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On Waring’s problem in finite fields

by

Arne Winterhof (Braunschweig)

1. Introduction. Let g(k, pn) be the smallest s such that every element
of Fpn is a sum of s kth powers in Fpn .

In Section 2 we summarize the basic results on g(k, pn). In Section 3 we
generalize Dodson’s upper bound for small k ([5], Lemma 2.5.4):

g(k, p) < b8 ln pc+ 1; k | p− 1, p/2 < k2 < p,

and deduce
g(k, pn) ≤ b32 ln kc+ 1 for pn > k2.

The object of Section 4 is to investigate to what extent Waring’s problem
for Fpn can be reduced to the problem for Fp. It is proven that if g(k, pn)
exists, then

g(k, pn) ≤ ng(d, p); d =
k

(k, (pn − 1)/(p− 1))
, k | pn − 1.

It is well known (see [3]) that

g(k, p) ≤ bk/2c+ 1; k < (p− 1)/2.

[15], Theorem 1, implies that if g(k, pn) exists and p is odd, then g(k, pn) ≤
bk/2c+ 1 for k < (pn − 1)/2. Whether p has to be odd has not been known
yet. In Section 5 we show that p need not be odd.

2. Basic results on g(k, pn). Every (k, pn− 1)th power is at the same
time a kth power. Hence,

(1) g(k, pn) = g((k, pn − 1), pn).

It is sufficient to restrict ourselves to the case

(2) k | pn − 1.

Remember that the multiplicative group F∗pn is cyclic. Hence

(3) g(k, pn) = 1⇔ k = 1.
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Since L := {xk1 + . . . + xks | x1, . . . , xs ∈ Fpn , s ∈ N} is a field ([16],
Lemma 1), g(k, pn) exists if and only if L is not a proper subfield of Fpn ,
and thus

(4) g(k, pn) exists if and only if
pn − 1
pd − 1

- k for all n 6= d |n.

This result is essentially that of [1], Theorem G.
We shall suppose that from now on g(k, pn) exists.
Let Ai = {zk1 +. . .+zki | z1, . . . , zi ∈ Fpn}. If Ai $ Ai+1 then y ∈ Ai+1\Ai

implies xy ∈ Ai+1\Ai for each 0 6= x ∈ A1, so that

|Ai+1| ≥ |Ai|+ |A1| − 1 = |Ai|+ pn − 1
k

.

Hence in the chain A1 ⊂ A2 ⊂ . . . ⊂ As = Fpn there are at most k− 1 strict
inclusions and therefore

(5) g(k, pn) ≤ k,
which is a specialization of [10], Théorème 7.14.

Equality holds for the following examples:

g(1, pn) = 1, g(2, pn) = 2, g

(
p− 1

2
, p

)
=
p− 1

2
, g(p− 1, p) = p− 1.

Since |As| ≤
(
pn−1
k + 1

)s
, we get a trivial lower bound for g(k, pn):

(6) g(k, pn) ≥
⌈

ln pn

ln
(
pn−1
k + 1

)
⌉
.

For n = 1 the following results are well known:

g(k, p) ≤ max(3, b32 ln kc+ 1); p > k2 [6],(7)

g(k, p) ≤ 68(ln k)2k1/2; p > 2k + 1 [7],(8)

g(k, p) ≤ bk/2c+ 1; p > 2k + 1 [3],(9)

g(k, p) ≤
(

1 +
2k2

p− 1

)
(1 + b2 log2 pc); p > k3/2 [2],(10)

g(k, p) ≤ 170
k7/3

(p− 1)4/3
ln p; p ≤ k7/4 + 1 [8],(11)

g(k, p) ≤ cε(ln k)2+ε; k ≥ 2, p ≥ k ln k
(ln(ln k + 1))1−ε , ε > 0 [11],(12)

g(k, p) ≤ cε; k < p2/3−ε, ε > 0 [9].(13)

3. Extension of Dodson’s bound for small k. Now we consider the
case 0 < (k − 1)2 < pn. In this case g(k, pn) exists.
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The number Ns(b); b ∈ F∗pn , of solutions of the equation

xk1 + . . .+ xks = b; x1, . . . , xs ∈ Fpn ,
can be expressed in terms of Jacobi sums ([12], Theorem 6.34)

Ns(b) = pn(s−1) +
k−1∑

j1,...,js=1

λj1+...+js(b)J(λj1 , . . . , λjs),

where λ is a multiplicative character of Fpn of order k.
Using the fact that

|J(λj1 , . . . , λjs)| =
{
pn(s−1)/2 if λj1+...+js is non-trivial,
pn(s−2)/2 if λj1+...+js is trivial

([12], Theorem 5.22), we obtain

|Ns(b)− pn(s−1)| ≤ (k − 1)spn(s−1)/2

and in particular

Ns(b) ≥ pn(s−1) − (k − 1)spn(s−1)/2.

Hence,

(14) g(k, pn) ≤ s for pn(s−1) > (k − 1)2s.

For s = 2 this is Small’s [14] result.
If 0 < θ(k − 1)2 ≤ pn for θ > 1, then

s >
ln θ(k − 1)2

ln θ
≥ ln pn

ln(pn/(k − 1)2)
implies pn(s−1) > (k − 1)2s,

and thus

(15) g(k, pn) ≤
⌊

ln θ(k − 1)2

ln θ

⌋
+ 1 for 0 < θ(k − 1)2 ≤ pn; θ > 1.

We define

S(b) =
∑

x∈Fpn
ψ(bxk),

where ψ(x) = e
2πi
p Tr(x) denotes the additive canonical character. We denote

by
∑∗
b a summation in which b 6= 0 runs through a set of representatives,

one from each of the k − 1 non-power classes and one from the kth power
class.

Lemma 1.
∑∗

b

|S(b)|2 = k(k − 1)pn.
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P r o o f. The deduction is the same as for Dodson’s Lemma 2.5.1. We
have ∑

b∈Fpn
|S(b)|2 =

∑

x,y∈Fpn

∑

b∈Fpn
ψ(b(xk − yk)) = pnM,

where M denotes the number of solutions of xk = yk in Fpn . Since M =
1 + (pn − 1)k and S(0) = pn we obtain

∑

b∈F∗
pn

|S(b)|2 = (k − 1)pn(pn − 1).

The lemma follows since S(b) has the same value for each element of the
same class.

Lemma 2. Suppose that xk1 + . . . + xks does not represent every element
of Fpn . Then there exist some c ∈ F∗pn such that

|S(mc)| > pn
(

1−m2 ln pn

s

)
; m = 1, . . . , p− 1.

P r o o f. The proof is a direct extension of Dodson’s proof for Lemma
2.5.2. Verify that

Ns(b) = p−n
∑

x1,...,xs∈Fpn

∑

t∈Fpn
ψ(t(xk1 + . . .+xks−b)) = p−n

∑

t∈Fpn
S(t)sψ(−tb)

and suppose that there exists a b ∈ Fpn such that Ns(b) = 0. Hence we get
∑

t∈F∗
pn

S(t)sψ(−tb) = −pns.

It follows that there exists an element c ∈ F∗pn such that

|S(c)|s ≥ pns

pn − 1
> pn(s−1),

whence

|S(c)| > pn exp
(
− ln pn

s

)
> pn

(
1− ln pn

s

)
,

which is the result for m = 1.
For some real ϑ we have

|S(c)| =
∑

x∈Fpn
exp

(
2πi
p

(Tr(cxk)− ϑ)
)

and thus
∑

x∈Fpn
cos
(

2π
p

(Tr(cxk)− ϑ)
)
> pn

(
1− ln pn

s

)
,
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whence ∑

x∈Fpn
sin2

(
π

p
(Tr(cxk)− ϑ)

)
<
pn ln pn

2s
.

Since |sinmϕ| ≤ |m sinϕ| and Tr(mx) = mTr(x) for m = 1, . . . , p − 1, we
deduce that

∑

x∈Fpn
sin2

(
π

p
(Tr(mcxk)−mϑ)

)
<
m2pn ln pn

2s
,

whence
∑

x∈Fpn
cos
(

2
π

p
(Tr(mcxk)−mϑ)

)
> pn

(
1− m2 ln pn

s

)
,

and thus

|S(mc)| > pn
(

1− m2 ln pn

s

)
.

Lemma 3. Suppose that 2 is a kth power in Fpn and g(k, pn) exists. Then

g(k, pn) < n

(⌊
ln p
ln 2

⌋
+ 1
)
.

P r o o f. If g(k, pn) exists, then there exists a basis {b1, . . . , bn} of kth
powers. Let x = a1b1 + . . . + anbn be any element of Fpn ; 0 ≤ ai < p,
i = 1, . . . , n. For i = 1, . . . , n we can express ai as
ai = ai,0 +ai,12 + . . .+ai,hi2

hi ; ai,j ∈ {0, 1}, j = 0, . . . , hi−1, ai,hi = 1.

Since 2hi ≤ ai < p, x is a sum of at most (h1+1)+. . .+(hn+1) < n
(⌊ ln p

ln 2

⌋
+1
)

kth powers.

Lemma 4. If pn > k2, then g(k, pn) < b8 ln pnc+ 1.

P r o o f. We suppose that for s = b8 ln pnc + 1 there exists an element
b ∈ Fpn that is not of the form b = xk1 + . . .+xks and obtain a contradiction.

By Lemma 2 there exists c ∈ F∗pn such that

|S(c)| > pn
(

1− ln pn

s

)
>

7
8
pn and |S(2c)| > pn

(
1− 4 ln pn

s

)
>

1
2
pn.

If 2 is not a kth power then c and 2c are representatives of two different
classes in the sum of Lemma 1. Since k2 < pn this gives

p2n <

(
7
8

)2

p2n +
(

1
2

)2

p2n ≤ k(k − 1)pn < p2n.

Hence 2 must be a kth power and Lemma 3 implies that b is a sum of
n
(⌊ ln p

ln 2

⌋
+ 1
) ≤ s kth powers.

Corollary 1. If pn/θ ≤ k2 < pn for some θ > 1, then
g(k, pn) ≤ b8 ln θk2c+ 1.
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From Corollary 1 with θ = k2 and (14) with s = 2 we get:

Theorem 1. g(k, pn) ≤ b32 ln kc+ 1 for pn > k2.

This generalizes [6], p. 151, (6).

4. A relation between g(k, pn) and g(d, p)

Theorem 2. If g(k, pn) exists, then

g(k, pn) ≤ ng(d, p); d =
k(

k, p
n−1
p−1

) =
p− 1(

pn−1
k , p− 1

) .

P r o o f. If g(k, pn) exists, then there exists a basis {b1, . . . , bn} of Fpn
over Fp consisting of kth powers.

The kth powers are exactly the pn−1
k th roots of unity. Thus, the kth

powers of elements of F∗pn in F∗p are exactly the
(
pn−1
k , p − 1

)
th roots of

unity which are the dth powers of elements of F∗p. Hence, all elements of Fp
are sums of g(d, p) kth powers of elements of Fpn , so that all elements of
the form bia; a ∈ Fp, i = 1, . . . , n, are sums of g(d, p) kth powers. Thus an
arbitrary element x = a1b1 + . . . + anbn ∈ Fpn ; ai ∈ Fp, i = 1, . . . , n, is a
sum of ng(d, p) kth powers.

5. Extension of the Chowla/Mann/Straus bound

Theorem 3. If g(k, 2n) exists, then g(k, 2n) ≤ (k + 1)/2.

P r o o f. By Theorem 2 we have g(k, 2n) ≤ n, which implies the result
for
(16) n ≤ (k + 1)/2.
Moreover, (14) with s = 2 implies the result for
(17) 2n > (k − 1)4.

Hence it is sufficient to consider 2 ≤ n ≤ 21. By (4), (16) and (17)
we have 12 pairs (k, 2n) to investigate: g(3, 24), g(7, 26), g(5, 28), g(7, 29),
g(11, 210), g(9, 212), g(13, 212), g(15, 212), g(21, 212), g(17, 216), g(27, 218),
and g(33, 220).

For k ≥ 5 and 2n > (k − 1)3 or k ≥ 7 and 23n > (k − 1)8 we get
the result by (14). Hence only g(3, 24) and g(7, 26) are undecided. It is well
known that for pn 6= 4 and 7 every element of Fpn is a sum of two cubes
(see [13]), which implies g(3, 24) = 2. As in the proof of Theorem 2 we get
g(7, 26) ≤ 3g(1, 22), which completes the proof.

Remark. For small k it is shown in [4] that g(k, pn) ≤ bk/2c + 1 for
k < min(p, (pn − 1)/2).

For arbitrary k but p 6= 2, [15], Theorem 1, implies g(k, pn) ≤ bk/2c+ 1
for k < (pn − 1)/2.
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