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On Waring’s problem in finite fields
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ARNE WINTERHOF (Braunschweig)

1. Introduction. Let g(k,p™) be the smallest s such that every element
of Fpy» is a sum of s kth powers in [Fpn.

In Section 2 we summarize the basic results on g(k,p™). In Section 3 we
generalize Dodson’s upper bound for small &k ([5], Lemma 2.5.4):

g(k,p) < [8lnp| +1;  k[p—1, p/2 <k*<p,
and deduce
g(k,p™) < |32Ink|] +1  for p" > k%
The object of Section 4 is to investigate to what extent Waring’s problem
for F,n can be reduced to the problem for F,. It is proven that if g(k,p™)
exists, then
k

g(k,p") <ng(d,p); d= G =1/ =1))’ klp"—1.

It is well known (see [3]) that

g(k,p) < [k/2]+ 1 k<(p—1)/2.
[15], Theorem 1, implies that if g(k, p™) exists and p is odd, then g(k,p") <
|k/2] +1 for k < (p™ — 1)/2. Whether p has to be odd has not been known
yet. In Section 5 we show that p need not be odd.

2. Basic results on g(k,p™). Every (k,p™ — 1)th power is at the same
time a kth power. Hence,

(1) g(k,p") = g((k,p" —1),p").

It is sufficient to restrict ourselves to the case

(2) k|p™—1.

Remember that the multiplicative group F. is cyclic. Hence
(3) glk,p") =1 k=1
mthematics Subject Classification: 11P05, 11T99.
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Since L = {zf + ...+ 2% | 21,...,25 € Fpn, s € N} is a field ([16],
Lemma 1), g(k,p"™) exists if and only if L is not a proper subfield of Fpn,
and thus

-1
(4) g(k,p") exists if and only if f)d — 1k for all n # d|n.

This result is essentially that of [1], Theorem G.
We shall suppose that from now on g(k,p™) exists.
Let A; = {Zlf+ . —I—Zf; ‘ Z1,...,%; € Fpn} If A; g Ai+1 then y € Ai—l—l\Ai
implies zy € A;;1\A; for each 0 # z € Ay, so that
—1
P

Hence in the chain Ay C Ay C ... C A; = Fp» there are at most k — 1 strict
inclusions and therefore

(5) g(k,p") <k,

which is a specialization of [10], Théoreme 7.14.
Equality holds for the following examples:

n n p—1 p—1
g(1,p") =1, g(2,p") =2, g(m)z glp—1,p)=p—1

Ai] > Al + Ay — 1= 4] + 2

2 2

Since |Ag| < (p"];1 + 1)8, we get a trivial lower bound for g(k, p™):
In p™
6 Ep") > | ————— |-
) 000 2 | |
For n = 1 the following results are well known:
(1) g(k,p) <max(3,|32Ink] +1); p>£k® [6],
8) gk, 68(Ink)2k'/2;,  p>2%k+1 [7],
9 gkp) <[k/2]+1; p>2k+1 3],
( (

2k
0) oo < (14 2 )0k 2iopl p> 2 L

p)
p) <
) <
) <

7/3
(11)  g(k,p) < 17Om Inp; p<k/*+1 [8],
24 klnk
(12)  g(k,p) <cc(Ink)™; k=2 p=> e>0 [11],

(In(Ink + 1))1-¢’
(13)  glk,p) <co;  k<p* =, e>0 [9].

3. Extension of Dodson’s bound for small £. Now we consider the
case 0 < (k —1)% < p™. In this case g(k,p") exists.
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The number Ng(b); b e F »n» of solutions of the equation
x’f—l—...—i—xls“:b; Tiyeeo  Ts € Fpn,

can be expressed in terms of Jacobi sums ([12], Theorem 6.34)

k—1

VARTERE Jjs=1

where X is a multiplicative character of F,» of order k.
Using the fact that

. 4 n(s=1)/2  if \ji+-+is ig non-trivial
N M =P e Nt ’
’J( ) ) )| {pn(s—2)/2 if Vit tIs ig trivial

([12], Theorem 5.22), we obtain

‘Ns(b) _pn(s—l)| < (k‘ o 1)spn(s—l)/2
and in particular

Ny(b) 2 pme ) — (k= 1)V,
Hence,
(14) g(k,p?) <s  for p"™Y > (k — 1),

For s = 2 this is Small’s [14] result.
If 0 < 6(k —1)2 < p" for § > 1, then

Ind(k —1)? In p™ L _
> 1 TL(S 1) k -1 2s
s> o Z Gk =17 implies p > ( )=,
and thus
Inf(k—1)2
15)  g(k,p") < V(M)J +1 for0<O(k—12%<p" 0>1.

We define
Sy = (o),

$€Fp'n

where (z) = e @) denotes the additive canonical character. We denote

by ZZ a summation in which b # 0 runs through a set of representatives,
one from each of the £ — 1 non-power classes and one from the kth power
class.

LEMMA 1.

S T IS0))? = k(k - 1.

b
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Proof. The deduction is the same as for Dodson’s Lemma 2.5.1. We

have
Z |S(b) Z Z b(z* —y*)) = p" M,

where M denotes the number of Solutions of 7% = y* in Fyn. Since M =
1+ (p" — 1)k and S(0) = p™ we obtain

> IS(b) = p™(p" —1).
be]F*

The lemma follows since S(b) has the same value for each element of the
same class. m

LEMMA 2. Suppose that x5 + ...+ 2% does not represent every element
of Fpn. Then there exist some c € Fy. such that

1 (0
|S(mc)|>p”(1—m2nf>; m=1,....,p—1.

Proof. The proof is a direct extension of Dodson’s proof for Lemma
2.5.2. Verify that

Ny =p™™ > D wah+. 4ak-p)=p " > St

xl,...,zsern tGFpn tGIF n
and suppose that there exists a b € Fy» such that Ny(b) = 0. Hence we get
> S p(—tb) = —p"*.
teFin

It follows that there exists an element ¢ € IE‘;n such that

1S(c)]* > L > preh),

Inp”™ Inp”
51> g exp (<22 ) > (1 22,

which is the result for m = 1.
For some real 9 we have

s01= 3 e (2 (1) - )

:EE]Fpn

whence

and thus

S cos (%:(Tr(cxk) - 19)) > <1 - mfn),



Waring’s problem in finite fields 175

whence
nl n
Z sin? (W(Tr(cxk) — 29)) <P 2P
p 2s
T€F,n
Since [sinmyp| < |msing| and Tr(mz) = mTr(x) for m = 1,...,p — 1, we

deduce that

3 sin? (”(Tr(mcx’f) — md)

2,.n 7
m In
) _ mPp"lnp
z€F,n p

2s ’

Y cos <27T(Tr(mca:k) - mﬁ)) > p" <1 - mzlsnpn>

p

21 n
S(me)| >p"<1 - m“p)

LEMMA 3. Suppose that 2 is a kth power in Fyn and g(k,p™) exists. Then

g(k,p") < nQEZJ + 1>.

Proof. If g(k,p™) exists, then there exists a basis {b1,...,b,} of kth
powers. Let x = a1by + ... + a,b, be any element of Fpn; 0 < a; < p,
i=1,...,n. Fori=1,...,n we can express a; as
a; = ;0 —|—CL¢712+ R +ai,hi2hi; a;; € {0, 1}, 7=0,..., h; —1, Qi h; = 1.
Since 2" < a; < p, x is a sum of at most (hy+1)+...+(h,+1) < n(“ﬁ—gJ—H)
kth powers. m

LEMMA 4. If p" > k%, then g(k,p™) < [8Inp"| + 1.

Proof. We suppose that for s = [8Inp™]| + 1 there exists an element
b € Fpn that is not of the form b = 2% + ...+ 2% and obtain a contradiction.

By Lemma 2 there exists ¢ € F,, such that
41np" ) 1

|S(c)| > p" <1 - lnsp ) > zp” and |S(2¢)| > p" <1 - > —p".

8 2
If 2 is not a kth power then ¢ and 2c¢ are representatives of two different
classes in the sum of Lemma 1. Since k? < p™ this gives
2 2
7 1
p2n < <8> p2n + <2> p2n < k’(k— l)pn <p2n_

Hence 2 must be a kth power and Lemma 3 implies that b is a sum of

n(HE—gJ + 1) < s kth powers. =

COROLLARY 1. If p"/0 < k? < p" for some 0 > 1, then
g(k,p") < |8In0k?| + 1.
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From Corollary 1 with § = k% and (14) with s = 2 we get:
THEOREM 1. g(k,p™) < |32Ink] + 1 for p™ > k%
This generalizes [6], p. 151, (6).

4. A relation between g(k,p™) and g(d, p)
THEOREM 2. If g(k,p") exists, then

k p—1
g(k,p") <ng(d,p); d= Y = T .
( ) ( ) (k, pp_ll) (pk 17p_1)

Proof. If g(k,p™) exists, then there exists a basis {b1,...,b,} of Fpn
over [F), consisting of kth powers.

The kth powers are exactly the pnkflth roots of unity. Thus, the kth
powers of elements of Fj. in F) are exactly the (pn,; Lp— 1)th roots of
unity which are the dth powers of elements of F;. Hence, all elements of F),
are sums of g(d,p) kth powers of elements of Fpn, so that all elements of
the form b;a; a € Fp, i =1,...,n, are sums of ¢g(d,p) kth powers. Thus an
arbitrary element x = ai1by + ... +apb, € Fynya; € Fp, i =1,...,n,is a
sum of ng(d, p) kth powers. m

5. Extension of the Chowla/Mann/Straus bound
THEOREM 3. If g(k,2™) exists, then g(k,2™) < (k+1)/2.

Proof. By Theorem 2 we have g(k,2") < n, which implies the result
for

(16) n<(k+1)/2.
Moreover, (14) with s = 2 implies the result for
(17) 2" > (k—1)*

Hence it is sufficient to consider 2 < n < 21. By (4), (16) and (17)
we have 12 pairs (k,2") to investigate: g(3,2%), g(7,2%), g(5,2%), g(7,2°),
g(11,219), ¢(9,212), ¢(13,212), g(15,212), g(21,212), g(17,21%), g(27,21%).
and ¢(33,2%0).

For k > 5 and 2" > (k—1)3 or k > 7 and 23" > (k — 1)% we get
the result by (14). Hence only g(3,2%) and ¢(7,2°) are undecided. It is well
known that for p™ # 4 and 7 every element of F,» is a sum of two cubes
(see [13]), which implies g(3,2%) = 2. As in the proof of Theorem 2 we get
g(7,2%) < 3g(1,22), which completes the proof. m

REMARK. For small £ it is shown in [4] that g(k,p™) < |k/2] + 1 for
k < min(p, (p™ —1)/2).

For arbitrary k but p # 2, [15], Theorem 1, implies g(k,p") < |k/2] + 1
for k< (p" —1)/2.
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