertse, On equations in S-units and the Thue—Mahler equation, Invent.
Math. 75 (1984), 561-584.

[3] J.H. Evertse and J. H. Silverman, Uniform bounds for the number of solutions
to Y™ = f(X), Math. Proc. Cambridge Philos. Soc. 100 (1986), 237—-248.

[4] H. Hasse, Number Theory, Springer, Berlin, 1980.

[6] S.Lang, Elliptic Functions, Addison-Wesley, 1973.

[6] P.Llorente and E. Nart, Effective determination of the decomposition of the ra-
tional primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579-585.

[7] W. M. Schmidt, Integer points on curves of genus 1, Compositio Math. 81 (1992),
33-59.

[8] J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106,
Springer, New York, 1986.

Department of Mathematics
Aristotle University of Thessaloniki
54006 Thessaloniki, Greece

E-mail: poulakis@ccf.auth.gr

Received on 20.4.1998
and in revised form on 19.10.1998 (3364)



