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1. Introduction. Let a, b be integers such that the polynomial f(x) =
x3 + ax+ b has discriminant ∆(f) 6= 0. In [3] Evertse and Silverman proved
that the number Z(f) of integer solutions of the equation y2 = f(x) satisfies

Z(f) ≤ 7[L:Q](4+9s)h2(L)2 + 3,

where s is the cardinality of the set containing the usual absolute value of
Q and the p-adic absolute values | · |p for which |∆(f)|p 6= 1, L the splitting
field of f(x) and h2(L) the order of the subgroup of the ideal class group of
L consisting of the ideal classes [A] with [A]2 = 1. Using this result Schmidt
[7] proved that given ε > 0 there is a constant c(ε) depending on ε such that

Z(f) ≤ c(ε)|∆(f)|1/2+ε.

In the case of the Mordell equation (i.e. a = 0), it follows that Z(f) ≤
c(ε)|b|1+ε. Moreover, Schmidt conjectured that the number of solutions
x, y ∈ Z of an irreducible equation F (x, y) = 0 defining a curve of posi-
tive genus having coefficients in Z and total degree N is at most

c(N, ε)H(F )ε,

where c(N, ε) is a constant depending on N and ε.
In this paper we improve on the estimate of Schmidt for the Mordell

equations by showing that the number of integer solutions of y2 = x3 +
b depends only on the prime divisors of b. More precisely, we prove the
following result:

Theorem 1. Let k be a nonzero rational integer. Denote by ω(k) the
number of prime divisors of k and by P (k) the product of all the prime
divisors p of k with p > 3. If k has no prime divisors > 3, put P (k) = 1.
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Then the number of solutions (x, y) ∈ Z2 of the equation y2 = x3 + k is

< 1011ω(k)+48P (k).

Corollary 1. Let k be a nonzero rational integer and Π(k) be the
product of the prime divisors of k. Then for every ε > 0 there is a constant
Ω(ε), independent of k, such that the number of solutions (x, y) ∈ Z2 of the
equation y2 = x3 + k is

< Ω(ε)Π(k)1+ε.

The above theorem is a consequence of the following effective version of
Shafarevich’s theorem ([5, p. 222], [8, p. 263]):

Theorem 2. Let S be a finite set of rational primes with 2, 3 ∈ S. Denote
by P (S) the product of all the primes p in S with p > 3. If S = {2, 3}, put
P (S) = 1. Then the number of Q-isomorphism classes of elliptic curves over
Q with good reduction outside S is

< 1011]S+26P (S).

In [1] there is an effective proof of Shafarevich’s theorem using the esti-
mate of [3]. Our approach is completely different and has the advantage that
does not use the results of [3]. The only Diophantine approximation result
we use is the estimate for the number of solutions of the S-units equation
x+ y = 1 due to Evertse [2].

2. Auxiliary results. In this section we give some lemmas which will
be useful for the proof of our results.

Lemma 1. Let S be a finite set of rational primes with 2 ∈ S and f(x) =
x3 + Ax + B be a polynomial of Z[x] with distinct roots. Suppose that the
elliptic curve E : y2 = f(x) has good reduction outside S. Let L = Q(θ),
where θ is a root of f(x). Suppose that L 6= Q. Then the discriminant DL

of L has the form

DL = ±2α3β
∏
p

psp ,

where the product is taken over all the primes p ≥ 5, with sp = 0 for p
outside S and 0 ≤ sp ≤ degL−1 for p ∈ S. Moreover , α = 0, 2, 3 and β ≤ 1
if degL = 2, while β = 0, 1, 3, 4, 5 if degL = 3.

P r o o f. The nonzero points of 2-torsion of E are the points (0, θi) (i =
1, 2, 3) where θ1, θ2, θ3 are the roots of f(x). By [5, Theorem 1, p. 113], the
extension Q(θ1, θ2, θ3)/Q is unramified outside S. Then the extension L/Q
is unramified outside S, whence the prime divisors of DL are primes in S.
Hence,

DL = ±2α3β
∏
p

psp ,
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where the product is taken over all the primes p ≥ 5, with sp = 0 for p
outside S. If L is a quadratic extension, then α = 0, 2 or 3, β ≤ 1 and
sp ≤ 1 for p ∈ S. If L is a cubic extension, [6, Theorem 2] implies that
α = 0, 2 or 3, β = 0, 1, 3, 4 or 5 and sp ≤ 2 for p ∈ S.

Lemma 2. Let D be an integer. Then the number of cubic fields of dis-
criminant D is at most 546|D|1/2.

P r o o f. Let K be a cubic field of discriminant D. Then [4, pp. 620–625]
implies that |D| ≥ 23. Let σ1, σ2, σ3 be the embeddings of K into the field C
of complex numbers. We denote by s and 2t the number of real and complex
embeddings respectively. If s = t = 1, let σ2, σ3 be the complex embeddings.
As usual denote complex conjugation by bars and define σi(x) = σi(x). Thus
σ3 = σ2 . The map σ : K → Rs × Ct given by σ(x) = (σ1(x), . . . , σ3−t(x))
defines an embedding of K into Rs × Ct. The image σ(OK) of the ring
OK of algebraic integers of K is a lattice in Rs × Ct. In [4, Chapter 28,
§1] a structure of Euclidean space is defined on Rs × Ct. The fundamental
parallelotope of the lattice σ(OK) has content |D|1/2 with respect to this
Euclidean metric [4, p. 538].

Let A be the convex region in Rs × Ct determined by the inequalities

|x|+ |y|+ |z| ≤ %, |x+ y + z| ≤ %′ < % if (s, t) = (3, 0)

and

|x|+ |y|+ |y| ≤ %, |x+ y + y| ≤ %′ < % if (s, t) = (1, 1).

By [4, p. 623], the content of the region A is

≥ 4
3

(
π

4

)t
%′%2.

We choose % so that

4
3

(
π

4

)t
%′%2 ≥ 8|D|1/2.

Putting %′ = %/2, we can take % = (4/π)t/3121/3|D|1/6. Hence, Minkowski’s
lattice point theorem [5, p. 601] implies that there exists an algebraic integer
ξ of K satisfying

|ξ1|+|ξ2|+|ξ3| ≤
(

4
π

)t/3
121/3|D|1/6, |ξ1+ξ2+ξ3| ≤ 1

2

(
4
π

)t/3
121/3|D|1/6,

where ξ1, ξ2, ξ3 are the conjugates of ξ.
The arithmetic-geometric inequality implies

|ξ1ξ2ξ3| < |D|1/2.
For arbitrary real numbers a, b, c we have the inequality

ab+ bc+ ac ≤ 1
2 (a+ b+ c)2.
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Hence

|ξ1ξ2 + ξ2ξ3 + ξ1ξ3| < 2|D|1/3.
Let f(x) = x3 +Ax2 +Bx+ C be the irreducible polynomial of ξ. Then

|A| < 2|D|1/6, |B| < 2|D|1/3, |C| < |D|1/2.
The discriminant of f(x) is

∆ = −4A3C +A2B2 + 18ABC − 4B3 − 27C2.

Thus, the inequalities for A, B, C give |∆| < 179|D|. We denote by i(ξ) the
index of ξ. We have ∆ = i(ξ)2D, whence |i(ξ)| ≤ 13.

We now consider the surface given by the equation

F (X,Y, Z) = −4X3Z +X2Y 2 + 18XY Z − 4Y 3 − 27Z2 −DL2 = 0,

where L is a positive integer with L ≤ 13. The number of triples (u, v, w) ∈
Z3 with |u| < 2|D|1/6, |v| < 2|D|1/3 and |w| < |D|1/2 satisfying F (u, v, w) =
0 is less than 2(4|D|1/6 + 1)(4|D|1/3 + 1) < 42|D|1/2 (we have used the fact
that |D| ≥ 23). Since we have at most 13 choices for L, the lemma follows.

Lemma 3. Let K be an algebraic number field of degree d and S be a
finite set of places on K containing all the infinite places of K. Then the
equation x+ y = 1 has at most

3 · 7d+2]S

solutions in S-units x, y of K.

P r o o f. See [2].

Lemma 4. Let K be an algebraic number field and L be a Galois extension
of K of degree l. Then each L-isomorphism class of elliptic curves defined
over K splits into at most 6l K-isomorphism classes.

P r o o f. Let E and A be two elliptic curves defined over K and let α :
E → A be an isomorphism over L. Then we have a map F (α) : Gal(L/K)→
Aut(E) defined by

F (α)(σ) = α−1 ◦ ασ for every σ ∈ Gal(L/K).

Suppose now that B is another elliptic curve defined over K and β : E → B
an L-isomorphism with F (α) = F (β). It follows that

α−1 ◦ ασ = β−1 ◦ βσ for every σ ∈ Gal(L/K).

Setting λ = β ◦ α−1, we have λσ = λ for every σ ∈ Gal(L/K). So,
the isomorphism λ is defined over K, whence A and B are K-isomorphic.
Thus, given an L-isomorphism class C of elliptic curves defined over K,
the map α → F (α) defines an injection from the set of pairwise distinct
K-isomorphism classes belonging to C into the set of maps from Gal(L/K)
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to Aut(E). Since the cardinality of Gal(L/K) is l and that of Aut(E) is at
most 6, the lemma follows.

3. Proof of Theorem 2. Let E : y2 = x3 + Ax + B, where A,B ∈ Z,
be an elliptic curve having good reduction outside S. We denote by L the
field obtained by adjoining to Q the points of order 2 of E. It is the field
generated over Q by the roots of x3 +Ax+B. We have the following cases.

1. L = Q. Then E is isomorphic over Q to an elliptic curve in Legendre
form

Eλ : y2 = x(x− 1)(x− λ),

where λ ∈ Q. The j-invariant of Eλ is

j = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2 .

Since E has good reduction outside S, j is a S-integer of Q. Let | · |p be a
p-adic absolute value with p outside S. If |λ|p 6= 1, then |j|p > 1 from the
equation for j, contradicting the fact that j is a S-integer. It follows that
λ is a S-unit. Similarly for 1 − λ. Thus, λ and µ = 1 − λ are two S-units
satisfying λ + µ = 1. By Lemma 3, the number of S-units x, y of Q with
x+ y = 1 is at most 3 · 73+2]S , whence there are at most 3 · 73+2]S choices
for λ. Hence, there are at most 3 · 73+2]S Q-isomorphism classes of elliptic
curves E over Q with good reduction outside S such that the points of order
2 of E are defined over Q.

2. [L : Q] = 2. Let Σ be the set of prime ideals of L lying above the
elements of S. The curve E is isomorphic over L to an elliptic curve in
Legendre form

Eλ : y2 = x(x− 1)(x− λ),

where λ ∈ L. Then we deduce as in case 1 that there are at most 3 · 74+2]Σ

choices for λ. Hence, there are at most 3 · 74+4]S L-isomorphism classes of
elliptic curves E over Q with good reduction outside S. Let L = Q(

√
d),

where d is a squarefree rational integer. Then the discriminant DL of L is d
or 4d. On the other hand, Lemma 1 yields

DL = ±2α3β
∏
p

psp ,

where the product is taken over all the primes p ≥ 5, with sp = 0 for
p outside S, 0 ≤ sp ≤ 1 for p ∈ S and α ≤ 3, β ≤ 1. It follows that
there exist 24+]S choices for L. Furthermore, Lemma 4 implies that every
L-isomorphism class of elliptic curves over Q is divided into at most 36
pairwise distinct Q-isomorphism classes of elliptic curves over Q. Thus, we
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conclude that there are less than

108 · 74+4]S · 24+]S

Q-isomorphism classes of elliptic curves E over Q with good reduction out-
side S with exactly one nonzero point of order 2 defined over Q.

3. [L : Q] = 3 or 6. Let K = Q(θ), where θ is a root of the polynomial
x3 +Ax+B. By Lemma 1, the discriminant of K is

DK = ±2α3β
∏
p

psp ,

where α = 0, 2 or 3, β = 0, 1, 3, 4 or 5 and the product is over all primes p ≥
5, with sp = 0 for p outside S and 0 ≤ sp ≤ 2 for p ∈ S. If S 6= {2, 3}, then
we denote by P (S) the product of the primes of S−{2, 3} and if S = {2, 3},
we put P (S) = 1. By Lemma 2, there are at most 24570P (S) cubic fields
of given discriminant DK . On the other hand, there are at most 10 · 3]S−1

choices for DK . Hence, the number of choices for K and therefore for L is

< 81900 · 3]SP (S).

If [L : Q] = 3, we conclude, as in the previous cases, that there are
less than 3 · 79+6]S choices for the L-isomorphism class of E and Lemma 4
implies that every such class splits into 63 L-isomorphism classes of elliptic
curves over Q. It follows that the number of Q-isomorphism classes of elliptic
curves E over Q with good reduction outside S such that their 2-torsion
points generate over Q a cubic extension is

< 3 · 1015 · 3]S · 76]SP (S).

If [L : Q] = 6, we deduce that there are less than 3 · 718+12]S choices for
the L-isomorphism class of E and Lemma 4 yields that every such class splits
into 66 L-isomorphism classes of elliptic curves over Q. Thus, the number
of Q-isomorphism classes of elliptic curves E over Q with good reduction
outside S such that their 2-torsion points generates over Q an extension of
degree 6 is

< 2 · 1025 · 3]S · 712]SP (S).

Summarizing our estimates, we deduce that the number of Q-isomor-
phism classes of elliptic curves E over Q with good reduction outside S is

< 1011]S+26P (S).

4. Proof of Theorem 1. We shall follow the idea of [8, Remark 6.5,
p. 265]. Let (u, v) ∈ Z2 be a solution of the Mordell equation y2 = x3+k. We
associate with this solution the elliptic curve E(u, v) defined by the equation

Y 2 = X3 − 3uX + 2v.
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The discriminant of E(u, v) is

16(4(3u)3 − 27(2v)2) = −2633k.

It follows that E(u, v) has good reduction outside 2, 3 and the primes di-
viding k. Suppose now that (w, z) ∈ Z2 is another solution such that the
curves E(w, z) and E(u, v) are isomorphic over Q. Then there is a ∈ Q such
that u = a4w and v = a6z, whence we get

k = v2 − u3 = a12(y2 − x3) = a12k.

Since a ∈ Q, we obtain a = ±1. So (u, v) = (w, z). Hence, distinct solutions
(u, v) of the Mordell equation correspond to distinct Q-isomorphism classes
of elliptic curves with good reduction outside 2, 3 and the primes dividing
k. Let ω(k) be the number of prime divisors of k and P (k) be the product
of the prime divisors p of k with p > 3. If the divisors of k are among 2 and
3, we put P (k) = 1. Thus, Theorem 2 implies that the number of solutions
(x, y) ∈ Z2 to the equation y2 = x3 + k is < 1011ω(k)+48P (k).
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