On the Iwasawa λ -invariants of quaternion extensions

by

KEIICHI KOMATSU (Tokyo)

Dedicated to the memory of Prof. Dr. Jürgen Neukirch

For a prime number l and a number field k, denote by $\lambda_l(k)$ the Iwasawa λ -invariant associated with the ideal class group of the cyclotomic \mathbb{Z}_l -extension $k_{\infty}(l)$ over k. It is conjectured that this invariant is zero for any prime l and any totally real number field k (cf. [7]). Several authors have given some sufficient conditions for the conjecture when k is a real abelian field (cf. [1]–[9]). Using them, many examples of the vanishing of λ -invariants for real abelian number fields are given. However, it seems that an example of a totally real non-abelian field has not yet been given. In this paper we give quaternion extensions K over the rational number field \mathbb{Q} with $\lambda_2(K) = 0$. A Galois extension K over \mathbb{Q} is called a *quaternion extension* if the Galois group $G(K/\mathbb{Q})$ of K over \mathbb{Q} is isomorphic to the quaternion group H_8 of order 8. The quaternion group H_8 is a group $H_8 = \langle \sigma, \tau \rangle$ of order 8 with $\sigma^4 = 1$, $\sigma^2 = \tau^2$ and $\tau \sigma \tau^{-1} = \sigma^{-1}$.

The main purpose of this paper is to prove the following:

THEOREM. Let p be a prime number with $p \equiv 3 \pmod{8}$, $k = \mathbb{Q}(\sqrt{2}, \sqrt{p})$ and $k_{\infty}(2)$ the cyclotomic \mathbb{Z}_2 -extension of k. Then there exist natural numbers x, y with $x^2 - y^2 p = 2p$. Let $K_{\infty}(2)$ be the cyclotomic \mathbb{Z}_2 -extension of $K = k(\sqrt{(x + y\sqrt{p})(2 + \sqrt{2})})$. Then the Galois group $G(K/\mathbb{Q})$ of K over \mathbb{Q} is isomorphic to the quaternion group H_8 and the λ -invariant $\lambda(K_{\infty}(2)/K)$ of $K_{\infty}(2)$ over K vanishes.

First we recall the following lemma which plays an important role in our proof of this theorem:

LEMMA (cf. [2]). Let l be a prime number, k a totally real number field of finite degree and K a real cyclic extension of degree l over k. Assume that

¹⁹⁹¹ Mathematics Subject Classification: Primary 11R23.

^[219]

 $k_{\infty}(l)$ has only one prime ideal lying over l and that the class number h_k of k is not divisible by l. Then the following are equivalent:

(1) $\lambda(K_{\infty}(l)/K) = 0.$

(2) For any prime ideal w of $K_{\infty}(l)$ which is prime to l and ramified in $K_{\infty}(l)/k_{\infty}(l)$, the order of the ideal class of w is prime to l.

Proof (of Theorem). Since $p \equiv 3 \pmod{8}$, we have $N_{\mathbb{Q}(\sqrt{p})/\mathbb{Q}}(\mathbb{Q}(\sqrt{p})^{\times})$ $\not \geq -1$. Hence the cardinality of the ambiguous classes of $\mathbb{Q}(\sqrt{p})$ is equal to one, which shows that a prime ideal of $\mathbb{Q}(\sqrt{p})$ lying above 2 is principal. Therefore there exist integers x, y with $x^2 - py^2 = 2p$ by $\left(\frac{-2}{p}\right) = 1$. We put

 $\begin{array}{l} \alpha = \sqrt{(2+\sqrt{2})(x+y\sqrt{p})}. \mbox{ Now, let } \sigma, \tau \mbox{ be elements of the Galois group } \\ G(k/\mathbb{Q}) \mbox{ with } \sqrt{2}^{\sigma} = -\sqrt{2}, \ \sqrt{p}^{\sigma} = \sqrt{p}, \ \sqrt{2}^{\tau} = \sqrt{2} \mbox{ and } \sqrt{p}^{\tau} = -\sqrt{p}. \mbox{ Then we have } (\alpha^2)(\alpha^2)^{\sigma} = 2(x+y\sqrt{p})^2 \mbox{ and } (\alpha^2)(\alpha^2)^{\tau} = 2p(2+\sqrt{2})^2, \mbox{ which shows that } K \mbox{ is a Galois extension over } \mathbb{Q}. \mbox{ For simplicity, we denote by } \sigma, \tau \mbox{ extensions of } \sigma, \tau \mbox{ to } K \mbox{ with } \alpha^{\sigma} = \sqrt{2}\alpha^{-1}(x+y\sqrt{p}) \mbox{ and } \alpha^{\tau} = \sqrt{2p}\alpha^{-1}(2+\sqrt{2}). \mbox{ Then we can easily see } G(K/\mathbb{Q}) = \langle \sigma, \tau \rangle, \ \sigma^4 = 1, \ \sigma^2 = \tau^2 \mbox{ and } \tau \sigma \tau^{-1} = \sigma^{-1}. \mbox{ Hence } G(K/\mathbb{Q}) \mbox{ is isomorphic to } H_8. \end{array}$

Now, we prove $\lambda(K_{\infty}(2)/K) = 0$. First we notice that the class number $h_{\mathbb{Q}(\sqrt{p})}$ is not divisible by 2. Therefore h_k is not divisible by 2, since 2 is fully ramified in k over \mathbb{Q} and since p is unramified in k over $\mathbb{Q}(\sqrt{p})$. One should also remark that the infinite primes are unramified. Let \mathfrak{P}_p be a prime ideal of K lying above p, \mathfrak{p}_2 a prime ideal of k lying above 2 and \mathfrak{p}_p a prime ideal of k lying above p. Then we can see $((x + y\sqrt{p})(2 + \sqrt{2})) = \mathfrak{p}_p^2 \mathfrak{p}_2^2$. Hence we have $(\alpha) = \mathfrak{P}_p(2 + \sqrt{2})$ in K. This shows that \mathfrak{P}_p is a principal ideal of K. Therefore $\lambda(K_{\infty}(2)/K) = 0$ follows from the Lemma or [7, Lemma 3]. This completes our proof.

REMARK. Since there exist infinitely many prime numbers p with $p \equiv 3 \pmod{8}$ which are unramified in $k/\mathbb{Q}(\sqrt{p})$, there exist infinitely many quaternion extensions K with $\lambda(K_{\infty}(2)/K) = 0$.

References

- T. Fukuda and K. Komatsu, On Z_p-extensions of real quadratic fields, J. Math. Soc. Japan 38 (1986), 95–102.
- [2] T. Fukuda, K. Komatsu, M. Ozaki and H. Taya, Iwasawa λ_p -invariants of relative cyclic extensions of degree p, Tokyo J. Math. 20 (1997), 475–480.
- [3] T. Fukuda and H. Taya, The Iwasawa λ-invariants of Z_p-extensions of real quadratic fields, Acta Arith. 69 (1995), 277–292.
- R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.

- [5] H. Ichimura and H. Sumida, On the Iwasawa λ -invariants of certain real abelian fields, to appear.
- [6] -, -, On the Iwasawa λ -invariants of certain real abelian fields II, to appear.
- K. Iwasawa, A note on capitulation problem for number fields II, Proc. Japan Acad.
 65 (1989), 183–186.
- J. S. Kraft and R. Schoof, Computing Iwasawa modules of real quadratic number fields, Compositio Math. 97 (1995), 135–155.
- [9] M. Ozaki and H. Taya, On the Iwasawa λ_2 -invariants of certain families of real quadratic fields, submitted for publication (1996).

Department of Information and Computer Science School of Science and Engineering Wasada University 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 Japan E-mail: kkomatsu@mse.waseda.ac.jp

> Received on 22.5.1997 and in revised form on 21.9.1998

(3193)