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The Hasse Principle modulo nth powers
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1. Introduction. Let L/K be a finite Galois extension of global fields
with Galois group G. The Hasse Norm Principle states that if G is cyclic
then an element of K is in the image of the global norm map iff it is in
the image of all the local norm maps. Suppose char(K) 6= 2 and let WK
denote the Witt ring of quadratic forms over K. In [13] Leep and Wadsworth
showed that a local-global principle holds for the transfer ideal TL/K of WK
iff the Hasse Norm Principle holds modulo squares (see below for a precise
definition). Subsequently [14] they examined the validity of this modified
Hasse Principle, especially for Gal(L/K) = (Z/2)d and Z/2×Z/2s with s ≥
2. They showed that in the first case the Hasse Principle mod squares always
holds, even though the usual Hasse Principle may fail [13, Theorem 4.5], and
that in the second case the Hasse Principle and the Hasse Principle mod
squares are equivalent [14, Theorem 1].

In this paper we give a cohomological characterization of the Hasse Prin-
ciple modulo nth powers. Our main result is Theorem 1.1 below, which is
proved in Section 3. The characterization is comparable to the cohomological
description of the usual Hasse Principle (see Theorem 2.2 below), and the
proof is analogous, but requires the use of hypercohomology. The statement
is as follows.

Theorem 1.1. Let G act trivially on Z/n. The following are equivalent :

(a) The Hasse Principle mod nth powers.
(b) The restriction map H2(G,Z/n)→∏

vH
2(Gv,Z/n) is injective.

(c) The corestriction map
⊕

vH2(Gv,Z/n)→ H2(G,Z/n) is surjective.

Using this theorem we examine in Section 4 the relationship between
the standard Hasse Principle and the Hasse Principle mod n. Leep and
Wadsworth showed [14, Corollary 2.4] that in the abelian case the Hasse
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Principle implies the Hasse Principle mod nth powers, but in general an
extra condition is needed for this implication to hold. See Example 4.2 and
Proposition 4.1.

Finally we specialize to the case of squares, which is particularly interest-
ing in light of its application to the theory of quadratic forms. In Section 6
we prove the following.

Theorem 1.2. The Hasse Principle mod squares holds for G iff the ring
H∗(G,Z/2) contains no nilpotent elements of degree 2.

This enables us to give many more examples where the Hasse Principle
mod squares holds.

We now define the terms above. Let L/K be any finite extension of global
fields. Let NmL/K : L× → K× be the norm map, and for every prime v of
K and w of L dividing v let NmLw/Kv : L×w → K×v be the local norm map.
An element of K× is a local norm if it is in the image of every local norm
map, and a global norm if it is in the image of the global norm map. Every
global norm is a local norm. The Hasse (Norm) Principle holds for L/K if
every local norm is a global norm.

An element x of K× is said to be a local norm mod nth powers if it lies in
NmLw/Kv (L×w) ·K×nv for every prime v and every w dividing v. It is a global
norm mod nth powers if it lies in NmL/K(L×) ·K×n. The Hasse Norm Prin-
ciple mod nth powers (abbreviated to the Hasse Principle mod n) holds for
L/K if every local norm mod nth powers is a global norm mod nth powers.

Throughout the rest of the paper L/K will be a finite Galois extension
of global fields with Galois group G.

2. The Hasse Principle. Let L/K be as described. For each v fix
w dividing v. Write Lv for Lw, and Gv for the decomposition group of
w, Gal(Lv/Kv). We omit the subscripts on the various norm maps. All
cohomology groups will be Tate groups. We write Gab for the abelianization
of G, G/G′. Restating the definitions we have the following.

Proposition 2.1. (a) The Hasse Principle holds iff the natural map

K×

Nm(L×)
→
⊕
v

K×v
Nm(Lv×)

is injective.
(b) The Hasse Principle mod n holds iff the natural map

K×

Nm(L×) ·K×n →
⊕
v

K×v
Nm(Lv×) ·K×nv

is injective.

The sum is taken over all the primes v of K.
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Theorem 1.1 is motivated by the following result in [8, VII.11.4].

Theorem 2.2.The following are equivalent :

(a) The Hasse Principle.
(b) The restriction map H2(G,Q/Z)→∏

vH
2(Gv,Q/Z) is injective.

(c) The corestriction map
⊕

vH2(Gv,Z)→ H2(G,Z) is surjective.

Corollary 2.3. The Hasse Principle holds if either of the following are
true.

(a) G = Gv for some prime v.
(b) H2(G,Q/Z) = 0.

For example, the second condition of the corollary is satisfied if G is
cyclic, since then by periodicity H2(G,Q/Z) ∼= H0(G,Q/Z) = 0. The group
H2(G,Q/Z) (or its dual) is called the Schur multiplier. It may sometimes
be calculated using the following result.

Theorem 2.4 [Schur, 1907]. Let G = F/R be a presentation of G, where
F is free. Then

H2(G,Q/Z) ∼= [F, F ] ∩R
[F,R]

.

If F has rank n and R contains r relations, then r ≥ n + s where s is the
minimum number of generators of H2(G,Q/Z). In particular , if r = n then
H2(G,Q/Z) = 0.

P r o o f. See [11, II.4.6, II.4.7, pp. 50–52].

In general the Hasse Principle depends both on the group G and the
collection of decomposition groups Gv which occur for L/K. Let us say that
the Hasse Principle holds for the group G (rather than the extension L/K)
if for every Galois extension L/K of global fields with Gal(L/K) = G the
Hasse Principle holds for L/K. At every unramified prime v the groups Gv

are cyclic, and hence the only contribution to the sums in Theorem 2.2(c)
comes from ramified primes. However, Fröhlich [9, Corollary 1] showed that
for any finite G there are infinitely many unramified Galois extensions L/K
of number fields with Gal(L/K) = G. Thus we have the following charac-
terization.

Proposition 2.5. Let G be a finite group. Then the Hasse Principle
holds for G iff H2(G,Q/Z) = 0.

Gurak [10, Corollary 3.2] states that the Hasse Principle holds for G
iff all the p-Sylow subgroups of G, Sylp(G), are cyclic. However, while the
injectivity of the restriction map Hr(G,Q/Z) → Hr(Sylp(G),Q/Z) shows
that this is sufficient, it is not necessary. For example using Theorem 2.4 we
find that H2(G,Q/Z) = 0 for G = Q8 the quaternion group. (In fact G has
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periodic cohomology iff all its p-Sylow subgroups are cyclic or generalized
quaternion ([5, VI.9.5, p. 157]), and then ([5, Ex. 4, p. 159]) H2(G,Q/Z)
= 0.)

Let F ⊆ K ⊆ L be a tower of fields. It is not true in general that if
the Hasse Principle holds for K/F and for L/K then it holds for L/F . A
well known example is the extension L = Q(

√
13,
√

17). Let F = Q and
K = Q(

√
13). The Hasse Principle holds for L/K and K/F , since each is

cyclic. But Gal(L/F ) = G = Z/2 × Z/2 and one can show that the Gv

all have order at most two (only the ramified primes need to be checked),
and hence all the H2(Gv,Q/Z) are zero. However, H2(G,Q/Z) = Z/2 ([11,
II.2.12, p. 37]), so the Hasse Principle fails.

Under an additional condition, however, transitivity of the Hasse Prin-
ciple does hold.

Proposition 2.6. Let L/F be a finite Galois extension of number fields,
with Gal(L/F ) = G. Suppose G has a normal subgroup H with H2(H,Q/Z)
= H2(G/H,Q/Z) = 0 and suppose that the orders of (G/H)ab and Hab are
relatively prime. Then the Hasse Principle holds for G. That is, H2(G,Q/Z)
= 0.

P r o o f. Let K = LH . Then L/K and K/F are Galois, with Gal(L/K) =
H and Gal(K/F ) = G/H. Thus the hypotheses imply that the Hasse Prin-
ciple holds for L/K and K/F .

The Hochschild–Serre spectral sequence gives

H2(G/H,Q/Z)→ kerR→ H1(G/H,H1(H,Q/Z))

where R = res : H2(G,Q/Z) → H2(H,Q/Z). Applying the hypotheses we
have

kerR = H2(G,Q/Z)

⊆ H1(G/H,H1(H,Q/Z))

= Hom((G/H)ab,Hom(Hab,Q/Z))
∼= Hom((G/H)ab ⊗Hab,Q/Z)
∼= (G/H)ab ⊗Hab

and thus H2(G,Q/Z) = 0.

Theorem 2.7. Let Si be the simple factors of a composition series for
G and suppose for all i that Si is non-abelian and H2(Si,Q/Z) = 0. Then
the Hasse Principle holds for G.

P r o o f. Apply the previous proposition iteratively. If 1 = G0 C G1 C
. . . C Gn = G and Si = Gi/Gi−1 then H2(G0,Q/Z) = 0, H2(G1/G0,Q/Z)
= H2(S1,Q/Z) = 0 and (G1/G0)ab = Sab = 0, so the previous proposition
applies and H2(G1,Q/Z) = 0. Eventually H2(Gn,Q/Z) = 0.
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A complete table of H2(G,Q/Z) for simple G is given in [11, Chapter 8,
pp. 283–284].

3. Hypercohomology. In this section we prove our main result, Theo-
rem 1.1, by suitably altering the proof of Theorem 2.2. We consider modified
hypercohomology groups H r(G,M•) where M• is a complex of G-modules.
We require M• to be bounded , that is, to have only finitely many non-zero
entries, beginning with the 0th position and extending right. In fact we shall
only need complexes of the form M0 →M1.

Let M• be a cochain complex of G-modules. The hypercohomology groups
H r(G,M•) are the hyper-derived functors Rr(−G)(M•). That is, if I• is a
complex of injective G-modules, M• → I•, and Hn(M•) ∼= Hn(I•) for all
n, then H r(G,M•) is defined to be Hr(I•G). If M• has only a single non-
zero entry M = M0, then the hypercohomology groups coincide with the
cohomology groups Hr(G,M). We can similarly obtain the Tate modified
hypercohomology groups including negative indices, in analogy with the
Tate cohomology groups. See [12].

The hypercohomology groups we shall need can be computed explicitly,
at least for non-negative indices. Let M• = M0 α→ M1. For i = 0, 1 let
Cr,i = {f : Gr →M i} be the set of inhomogeneous r-cochains. Let d be the
boundary map Cr,i → Cr+1,i, and let T • be the total complex associated
with the double complex

Cr−1,0 Cr,0 Cr+1,0

Cr−1,1 Cr,1 Cr+1,1

d //

α

²²

d //

α

²²
α

²²−d // −d //

The boundary map on T • is α± d, and we have

H r(G,M0 α→M1) =
{(f, g) | df = 0, αf = dg}
{(df ′, αf ′ − dg′)}

where f ∈ Cr,0, g ∈ Cr−1,1, f ′ ∈ Cr−1,0 and g′ ∈ Cr−2,1. Note also that
H r(G,M0 → 0) = Hr(G,M0) and H r(G, 0→M1) = Hr−1(G,M1).

Consider the short exact sequence of complexes

0 0 A A 0

B B 0

//

²²

//

²²

__________

²²

//

__________ //

where the entries of each complex are written vertically, and are zero except
where indicated. This gives rise to a long exact sequence

H r−1(G,A→ 0)→ H r(G, 0→ B)→ H r(G,A→ B)→ H r(G,A→ 0),
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that is,

(1) Hr−1(G,A)→ Hr−1(G,B)→ H r(G,A→ B)→ Hr(G,A).

Explicitly the map Hr−1(G,B)→ H r(G,A→ B) is just g 7→ (0, g) and
the map H r(G,A→ B)→ Hr(G,A) is (f, g) 7→ f .

We apply this to the complex L× n→ L× with r = 1. By Hilbert’s Theo-
rem 90, H1(G,L×) = 0 and so we have

H0(G,L×) n→ H0(G,L×)→ H 1(G,L× n→ L×)→ 0

and hence

(2) H 1(G,L× n→ L×) ∼= K×

Nm(L×) ·K×n .

Proceeding analogously to the proof of Theorem 2.2, we form the se-
quence of complexes

0 L× IL CL 0

0 L× IL CL 0

// //

n

²²

//

n

²²

//

n

²²
// // // //

where IL is the group of idèles, and CL is the idèle class group IL/L×. We
hence obtain

H 0(G, IL
n→ IL) θ−→ H 0(G,CL

n→ CL)(3)

−→ H 1(G,L× n→ L×)
ψ−→ H 1(G, IL

n→ IL).

Proposition 3.1. The hypercohomology of the idèles is given by

H r(G, IL
n→ IL) ∼=

⊕
v

H r(Gv, Lv× n→ Lv×)

for all integers r.

P r o o f. For each v we have maps Gv → G and IL → Lv×, so we have
an induced map from H r(G, IL

n→ IL) into H r(Gv, Lv× n→ Lv×) and hence
into

∏
v H r(Gv, Lv× n→ Lv×). We first show that it actually maps into the

direct sum.
Since Hr(G, IL) =

⊕
vH

r(Gv, Lv×) [8, VII.7.3] we have by (1) the fol-
lowing diagram, where the left and right vertical arrows are inclusions:
⊕

vH
r−1(Gv, Lv×) H r(G, IL

n→ IL)
⊕

vH
r(Gv, Lv×)

∏
vH

r−1(Gv, Lv×)
∏
v H r(Gv, Lv× n→ Lv×)

∏
vH

r(Gv, Lv×)

f //

²²

g //

²² ²²
// h //
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Abbreviate H r(G, IL
n→ IL) by H,

⊕
v H r(Gv, Lv× n→ Lv×) by Σ, and write

H′ for the subgroup of H which maps into Σ.
Let φ ∈ H map to (φv) in the product. The image of (φv) under h must

be almost always zero by commutativity of the right square. Thus there is
a (φ′v) ∈ Σ with (φv − φ′v) in the kernel of h. Below we show that H′ is
isomorphic to Σ. Thus we may take φ′ ∈ H′ to be the preimage of (φ′v).
Then φ − φ′ lies in ker g, that is, in the image of f , hence in H′. But this
implies that φ ∈ H′, so H = H′.

To show that H′ ∼= Σ, replace H with H′ in the diagram above. This is
valid since the image of

⊕
vH

r(Gv, Lv×) is contained in H′. Now we can
replace the bottom row product with sums, and apply the Five Lemma to
the resulting (suitably extended) diagram.

Applying (2) and Proposition 3.1 to (3) we have

K×

Nm(L×) ·K×n
ψ−→
⊕
v

K×v
Nm(Lv×) ·K×nv

so that the Hasse Principle mod n holds iff ψ is injective, that is, iff θ is
surjective.

We now eliminate the hypercohomology by introducing a variant of
Tate’s cup product isomorphism.

Proposition 3.2. Let G be a finite group and A• and B• be bounded
complexes of G-modules. Then for every pair (r, s) of integers there exists a
cup product homomorphism

H r(G,A•)⊗H s(G,B•)→ H r+s(G,A• ⊗B•)
denoted by ∪.

Moreover , the cup product commutes (up to sign) with connecting homo-
morphisms in the following sense: if B• = B0 = B and we have short exact
sequences

0→ A• → A′ • → A′′ • → 0
and

0→ A• ⊗B → A′ • ⊗B → A′′ • ⊗B → 0
then for α′′ ∈ H r(G,A•) and β ∈ H s(G,B),

(δ(α′′)) ∪ β = δ(α′′ ∪ β)

where δ is the connecting homomorphism. A similar statement is true for
A⊗B•.

P r o o f. This can be proved in the generality stated. Compare [12, The-
orem 1.6] or [7, XII.4.1]. However, we only need the case A• = A0 → A1

and B• = B0 = B a single G-module, and we can give an explicit for-
mula in this case, at least for r, s ≥ 0. Namely, if (f, g) ∈ H r(G,A•) and
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h ∈ H s(G,B•) = Hs(G,B) then define

(f, g) ∪ h = (f ∪ h, g ∪ h).

One can check on the level of cocycles that this gives the required map.

Theorem 3.3. Let G be a finite group and let M• be a bounded complex
of G-modules whose entries are finitely generated free abelian groups. Let C
be a G-module, v an element of H2(G,C), and suppose that for all subgroups
H of G the following two conditions hold :

(a) H1(H,C) = 0.
(b) H2(H,C) is cyclic of order |H|, generated by resG/H(v).

Then cup product with v defines an isomorphism

∪ v : H r−2(G,M•)
∼=→ H r(G,M• ⊗ C).

P r o o f. Define the length of a complex to be the number of non-zero
entries it has. If M• has length 1 the result is true by Tate’s Theorem [19,
IX.8.14, p. 149]. Assume inductively that the result holds for complexes of
length ≤ k. For the inductive step assume without loss of generality that
M• has the form

M• = M0 →M1 → . . .→Mk.

Let M<k be the complex

M<k = M0 →M1 → . . .→Mk−1

and let T be the truncation map which drops the kth entry of a complex,
so that the following sequence of complexes is exact:

0→Mk[−k]→M• T→M<k → 0.

(Here Mk[−k] is the complex consisting of the single entry Mk at position
k.) Every entry of M is flat, so we may tensor with C to obtain

0→Mk[−k]⊗ C →M• ⊗ C →M<k ⊗ C → 0.

Applying the inductive hypothesis to the resulting hypercohomology se-
quence yields for all r the following diagram:

H r−2(G,Mk[−k]) H r−2(G,M•) H r−2(G,M<k)

H r(G,Mk[−k]⊗ C) H r(G,M• ⊗ C) H r(G,M<k ⊗ C)

//

²²

//

²² ²²
// //

The diagram commutes by Proposition 3.2. By the inductive hypothesis, the
vertical maps except the middle one are known to be isomorphisms. Since
we have such a diagram for all r, applying the Five Lemma completes the
induction.
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Let G act trivially on the complex M• = Z n→ Z and let C = Lv× or
C = CL. Then the hypotheses of Theorem 3.3 hold by Class Field Theory.
Thus from (3) (introducing the modified hypercohomology groups) we get

H 0(G, IL → IL)
⊕

v H 0(Gv, Lv× n→ Lv×) H 0(G,CL → CL)

⊕
v H−2(Gv,Z n→Z) H−2(G,Z n→Z)

∼= // θ //

∼=
²²

∼=
²²

Σ cor //

The discussion above Proposition 3.2 shows that the Hasse Principle mod
n holds iff θ is surjective, and hence iff Σ cor is surjective. Finally, from the
sequence of complexes

0 Z Z 0 0

Z Z Z/n

// __________������

������

//

n

²²

//

²²
n // //

using the fact that H r(G,A = A) = 0 for any A, we have

H r(G,Z n→ Z) ∼= Hr−1(G,Z/n).

We have now shown the equivalence of (a) and (c) of Theorem 1.1, since
H−3(G,Z/n) = H2(G,Z/n). In addition, parts (b) and (c) of the theorem
are equivalent, by duality [5, VI.7.1]. This concludes the proof of Theo-
rem 1.1.

Note that in the statement of Theorem 1.1 we may replace the product
in (b) with the sum over any sufficiently large finite set of primes, since there
are only finitely many possible distinct Gv. We shall use the theorem in this
form in the remaining sections.

4. The Hasse Principle mod n. Theorem 1.1 will be our main tool in
obtaining results about the Hasse Principle mod n. We first investigate the
relationship between the usual Hasse Principle and the Hasse Principle mod
n. The next two propositions generalize [14, Corollary 2.4] to the non-abelian
case. We write Gn for elements killed by n, and G∗ for Hom(G,Q/Z). Thus
H1(G,Q/Z) = Hom(Gab,Q/Z) = Gab ∗.

Proposition 4.1. Suppose the Hasse Principle holds for the extension
L/K. Then the Hasse Principle mod n holds for L/K iff the natural map

δ :
⊕
v

(Gv ab)n → (Gab)n

is surjective. In particular , it holds if Gn ³ (Gab)n.
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P r o o f. From the exact sequence

0→ 1
n
Z/Z→ Q/Z n→ Q/Z→ 0

we obtain the following diagram:

0
Gab ∗

n(Gab ∗)
H2(G,Z/n) H2(G,Q/Z)n 0

0
⊕

v

Gv ab ∗

n(Gv ab ∗)
⊕

vH
2(Gv,Z/n)

⊕
vH

2(Gv,Q/Z)n 0

// //

α

²²

//

β

²²

γ

²²

//

// // // //

Here α, β and γ are restriction maps. One subtlety here is that the Gv are
defined only up to conjugacy. Nonetheless α is well defined, since it maps
into an abelian group. The sum is taken over a sufficiently large finite set,
as described in Section 3.

By hypothesis γ is injective so by Theorem 1.1, the Hasse Principle mod
n holds iff α is injective. The first statement now follows on taking duals.

The second statement is a consequence of the Chebotarev Density The-
orem which implies that a conjugate of every cyclic subgroup of G occurs
among the Gv, so that the Gv cover Gab. For a proof of this theorem for
arbitrary global fields see [15].

Example 4.2. For the quaternion group G = Q8 the Hasse Principle
holds, and for every k ≥ 1 the Hasse Principle mod 4k holds. However , the
Hasse Principle mod squares may fail.

P r o o f. From Theorem 2.4, H2(G,Q/Z) = 0, so that the Hasse Principle
holds for G. Since every element in G has order dividing 4k, Proposition 4.1
implies that the Hasse Principle mod 4k holds. However, G2 = {±1} and
(Gab)2

∼= Z/2×Z/2, so that δ in Proposition 4.1 is not surjective, and if all
the Gv are cyclic then the Hasse Principle mod squares fails.

Proposition 4.3. Suppose that the Hasse Principle mod m holds for
L/K and n divides m. Then the Hasse Principle mod n holds for L/K
provided that the natural map Gn → (Gab)n is surjective.

P r o o f. Let m = nt. To simplify the calculations we work with homol-
ogy groups instead of eventually taking duals. Since H1(G,Z) = Gab the
sequence 0→ Z→ Z→ Z/t→ 0 yields

0→ Gab t→ Gab → H1(G,Z/t)→ 0

and hence H1(G,Z/t) = Gab/t(Gab). Now from the sequence

0→ Z/t n→ Z/nt→ Z/n→ 0
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we obtain

0
⊕

v

H2(Gv,Z/nt)
n(H2(Gv,Z/nt))

⊕
vH2(Gv,Z/n)

⊕
v Ĝ

v 0

0
H2(G,Z/nt)

n(H2(G,Z/nt))
H2(G,Z/n) Ĝ 0

// //

²²

//

²²

//

²²
// // // //

where

Ĝ = ker
[
Gab

t(Gab)
n→ Gab

nt(Gab)

]
=

(Gab)n + t(Gab)
t(Gab)

∼= (Gab)n
[t(Gab)]n

.

The vertical maps are corestriction; the rightmost map is thus the natural
map induced by inclusion [20, III.5.3]. From Theorem 1.1(c) we thus see
that the Hasse Principle mod n holds iff the map

⊕
v

(Gv ab)n
[t(Gv ab)]n

→ (Gab)n
[t(Gab)]n

is surjective, and the result follows as in Proposition 4.1.

Let exp(G) denote the exponent of the group G.

Proposition 4.4. Let eN = exp(K×/Nm(L×)), and let eG = exp(G).
Then the Hasse Principle mod eN implies the Hasse Principle which implies
the Hasse Principle mod eG.

P r o o f. Suppose first that the Hasse Principle mod eN holds, and let x
be a local norm. Then it is certainly a local norm mod eN th powers, and
hence by hypothesis x = y · zeN , where y is a global norm and z ∈ K×.
By the definition of eN , zeN , and hence x, are global norms. The second
implication follows from Proposition 4.1.

When G is abelian the situation is particularly simple. The following
result is essentially Corollary 2.4 of [14].

Corollary 4.5. Suppose G is abelian. Then the Hasse Principle mod
m implies the Hasse Principle mod n for all n |m. Moreover , the following
are equivalent :

(a) The Hasse Principle holds.
(b) The Hasse Principle mod n holds for all n.
(c) The Hasse Principle holds mod eN , where eN = exp(K×/Nm(L×)).

P r o o f. Proposition 4.3 shows that the Hasse Principle mod m implies
the Hasse Principle mod n for all n |m.

Proposition 4.1 shows that (a) implies (b), while (b) implies (c) trivially,
and (c) implies (a) by Proposition 4.4.
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If G is abelian and has odd order then eN | eG by a result of Opolka [16,
Proposition 3], so that the conditions in Proposition 4.4 are equivalent. For
example, if G = (Z/p)d then the Hasse Principle is equivalent to the Hasse
Principle mod p. An alternative proof of this is sketched in the next section.

5. The Hasse Principle mod p. In this section we concentrate on the
Hasse Principle mod p for odd primes p. The cohomology rings H∗(G,Z/p)
for odd p differ from H∗(G,Z/2), and so some results for the Hasse Principle
mod p for odd p differ from those for the Hasse Principle mod squares, which
is discussed in the next section.

We assume in this section thatG is a p-group. This is no loss of generality,
since for arbitrary G the restriction map H2(G,Z/p) → H2(Sylp(G),Z/p)
is injective for any Sylow p-subgroup Sylp(G) of G, so that the condition
of Theorem 1.1 depends only on Sylp(G). The following result is useful for
calculations.

Proposition 5.1. Let G = Z/ps. Then the cohomology ring H∗(G,Z/p)
of G is given abstractly as F2[x1] if ps = 2 and Fp[x1, y2]/〈x2

1〉 otherwise.
Here the subscript on the variable denotes its degree.

P r o o f. See [3, p. 61].

The cohomology ring of an abelian group with coefficients in Z/p can
now be calculated using the following Künneth formula [3, p. 62], which
holds for any finite groups G1 and G2:

Hn(G1 ×G2,Z/p) ∼=
⊕
r+s=n

Hr(G1,Z/p)⊗Hs(G2,Z/p),

which gives as rings

(4) H∗(G1 ×G2,Z/p) ∼= H∗(G1,Z/p)⊗H∗(G2,Z/p).

For an abelian extension, the Hasse Principle is stronger than the Hasse
Principle mod p (Corollary 4.5). However, if G is elementary abelian or has
only two factors then the two principles are equivalent.

Proposition 5.2. Let G = Z/pm × Z/pn, where m ≥ 2. Then the fol-
lowing are equivalent :

(a) The Hasse Principle.
(b) The Hasse Principle mod p.
(c) There exists a prime v (necessarily ramified) for which Gv = G.

P r o o f. In view of Corollary 4.5 and Theorem 2.2, it suffices to show
that (b) implies (c). By Proposition 5.1 and (4), or simply by direct cocycle
calculation, x2 = 0 for all x in H1(G,Z/p). (This is not true for p = 2.)
Let H1(G,Z/p) = Hom(G,Z/p) be generated by x and y. We shall show
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that xy is in the kernel of the restriction map H2(G,Z/p) → H2(H,Z/p)
for every maximal subgroup H, so that the map in Theorem 1.1(b) cannot
be injective unless G = Gv for some v.

Let H be a maximal subgroup of G, and let res = resG/H . Let G/H have
generator zH, and let φ : G→ Z/p be defined by t 7→ j where tH = zjH in
G/H. Then φ is a non-zero element of H1(G,Z/p) with kernel H, so that
res(φ) = 0. Now write φ = αx + βy, with α, β ∈ Z/p. We know that res
is a ring homomorphism and x2 = 0, so res(xy) = res(β−1x)res(φ) = 0,
provided β 6= 0. If β = 0 then α 6= 0 and res(xy) = res(φ)res(α−1y) = 0.

Proposition 5.3. Let G be a non-cyclic elementary abelian p-group (with
p odd). Then the Hasse Principle and the Hasse Principle mod p are equiv-
alent.

P r o o f. We have to show that the Hasse Principle mod p implies the
Hasse Principle. Since pG = 0, we have a homology diagram

0
⊕

v

∧2
Gv

⊕
vH2(Gv,Z/p)

⊕
v G

v 0

0
∧2
G H2(G,Z/p) G 0

//

σ

²²

//

Σ

²²

//

²²

//

// // // //

where σ and Σ are corestriction maps. Here we have used the canonical
isomorphism H2(G,Z) =

∧2
G of [5, V.6.4, p. 123], and written G (= Gab)

for H1(G,Z). By hypothesis Σ is surjective, and we need to show that σ is.
However this follows for p 6= 2 since both rows are canonically split. See [5,
Ex. 4, p. 127], where the splitting map is given explicitly, but is defined only
if 2 is invertible.

6. The Hasse Principle mod squares. In this section we determine
some conditions on G = Gal(L/K) which ensure that the Hasse Principle
mod squares always holds for L/K (that is, so that the Hasse Principle mod
squares holds for G). Unless otherwise stated G will be a 2-group. Our goal
is to prove Theorem 1.2. We build on the following result, which is proved
in [13, Theorem 4.5].

Proposition 6.1. The Hasse Principle mod squares holds for (Z/2)d.

P r o o f. We give an alternative proof, applying Theorem 1.1(b). Let G =
(Z/2)d. The Künneth formula (4) together with Proposition 5.1 gives that
H∗(G,Z/2) ∼= F2[x1, . . . , xd], where the xi form a basis for H1(G,Z/2) =
Hom(G,Z/2). Suppose φ ∈ H2(G,Z/2) \ {0} restricts to zero on every de-
composition subgroup. Then it certainly restricts to zero on every cyclic
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subgroup. Write

φ =
∑

1≤i≤j≤d
εi,j xixj .

By linear algebra for any i and j we can choose a cyclic subgroup H with
xi and xj non-vanishing on H, but all the other xh vanishing there. Then
resG/H(φ) = resG/H(xi) · resG/H(xj) 6= 0.

This proof fails for a non-elementary 2-group or for a p-group for an odd
prime because the cohomology ring is no longer an integral domain.

We can give another condition equivalent to Theorem 1.1(b), using a
result of Quillen. We first need a lemma.

Lemma 6.2. Let C be the collection of cyclic subgroups of G, E the col-
lection of elementary abelian 2-subgroups of G, and T the collection of sub-
groups of order 2. Then the injectivity of any of the three maps below im-
plies the injectivity of the other two. In particular , the Hasse Principle mod
squares holds for G iff some (hence all) of the ri are injective.

(a) r1 : H2(G,Z/2) res−→⊕
T∈T H

2(T,Z/2),

(b) r2 : H2(G,Z/2) res−→⊕
E∈E H

2(E,Z/2),

(c) r3 : H2(G,Z/2) res−→⊕
C∈C H

2(C,Z/2).

P r o o f. If r1 is injective then obviously so is r2. If r2 is injective and x∈
H2(G,Z/2) is non-zero then there is an E ∈ E such that y = resG/E(x) 6= 0.
Now by Proposition 6.1 there is a cyclic subgroup C of E with resE/C(y) 6= 0,
and hence r3 is injective. Finally, suppose that r3 is injective. Let C ∈ C,
and let T ∈ T be the subgroup of C of order 2. Then since H2(C,Z/2)

res∼=
H2(T,Z/2) ∼= Z/2, we see that r1 is injective.

Proof of Theorem 1.2. Suppose z ∈ H2(G,Z/2) \ {0} is nilpotent. Let
zm = 0, and let T be a subgroup of G of order 2. Then H∗(T,Z/2) = F2[x]
is reduced, but 0 = resG/T (zm) = resG/T (z)m, so necessarily resG/T (z) = 0
for every such T . By Lemma 6.2 we see that the Hasse Principle mod squares
fails for G.

Conversely, Quillen showed that the kernel of the map r2 is nilpotent.
An easy proof is given in [17]. Thus if H∗(G,Z/2) contains no nilpotent
elements then r2 is injective.

We give several corollaries of Theorem 1.2 below.

Corollary 6.3. Let G be an abelian 2-group. The Hasse Principle mod
squares holds for G iff G is cyclic or elementary abelian.

P r o o f. We need to prove “only if”. WriteG as a product of cyclic groups
and use equation (4) and Proposition 5.1 to calculate the cohomology ring.
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If G has more than one cyclic factor then H∗(G,Z/2) will contain a non-zero
nilpotent element unless all the factors of G are of order 2.

Corollary 6.4. Let G and H be 2-groups whose cohomology rings
H∗(G,Z/2) and H∗(H,Z/2) are reduced. Then H∗(G×H,Z/2) is reduced ,
and thus the Hasse Principle mod squares holds for G, H and G×H.

P r o o f. The tensor product of two reduced k-algebras over a perfect
field k is reduced [4, V, §15.5, Theorem 3(d), p. AV 125].

Corollary 6.5. Let G be a group whose Sylow 2-subgroups are of the
form (Z/2)d ×D where d ≥ 0 and D is a product of zero or more dihedral
groups. Then the Hasse Principle mod squares holds for G.

P r o o f. Let D2n denote the dihedral group with 2n elements. Then
H∗(D2n ,Z/2) = F2[x1, y1, z2]/〈x1y1〉, where the subscript on the variable
denotes the degree [1, IV.2.7, p. 130]. This ring is reduced.

Tables of cohomology rings H2(G,Z/2) may be found in [18] and [6]. Un-
less G has large Sylow 2-subgroups we can thus determine immediately if the
Hasse Principle mod squares holds for G. For example, there are 51 groups
of order 32. Consulting the tables, we see that groups 7, 8, 23, 33, 34, 42, 49
have reduced cohomology rings, and numbers 1, 27, 46, 47 have nilpotent
elements without any degree 2 nilpotents. Thus the Hasse Principle mod
squares holds for these 11 groups.

Finally, we mention the case where the Hasse Principle mod squares is as
far as possible from holding: when the obviously sufficient condition G = Gv

for some v is also necessary.

Proposition 6.6. Let H be a subgroup of G of index 2, and suppose
x ∈ Hom(G,Z/2) has kernel H. Then there is a long exact sequence

Hr−1(G,Z/2) x∪−→ Hr(G,Z/2) res−→ Hr(H,Z/2) cor−→ Hr(G,Z/2).

P r o o f. See [2, Satz 4.5].

The maximal subgroups H of G are exactly the H of index 2, necessarily
normal. In the graded ring H∗(G,Z/2) define the essential cohomology of
G to be

Ess(G) =
⋂

H

ker resG/H ,

where the intersection runs over all the maximal subgroups H of G (or,
equivalently, over all proper subgroups of G). Thus Ess(G) consists exactly
of the elements of the cohomology ring which restrict to zero on every proper
subgroup. Let Ess2(G) be the degree two elements of Ess(G) (together with
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zero). Proposition 6.6 with r = 2 gives the formula

(5) Ess2(G) =
⋂

x∈H1(G,Z/2)

〈x〉

where 〈x〉 denotes the ideal generated by x in the cohomology ring.
If Ess2(G) 6= 0 then the Hasse Principle mod squares is clearly equivalent

to the existence of a v with G = Gv. For example, we have the following
generalization of [14, Theorem 1].

Proposition 6.7. Let G = Z/2m×Z/2n with m ≥ 2. Then the following
are equivalent :

(a) The Hasse Principle.
(b) The Hasse Principle mod squares.
(c) There exists a prime v with G = Gv.

P r o o f. Following Corollaries 4.5 and 2.3, it suffices to show that (b)
implies (c). Using the Künneth formula (4) and Proposition 5.1 we see that
H∗(G,Z/2) = F2[x1, y2, z1]/〈x2

1〉 if n = 1, and F2[x1, y2, z1, w2]/〈x2
1, z

2
1〉 oth-

erwise (subscripts denote degree). We now use equation (5). In both cases
Ess2(G) = 〈x1〉 ∩ 〈z1〉 ∩ 〈x1 + z1〉 and x1z1 = x1(x1 + z1) ∈ Ess2(G).

Note however that if G is abelian with more than 2 factors then Ess2(G)
= 0 so that Proposition 6.7 holds only for abelian 2-groups of rank 2. More
generally, we can determine Ess2(G) from the tables of [18] and [6].
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