Certain L-functions at $s = 1/2$

by

Shin-ichiro Mizumoto (Tokyo)

Introduction. The vanishing orders of L-functions at the centers of their functional equations are interesting objects to study as one sees, for example, from the Birch–Swinnerton-Dyer conjecture on the Hasse–Weil L-functions associated with elliptic curves over number fields.

In this paper we study the central zeros of the following types of L-functions:

(i) the derivatives of the Mellin transforms of Hecke eigenforms for $\text{SL}_2(\mathbb{Z})$,

(ii) the Rankin–Selberg convolution for a pair of Hecke eigenforms for $\text{SL}_2(\mathbb{Z})$,

(iii) the Dedekind zeta functions.

The paper is organized as follows. In Section 1, the Mellin transform $L(s, f)$ of a holomorphic Hecke eigenform f for $\text{SL}_2(\mathbb{Z})$ is studied. We note that every L-function in this paper is normalized so that it has a functional equation under the substitution $s \mapsto 1 - s$. In Section 2, we study some nonvanishing property of the Rankin–Selberg convolutions at $s = 1/2$. Section 3 contains Kurokawa’s result asserting the existence of number fields such that the vanishing order of the Dedekind zeta function at $s = 1/2$ goes to infinity.

Acknowledgements. The author would like to thank Professor Kurokawa for his permission to include his result (Theorem 3.1 below) in this paper.

Notation. As usual, \mathbb{Z} is the ring of rational integers, \mathbb{Q} the field of rational numbers, \mathbb{C} the field of complex numbers. The set of positive (resp. nonnegative) integers is denoted by $\mathbb{Z}_{>0}$ (resp. $\mathbb{Z}_{\geq0}$).

1991 *Mathematics Subject Classification*: 11F11, 11F66, 11R42.
For $k \in \mathbb{Z}_{>0}$, M_k (resp. S_k) denotes the \mathbb{C}-vector space of holomorphic modular (resp. cusp) forms of weight k for $SL_2(\mathbb{Z})$.

Let H be the upper half plane, and let $f : H \to \mathbb{C}$ be a C^∞-function satisfying

$$f((az+b)(cz+d)^{-1}) = (cz+d)^k f(z) \quad \text{for all } \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z}).$$

Such an f is called a C^∞-modular form of weight k. The Petersson inner product of C^∞-modular forms f and g of weight k is defined by

$$(f,g) := \int_{SL_2(\mathbb{Z}) \setminus H} f(z)\overline{g(z)}y^{k-2} \, dx \, dy$$

if the right-hand side is convergent. Here $z = x + iy$ with real variables x and y and the integral is taken over a fundamental domain of $SL_2(\mathbb{Z}) \setminus H$.

For a complex variable s, we put

$$e(s) := e^{2\pi i s} \quad \text{and} \quad \Gamma_C(s) := 2(2\pi)^{-s}\Gamma(s).$$

Throughout the paper, z is a variable on H and s is a complex variable. We understand that a sum over an empty set is equal to 0.

1. Mellin transforms of modular forms. For a normalized Hecke eigenform

$$f(z) = \sum_{n=1}^{\infty} a(n)e(nz) \in S_k$$

with $k \in 2\mathbb{Z}_{>0}$, the L-function

$$L(s, f) := \sum_{n=1}^{\infty} a(n)n^{-s-(k-1)/2} = \prod_{p \text{ prime}} (1 - a(p)p^{-s-(k-1)/2} + p^{-2s})^{-1}$$

converges absolutely and uniformly for $\text{Re}(s) \geq 1 + \delta$ for any $\delta > 0$ [De], and the function

$$A(s, f) := \Gamma_C\left(s + \frac{k-1}{2}\right)L(s, f)$$

extends to the whole s-plane as an entire function with functional equation

$$(1.1) \quad A(s, f) = (-1)^{k/2}A(1-s, f).$$

Hence if $k \equiv 2 \pmod{4}$, we have $L(1/2, f) = 0$. For the nonvanishing property of $L(1/2, f)$ in case $k \equiv 0 \pmod{4}$, we refer to [Ko1].

Theorem 1.1. Let k be an even integer ≥ 12 with $k \neq 14$, and let ν be a nonnegative integer with $\nu \equiv k/2 \pmod{2}$. Then there exists a normalized Hecke eigenform $f \in S_k$ such that $\Lambda^{(\nu)}(1/2, f) \neq 0$. Here the superscript (ν) denotes the νth derivative.
Remark 1.2. If $\nu \neq k/2 \pmod{2}$, then $A^{(\nu)}(1/2, f) = 0$ by (1.1).

To prove Theorem 1.1, we need

Lemma 1.3. For an even integer $k \geq 12$ with $k \neq 14$, there exists an $h \in S_k$ such that $h(it) > 0$ for all $t > 1$.

Proof. The space S_{12} is spanned by

$$\Delta(z) = e(z) \prod_{n=1}^{\infty} (1 - e(nz))^{24}. $$

This infinite-product expression implies in particular:

$$\Delta(it) > 0 \quad \text{for all} \quad t > 1.$$

Let $E_l(z) \in M_l$ be the Eisenstein series of weight l for $\text{SL}_2(\mathbb{Z})$ with $l = 4$ or 6 such that $\lim_{t \to \infty} E_l(it) = 1$. Put

(1.2) $$\sigma_s(n) := \sum_{\substack{d | n \\ d > 0}} d^s.$$

Then

$$E_4(z) = 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n) e(nz)$$ implies $E_4(it) > 0$ for $t > 1$, and

$$E_6(z) = 1 - 504 \sum_{n=1}^{\infty} \sigma_5(n) e(nz)$$ implies $E_6(it) > E_6(i) = 0$ for $t > 1$.

There exist $a, b \in \mathbb{Z}_{\geq 0}$ such that $4a + 6b = k - 12$. Then

$$\Delta(z) E_4(z)^a E_6(z)^b \in S_k$$ satisfies the asserted condition. \quad \blacksquare

Proof of Theorem 1.1. For $h(z) = \sum_{n=1}^{\infty} c(n) e(nz) \in S_k$, we put

$$D(s, h) := \sum_{n=1}^{\infty} c(n) n^{-s - (k-1)/2}$$

for $\text{Re}(s) > 1$. Then

(1.3) $$A(s, h) := \Gamma_C \left(s + \frac{k-1}{2} \right) D(s, h)$$

$$= 2 \int h(it) \left\{ t^{s+(k-3)/2} + (-1)^{k/2} t^{(k-1)/2-s} \right\} dt,$$
which gives analytic continuation of $\Lambda(s, h)$ to the whole s-plane. Hence

$$
\Lambda^{(\nu)}(1/2, h) = 2\{1 + (-1)^{\nu+k/2}\} \int_1^\infty h(it) t^{k/2 - 1} (\log t)^\nu \, dt
$$

for every $\nu \in \mathbb{Z}_{\geq 0}$. Thus Lemma 1.3 implies $\Lambda^{(\nu)}(1/2, h) > 0$ for some $h \in S_k$ under the condition $\nu \equiv k/2 \pmod{2}$. Writing h as a \mathbb{C}-linear combination of Hecke eigenforms in S_k, we obtain the asserted result.

Applying Lemma 1.3 to (1.3), we have

Corollary 1.4 (to the proof). Under the same assumption as in Theorem 1.1, let $\sigma \in \mathbb{R}$ with $0 < \sigma < 1$. Suppose $\sigma \neq 1/2$ if $k \equiv 2 \pmod{4}$. Then there exists a normalized Hecke eigenform $f \in S_k$ such that $L(\sigma, f) \neq 0$.

Remark 1.5. (1) Corollary 1.4 should be compared with the following result of [Ko2]: Let $f_{k,1}, \ldots, f_{k,d_k}$ be the basis of normalized Hecke eigenforms of S_k with $k \in 2\mathbb{Z}_{>0}$. Let $t_0 \in \mathbb{R}$ and $\varepsilon > 0$. Then there exists a constant $C(t_0, \varepsilon) > 0$ depending only on t_0 and ε such that for $k > C(t_0, \varepsilon)$ the function

$$
\sum_{\nu=1}^{d_k} \frac{1}{(f_{k,\nu}, f_{k,\nu})} \Lambda(s, f_{k,\nu})
$$

does not vanish at any point $s = \sigma + it$ with $t = t_0$, $0 < \sigma < 1/2 - \varepsilon$, $1/2 + \varepsilon < \sigma < 1$.

(2) The nonvanishing property of $L(s, f)$ in the interval $(0, 1)$ is important in the study of holomorphy of the third symmetric power L-function attached to f (cf. [Sha]).

2. Rankin–Selberg convolutions. Let

$$
f(z) = \sum_{n=1}^\infty a(n)e(nz) \in S_k
$$

be a normalized Hecke eigenform with $k \in 2\mathbb{Z}_{>0}$. Let 1_ν be the identity matrix of size $\nu \in \mathbb{Z}_{>0}$. For each prime number p, we take $M_p(f) \in \text{GL}_2(\mathbb{C})$ such that

$$
1 - a(p)p^{-(k-1)/2}T + T^2 = \det(1_2 - M_p(f)T),
$$

where T is an indeterminate. Each $M_p(f)$ is determined up to conjugacy.

For normalized Hecke eigenforms $f \in S_k$ and $g \in S_l$ with $k, l \in 2\mathbb{Z}_{>0}$, we put

$$
L(s, f \times g) := \prod_{p \text{ prime}} (1_4 - p^{-s}M_p(f) \otimes M_p(g))^{-1},
$$

where \otimes stands for the Kronecker product of matrices. The right-hand side converges absolutely and uniformly for $\text{Re}(s) \geq 1 + \delta$ for any $\delta > 0$ [De]. By
\[
\Gamma_C \left(s - 1 + \frac{k + l}{2} \right) \Gamma_C \left(s + \frac{|k - l|}{2} \right) L(s, f \times g)
\]

extends to the whole \(s \)-plane as a meromorphic function which is invariant under the substitution \(s \mapsto 1 - s \); it is holomorphic except for possible simple poles at \(s = 0 \) and \(1 \).

Theorem 2.1. Let \(f \in S_k \) be a normalized Hecke eigenform and let \(l \) be an even integer satisfying \(l \geq k \) and \(l \neq 14 \). Then there exists a normalized Hecke eigenform \(g \in S_l \) such that \(L(1/2, f \times g) \neq 0 \).

Remark 2.2. Some results have been known concerning the nonvanishing at \(s = 1/2 \) of automorphic \(L \)-functions for \(GL(2) \) twisted by characters on \(GL(1) \) ([F-H], [Ko-Za], [W1], [W2]). The above theorem may be seen as a result on such \(L \)-functions twisted, in contrast, by automorphic forms on \(GL(2) \).

The rest of this section is devoted to the proof of Theorem 2.1.

We fix \(k \) and \(l \) as in the assumption of Theorem 2.1 and put

\[
\lambda := \frac{l - k}{2} \quad \text{and} \quad \mu := \frac{l + k}{2}.
\]

For normalized Hecke eigenforms

\[
f(z) = \sum_{n=1}^{\infty} a(n) e(nz) \in S_k, \quad g(z) = \sum_{n=1}^{\infty} b(n) e(nz) \in S_l,
\]

[Sh, Lemma 1] gives

\[
L(s, f \times g) = \zeta(2s) \sum_{n=1}^{\infty} a(n) b(n) n^{1-\mu-s}
\]

for \(\Re(s) > 1 \). For \(\nu \in 2\mathbb{Z}_{\geq 0} \), the Eisenstein series

\[
E_{\nu}(z, s) := \sum_{(m,n) \in \mathbb{Z}^2-(0,0)} (mz + n)^{-\nu} |mz + n|^{-2s}
\]

has a meromorphic continuation to the whole \(s \)-plane. By [Sh], we have

\[
(2) \quad 2(4\pi)^{-s-\mu+1} \Gamma(s + \mu - 1) L(s, f \times g) = \int_{SL_2(\mathbb{Z}) \backslash H} f(z) \overline{g(z)} E_{2\lambda}(z, s - \lambda) y^{s+\mu-2} \, dx \, dy,
\]

where \(z = x + iy \). This gives analytic continuation of \(L(s, f \times g) \) to the whole \(s \)-plane. We study (2.3) at \(s = 1/2 \).

Lemma 2.3. Put

\[
C_\lambda(z) := \frac{1}{2} y^{1/2-\lambda} E_{2\lambda}(z, 1/2 - \lambda)
\]
for \(\lambda \in \mathbb{Z}_{\geq 0} \) and \(z \in H \). Let
\[
C_\lambda(z) = \sum_{n \in \mathbb{Z}} c_\lambda(n, y) e(nx)
\]
be the Fourier expansion, where \(z = x + iy \). Then
\[
c_\lambda(n, y) = \begin{cases}
 y^{1/2 - \lambda} \left\{ \gamma - \log 4\pi + 2 \sum_{r=1}^{\lambda} \frac{1}{2r - 1} \right\} + \log y & \text{if } n = 0, \\
 (-1)^\lambda \sqrt{\pi} y^{-\lambda} \sigma_0(|n|) \cdot \frac{W_{\sgn(n)\lambda,0}(4\pi|n|y)}{\Gamma(\sgn(n)\lambda + 1/2)} & \text{if } n \neq 0.
\end{cases}
\]
Here \(\sigma_0 \) is defined as in (1.2) with \(s = 0 \), \(\sgn(n) := n/|n| \) for \(n \neq 0 \), \(\gamma \) is the Euler constant
\[
\gamma = 0.57721 \ldots,
\]
and \(W_{a,b}(y) \) is Whittaker’s function which is a solution of the differential equation
\[
\left(4y^2 \frac{d^2}{dy^2} + 1 - 4b^2 + 4ay - y^2 \right) W(y) = 0
\]
(see, e.g., [E-M-O-T1, p. 264]).

Proof. By [Ma, p. 210],
\[
E_{2\lambda}(z, 1/2 - \lambda) = \lim_{s \to 1} \varphi_\lambda(y, s)
\]
\[
+ (-1)^\lambda \cdot 2 \sqrt{\pi} y \sum_{n \in \mathbb{Z}, n \neq 0} \frac{\sigma_0(|n|)}{\sqrt{|n|}} \cdot \frac{W_{\sgn(n)\lambda,0}(4\pi|n|y)}{\Gamma(\sgn(n)\lambda + 1/2)} e(nx)
\]
with
\[
\varphi_\lambda(y, s) := 2\zeta(s) + (-1)^\lambda 2^{3-s} \pi y^{1-s} \frac{\Gamma(s-1)\zeta(s-1)}{\Gamma(s/2 + \lambda)\Gamma(s/2 - \lambda)}.
\]
The di-gamma function
\[
\psi(s) := \Gamma'(s)/\Gamma(s)
\]
assumes the values
\[
\psi(m + 1/2) = 2 \sum_{r=1}^{m} \frac{1}{2r - 1} - \log 4 - \gamma
\]
for \(m \in \mathbb{Z}_{\geq 0} \), hence by a direct computation we have
\[
\lim_{s \to 1} \varphi_\lambda(y, s) = 2 \left(\gamma - \log 4\pi + 2 \sum_{r=1}^{\lambda} \frac{1}{2r - 1} \right) + 2 \log y.
\]
We have

\[(2.10) \quad (4\pi)^{1/2-\mu} \Gamma(\mu - 1/2) L(1/2, f \times g) = (f \cdot C_\lambda, g)\]

from (2.3). Here

\[(2.11) \quad f(z)C_\lambda(z) = \sum_{\nu \in \mathbb{Z}} \left\{ \sum_{m+n=\nu} a(m)c(n, y)e^{-2\pi my} \right\} e(\nu x)\]

with \(a(m) := 0\) for \(m \leq 0\).

Now we recall the holomorphic projection operator of [St] (specialized to our case): Let \(\varphi : H \to \mathbb{C}\) be a \(C^\infty\)-modular form (see the Notation above) of weight \(w \in \mathbb{Z}\) for \(SL_2(\mathbb{Z})\) with Fourier expansion

\[\varphi(z) = \sum_{\nu \in \mathbb{Z}} r(\nu, y)e(\nu x).\]

Suppose that \(w \geq 6\) and that \(\varphi\) satisfies the growth condition

\[(2.12) \quad \int_0^1 dx \int_0^\infty |\varphi(z)|y^{w-2}e^{-\varepsilon y} dy < \infty\]

for every \(\varepsilon > 0\). Put

\[(2.13) \quad r(\nu) := \frac{(4\pi \nu)^{w-1}}{\Gamma(w-1)} \int_0^\infty r(\nu, y)e^{-2\pi \nu y}y^{w-2} dy\]

and

\[\pi_{\text{hol}}(\varphi)(z) := \sum_{\nu=1}^\infty r(\nu)e(\nu z).\]

Then \(\pi_{\text{hol}}(\varphi) \in S_w\) and \((\varphi, h) = (\pi_{\text{hol}}(\varphi), h)\) for all \(h \in S_w\). This \(\pi_{\text{hol}}(\varphi)\) is called the holomorphic projection of \(\varphi\).

We apply \(\pi_{\text{hol}}\) to \(\varphi = f \cdot C_\lambda\) in (2.10). The validity of the condition (2.12) in this case (with \(w = l\)) follows from the first assertion of

Lemma 2.4. (1) For any \(\varepsilon > 0\) there exists a positive constant \(M\) such that

\[|f(z)C_\lambda(z)| < My^{-l/2}(y^{1/2+\varepsilon} + y^{-1/2-\varepsilon}) \quad \text{for all } z \in H.\]

(2) We have

\[\sum_{m+n=\nu} \int_0^\infty |a(m)c(n, y)|e^{-2\pi(m+n)}y^{l-2} dy < \infty \quad \text{for every } \nu \in \mathbb{Z}.\]

Proof. We denote by \(c_1, c_2, \ldots\) some positive constants independent of \(n\) and \(y\).
(1) Suppose $y \geq \delta$ for some $\delta > 0$. By (2.6) we have

\begin{equation}
|C_\lambda(z)| \leq \sum_{n \in \mathbb{Z}} |c_\lambda(n, y)|
\leq c_1 y^{1/2-\lambda} + c_2 y^{1/2-\lambda} |\log y|
+ c_3 y^{-\lambda} \sum_{n \neq 0} |W_{\text{sgn}(n)\lambda,0}(4\pi|n|y)|.
\end{equation}

By [E-M-O-T1, p. 264, (5)],

$$W_{\kappa,0}(y) = e^{-y/2}y^{\kappa} 2F_0(1/2 - \kappa, 1/2 - \kappa; -y^{-1})$$

for $\kappa \in \mathbb{C}$ with the hypergeometric function $2F_0$, hence

\begin{equation}
|W_{\text{sgn}(n)\lambda,0}(4\pi|n|y)| \leq c_4 e^{-2\pi|n|y}(|n|y)^{\text{sgn}(n)\lambda}
\end{equation}

for $n \neq 0$. It follows from (2.14) that $|C_\lambda(z)| \leq c_5 y^{1/2-\lambda} |\log y|$, hence

\begin{equation}
|f(z)C_\lambda(z)| \leq c_6 y^{1/2-\lambda-k/2} |\log y|
\quad \text{for } y \geq \delta.
\end{equation}

Since $y^{l/2}|f(z)C_\lambda(z)|$ is SL$_2(\mathbb{Z})$-invariant, the assertion (1) follows from (2.16) and [St, Proposition 2].

(2) First we show the finiteness of the integral

$$I(m, n) := \int_0^\infty |a(m)c_\lambda(n, y)| e^{-2\pi(m+\nu)y} y^{l-2} \, dy$$

for $\nu \in \mathbb{Z}_{>0}$, $0 \leq n \leq \nu - 1$, and $m = \nu - n$. If $n = 0$, we have

$$I(\nu, 0) \leq c_7 \int_0^{\infty} (y^{l/2-\lambda} + y^{1/2-\lambda} |\log y|) e^{-4\pi\nu y} y^{l-2} \, dy < \infty$$

since $l - \lambda = \mu \geq 12$. Next we use the estimate

\begin{equation}
|W_{\lambda,0}(x)| \leq c_8 x^{1/2} |\log x|
\quad \text{as } x \to +0,
\end{equation}

which follows from [E-M-O-T1, p. 264, (2), p. 262, (5),(10)]. If $1 \leq n \leq \nu - 1$, we have

$$I(n - \nu, n) \leq c_9 \int_0^{\infty} |W_{\lambda,0}(4\pi ny)| y^{l-\lambda-2} \, dy < \infty$$

by (2.15) and (2.17). Hence it remains to show that

$$\sum_{n<0} I(\nu - n, n) < \infty.$$
From $|a(m)| = O(m^{k/2})$ it follows that
\[
\sum_{n<0} I(\nu - n, n) \leq c_{10} \sum_{n=1}^{\infty} n^{k/2} \int_{0}^{\infty} e^{-2\pi(2\nu+n)y} y^{l-1} |c_\lambda(-n,y)| \, dy
\]
\[
\leq c_{11} \sum_{n=1}^{\infty} n^{k/2} \left(n \int_{0}^{1/n} e^{-2\pi ny} y^{l-1} \, dy + n^{-\lambda} \int_{1/n}^{\infty} e^{-4\pi ny} y^{l-2} \, dy \right)
\]
by (2.15) and (2.17). Hence
\[
\sum_{n<0} I(\nu - n, n) \leq c_{12} \zeta(l - k/2 - 1) < \infty.
\]

Proposition 2.5. The notation being as above, let
\[
\pi_{\text{hol}}(f \cdot C_\lambda)(z) = \sum_{\nu=1}^{\infty} \alpha(\nu) e(\nu z) \in S_l.
\]

Then
\[
\alpha(\nu) = \frac{(4\pi\nu)^{\lambda-1/2} \Gamma(\mu-1/2)}{\Gamma(l-1)} a(\nu)
\]
\[
\times \left\{ 2 \sum_{r=1}^{\lambda} \frac{1}{2r-1} + 2 \sum_{r=1}^{\mu-1} \frac{1}{2r-1} - \log(64\pi^2\nu) \right\}
\]
\[
+ (-1)^{\lambda-1} (2\pi)^{\lambda+1/2} \frac{\Gamma(\mu-1/2)^2}{\Gamma(l-1)}
\]
\[
\times \sum_{m+n=\nu \atop m,n \in \mathbb{Z}} a(m) c_0(|n|) \frac{\Gamma(\text{sgn}(n)\lambda + 1/2) \Gamma(\mu - \text{sgn}(n)\lambda)}{(m + \nu + |n|)^{\mu-1/2}}
\]
\[
\times F\left(\mu - 1/2, 1/2 - \text{sgn}(n)\lambda; \mu - \text{sgn}(n)\lambda; \frac{m + \nu - |n|}{m + \nu + |n|} \right).
\]

Here $F = \mathbb{F}_1$ is the hypergeometric function. The above series converges absolutely for every $\nu \in \mathbb{Z}_{>0}$.

Proof. By Lemma 2.4(1), $\varphi = f \cdot C_\lambda$ satisfies the growth condition (2.12). So from (2.13) we have
\[
\alpha(\nu) = \frac{(4\pi\nu)^{\lambda-1} \Gamma(l-1)}{\int_{0}^{\infty} \left(\sum_{m+n=\nu} a(m) c(n,y) e^{-2\pi ny} \right) e^{-2\pi ny} y^{l-2} \, dy}.
\]
By Lemma 2.4(2),
\[\alpha(\nu) = \frac{(4\pi\nu)^{l-1}}{\Gamma(l-1)} \sum_{m+n=\nu} a(m)I_1(n)\]
with
\[I_1(n) := \int_0^\infty e^{-2\pi(m+\nu)y} y^{l-2} c(n, y) \, dy,\]
and the right-hand side of (2.18) is absolutely convergent; here we fix \(\nu\) and put \(m = \nu - n\). From (2.6) and (2.9),
\[I_1(0) = (4\pi\nu)^{\mu+1/2} \Gamma(\mu - 1/2) \left\{ 2 \sum_{r=1}^{\lambda} \frac{1}{2r-1} + 2 \sum_{r=1}^{\mu-1} \frac{1}{2r-1} - \log(64\pi^2\nu) \right\}.
\]
If \(n \neq 0\), (2.6) gives
\[I_1(n) = (-1)^\lambda \sqrt{\pi} \cdot \frac{\sigma_0(|n|)}{\sqrt{|n|}} \cdot \Gamma(\text{sgn}(n)\lambda + 1/2)^{-1} I_2(n)\]
with
\[I_2(n) := \int_0^\infty e^{-2\pi(m+\nu)y} y^{\mu-2} W_{\text{sgn}(n)\lambda,0}(4\pi|n|y) \, dy.\]
By [E-M-O-T2, p. 216, (16)],
\[I_2(n) = 2\sqrt{\pi|n|} \cdot \frac{\Gamma(\mu - 1/2)^2}{\Gamma(\mu - \text{sgn}(n)\lambda)} \cdot \left\{ 2\pi(m + \nu + |n|) \right\}^{-\mu+1/2}
\times F\left(\mu - 1/2, 1/2 - \text{sgn}(n)\lambda; \mu - \text{sgn}(n)\lambda; \frac{m + \nu - |n|}{m + \nu + |n|}\right).
\]
Thus from (2.18) the result follows. \(\blacksquare\)

By Proposition 2.5 we have
\[\frac{(4\pi)^{1/2-\lambda}}{\Gamma(\mu - 1/2)} \alpha(1) = A(\lambda, \mu) + R(\lambda, \mu)\]
with
\[A(\lambda, \mu) := 2 \sum_{r=1}^{\lambda} \frac{1}{2r-1} + 2 \sum_{r=1}^{\mu-1} \frac{1}{2r-1} - \log(64\pi^2),\]
\[R(\lambda, \mu) := \frac{(-1)^\lambda 2\pi \Gamma(\mu - 1/2)}{\Gamma(1/2 - \lambda)\Gamma(l)} \sum_{m=2}^\infty a(m)\sigma_0(m - 1)m^{-\mu+1/2}
\times F(\mu - 1/2, \lambda + 1/2; l; 1/m).\]
Lemma 2.6. For all \(\lambda \) and \(\mu \) we have

\[|R(\lambda, \mu)| \leq R^*(\lambda, \mu) \]

with

\[R^*(\lambda, \mu) := \frac{4\Gamma(\mu - 1/2)\Gamma(\lambda + 1/2)}{\Gamma(l)} \cdot \left\{ \zeta \left(\frac{k - 1}{2} \right)^2 - 1 \right\}. \]

Proof. Euler’s integral representation [E-M-O-T1, p. 59, (10)] gives

\[F(\mu - 1/2, \lambda + 1/2; l; 1/m) = \frac{\Gamma(l)}{\Gamma(\mu - 1/2)\Gamma(\lambda + 1/2)} \int_0^1 t^{\mu - 3/2}(1 - t)^{-1/2}(1 - t/m)^{-\lambda - 1/2} \, dt. \]

Hence

\[(2.22) \quad F(\mu - 1/2, \lambda + 1/2; l; 1/m) \leq \frac{\Gamma(l)}{\Gamma(\mu - 1/2)\Gamma(\lambda + 1/2)} \int_0^1 t^{\mu - 3/2}(1 - t)^{-1/2}(1 - t/m)^{-\lambda - 1/2} \, dt \]

\[\leq \left(1 + \frac{1}{m - 1}\right)^{\lambda + 1/2}. \]

Similarly we have

\[F(\mu - 1/2, \lambda + 1/2; l; 1/m) > 1. \]

Using Deligne’s bound [De]

\[|a(m)| \leq \sigma_0(m)m^{(k - 1)/2}, \]

from (2.22) and (2.23) we obtain

\[(2.24) \quad \left| \sum_{m=2}^{\infty} a(m)\sigma_0(m - 1)m^{-\mu + 1/2} \cdot F(\mu - 1/2, \lambda + 1/2; l; 1/m) \right| \]

\[\leq \sum_{m=2}^{\infty} \sigma_0(m)\sigma_0(m - 1)m^{-l/2} \left(1 + \frac{1}{m - 1}\right)^{\lambda + 1/2}. \]

Since \(\sigma_0(m - 1) \leq 2\sqrt{m - 1} \), the sum (2.24) is majorized by

\[2 \sum_{m=2}^{\infty} \sigma_0(m)m^{(1-k)/2} = 2\left\{ \zeta \left(\frac{k - 1}{2} \right)^2 - 1 \right\}. \]
Lemma 2.7. (1) If \(2 \leq m \in \mathbb{Z}\), then
\[
2 \sum_{r=1}^{m} \frac{1}{2r-1} = \gamma + \log 2 + \log(2m-1) + \frac{1}{2m-1} \]
\[- \frac{1}{3(2m-1)^2} + \frac{\theta_m}{120(m-1/2)^4},
\]
with \(0 < \theta_m < 1\), where \(\gamma\) is the Euler constant as in (2.7).

(2) If \(12 \leq k \in \mathbb{Z}\), then
\[
\zeta\left(\frac{k-1}{2}\right)^2 \leq 1 + 2^1 \frac{\gamma}{2}(k-1) + 2^{2} \frac{\gamma}{2}(k-1).
\]

(3) If \(1 < x \in \mathbb{R}\), then
\[
\frac{\Gamma\left(x - \frac{1}{2}\right)}{\Gamma(x)} \leq \frac{1}{\sqrt{x - \frac{1}{2}}} \cdot \exp\left(\frac{1}{4x - 2} + \frac{1}{(4x - 2)^2}\right).
\]

Proof. (1) is immediate from the Euler–MacLaurin formula (see, e.g., [Rad]).

(2) Suppose \(1 < \sigma \in \mathbb{R}\) and \(2 \leq N \in \mathbb{Z}\). The Euler–MacLaurin formula gives
\[
(2.25) \quad \zeta(\sigma) = \sum_{n=1}^{N} n^{-\sigma} + \frac{N^{1-\sigma}}{\sigma-1} - \frac{N^{-\sigma}}{2} + \frac{\sigma}{12} N^{-\sigma-1} \theta
\]
with \(0 < \theta < 1\). If we put \(N = 2\) and use the inequality
\[
\frac{1}{2} + \frac{2}{\sigma-1} + \frac{\sigma}{24} \leq 2^{\sigma/22} \quad \text{for } \sigma \geq \frac{11}{2},
\]
the result follows.

(3) The di-gamma function \(\psi(s)\) defined by (2.8) is increasing for \(0 < s \in \mathbb{R}\). Hence from the mean value theorem it follows that
\[
(2.26) \quad \frac{\Gamma\left(x - \frac{1}{2}\right)}{\Gamma(x)} \leq \exp\left(-\frac{1}{2}\psi\left(x - \frac{1}{2}\right)\right) \quad \text{for } 1 < x \in \mathbb{R}.
\]
By [Rad, p. 37],
\[
\log \Gamma(s) = \frac{1}{2} \log(2\pi) + \left(s - \frac{1}{2}\right) \log s - s
\]
\[- \frac{1}{2} \int_{0}^{\infty} \frac{B_2(x-[x]) - B_2}{(x+s)^2} dx \quad \text{for } 0 < s \in \mathbb{R}
\]
with \(B_2(x)\) being the second Bernoulli polynomial. Differentiating, we have
\[
\psi(s) = \log s - \frac{1}{2s} + \int_{0}^{\infty} \frac{B_2(x-[x]) - B_2}{(x+s)^3} dx.
\]
Here
\[\left| \int_0^\infty \frac{B_2(x-[x]) - B_2}{(x+s)^3} \, dx \right| \leq \max_{0 \leq x \leq 1} |B_2(x) - B_2| \cdot \int_0^\infty \frac{dx}{(x+s)^3} = \frac{1}{8s^2} \]
since \(B_2(x) - B_2 = x^2 - x \). Hence (3) follows from (2.26). \(\blacksquare \)

Lemma 2.8. In the notation of (2.20) and Lemma 2.6, we have
\[|A(\lambda, \mu)| > R^*(\lambda, \mu) \]
for all \(\lambda, \mu \) defined by (2.2).

Proof. (i) **Estimate for** \(A(\lambda, \mu) \). First note that
\[A(\lambda, \mu) \leq A(\lambda', \mu') \quad \text{if} \quad \lambda \leq \lambda' \quad \text{and} \quad \mu \leq \mu'. \]
If \(\lambda \geq 1 \), then \(\mu \geq 14 \) and
\[A(\lambda, \mu) \geq A(1, 14) = 0.0803 \ldots \]
by Lemma 2.7(1). If \(\lambda = 0 \), the same lemma gives
\[A(0, 88) = -0.018 \ldots \quad \text{and} \quad A(0, 90) = 0.0038 \ldots \]
Hence we have
\[|A(\lambda, \mu)| > 8 \times 10^{-2} \quad \text{for all } \mu \text{ if } \lambda \geq 1, \]
and
\[|A(0, \mu)| > 3.8 \times 10^{-3} \quad \text{for all } \mu. \]
We also have
\[|A(0, \mu)| > 1.2 \quad \text{for } \mu \leq 26 \]
since \(A(0, 26) = -1.26 \ldots \)
(ii) **Estimate for** \(R^*(\lambda, \mu) \). If \(\lambda \geq 1 \), we have
\[\frac{R^*(\lambda, \mu)}{R^*(\lambda-1, \mu-1)} \leq \frac{1}{4} \cdot \frac{(l-2)^2 - (k-1)^2}{(l-2)^2 + (l-2)} < \frac{1}{4} \]
hence
\[R^*(\lambda, \mu) \leq 2^{-2\lambda} R^*(0, k). \]
Observe that \(R^*(0, k) \) is a decreasing function of \(k \). Hence, if \(\lambda \geq 1 \), we have
\[R^*(\lambda, \mu) \leq \max \{ 2^{-2} R^*(0, 16), 2^{-4} R^*(0, 12) \} < 7.2 \times 10^{-3} \]
by Lemma 2.7(2) and (3). If \(\lambda = 0 \) and \(\mu \geq 28 \), then
\[R^*(0, \mu) \leq R^*(0, 28) < 3.7 \times 10^{-4}. \]
If $\lambda = 0$ and $\mu \leq 26$, then

\[(2.32) \quad R^\ast(0, \mu) \leq R^\ast(0, 12) < 0.12.\]

Comparing (2.27) with (2.30), (2.28) with (2.31), and (2.29) with (2.32), we have the assertion of Lemma 2.8. \[\Box\]

Combining Lemma 2.8 with Lemma 2.6 and (2.19), we see that $\alpha(1) \neq 0$ in the notation of Proposition 2.5. Hence $\pi_{\text{hol}}(f \cdot C_\lambda) \neq 0$. Thus for some $g \in S_l$ we have

\[(f \cdot C_\lambda, g) = (\pi_{\text{hol}}(f \cdot C_\lambda), g) \neq 0\]

in (2.10). This completes the proof of Theorem 2.1.

3. Dedekind zeta functions. Let K be an algebraic number field of finite degree. The functional equation of the Dedekind zeta function $\zeta_K(s)$ tells us that the vanishing order $\text{ord}_{s=1/2} \zeta_K(s)$ is a nonnegative even integer. On this we have

Theorem 3.1 (Kurokawa). *For every $\nu \in \mathbb{Z}_{>0}$ there exists a Galois extension K_ν over \mathbb{Q} of degree $2^{3\nu}$ such that

\[
\text{ord}_{s=1/2} \zeta_{K_\nu}(s) \geq 2\nu.
\]

In particular,

\[
\sup_{K/\mathbb{Q} \text{ finite}} \text{ord}_{s=1/2} \zeta_K(s) = \infty.
\]

Proof. Put

\[(3.1) \quad g_K := \frac{1}{2} \text{ord}_{s=1/2} \zeta_K(s) \in \mathbb{Z}_{\geq 0}.
\]

Let F/\mathbb{Q} be a finite extension and let L_i/F ($i = 1, 2$) be finite Galois extensions such that $L_1 \cap L_2 = F$. By [Br], the function

\[
\frac{\zeta_{L_1L_2}(s)\zeta_F(s)}{\zeta_{L_1}(s)\zeta_{L_2}(s)}
\]

is entire, hence

\[(3.2) \quad g_{L_1L_2} \geq g_{L_1} + g_{L_2} - g_F.
\]

By [Frö], there exists a sequence $\{N_i\}_{i=1}^\infty$ of Galois extensions over \mathbb{Q} of degree 8 such that

\[N_{i+1} \cap N_1 \ldots N_i = \mathbb{Q} \quad \text{and} \quad \zeta_{N_i}(1/2) = 0 \quad \text{for } i \geq 1.
\]

Then $K_\nu := N_1 \ldots N_\nu$ satisfies $g_{K_\nu} \geq \nu$ by (3.2). \[\Box\]

Remark 3.2. (1) We refer to [Den2] for an interpretation of the zeros of the Dedekind zeta functions at $s = 1/2$.

Let g_K be as in (3.1). Theorem 3.1 leads naturally to the following problem: Classify the algebraic number fields by g_K. For example, one can ask whether $g_K = 0$ for every finite abelian extension K/\mathbb{Q}. This is equivalent to asking whether $L(1/2, \chi) \neq 0$ for every Dirichlet character χ, which is a longstanding open problem in analytic number theory.

References

[Ko1] W. Kohnen, Modular forms of half-integral weight on $\Gamma_0(4)$, Math. Ann. 248 (1980), 249–266.

S. Mizumoto

Department of Mathematics
Tokyo Institute of Technology
Oh-okayama, Meguro-ku
Tokyo, 152-8551, Japan
E-mail: mizumoto@math.titech.ac.jp

Received on 2.12.1997
and in revised form on 10.9.1998