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1. Introduction. In this paper we prove that the quadratic map
x → f(x) = x2 + c, for c in Q and x in the complex field C, has no rational
4-cycles. The periodic points of f of minimal period 4 are roots of the 12th
degree polynomial,

Φ4(x, c) =
f4(x)− x

f2(x)− x

(see [bo], [mp], [vh1]), where fn denotes the nth iterate of f . We show that
the curve Φ4(x, c) = 0 has no rational points by proving it is modular , being
a model for X1(16), the compactification of the upper half-plane modulo
the action of Γ1(16) =

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0, a ≡ d ≡ 1 (mod 16)

}
, and

then using results of Washington [w1] on the rational points of X1(16).
There are no finite rational points on Φ4(x, c) = 0 even though the curve

Φ4(x, c) = 0 has infinitely many points defined over each p-adic completion
Qp and over R. The latter property is shared by all the curves Φn(x, c) = 0,
n ≥ 1, where Φn(x, c) is the polynomial whose roots are the periodic points
of f of minimal period n:

Φn(x, c) =
∏
d|n

(fd(x)− x)µ(n/d).

Thus the 12th degree curve Φ4(x, c) = 0 provides an affine counterexample
to the Hasse principle, and may be the first in an infinite family of such
examples. The results of [fps] show that f has no rational 5-cycles either,
so that the 30th degree curve Φ5(x, c) = 0 provides another such counterex-
ample.

In a previous version of this paper I asked if the curves Φn(x, c) = 0
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with n ≥ 5 might also be modular, but in [fps] it is shown that Φ5(x, c) = 0
is definitely not modular, and from the arguments of that paper it seems
unlikely that Φn(x, c) = 0 would be modular for n > 5.

This parametrization of the curve Φ4(x, c) = 0 by modular functions
leads to the simple substitution c = −1/(4q2) − 3/4, which we consider
in Section 4. We show in Proposition 5 that all the periodic points of
fq(x) = x2−1/(4q2)−3/4 in the algebraic closure of the Laurent series field
Q((q)) have q-expansions of the form

±1
2q

± 1
2

+
∞∑

k=1

akqk,

where the coefficients ak are rational integers. In particular, when q is a
p-adic integer divisible by p, these expansions give convergent p-adic expres-
sions for the roots of the polynomial Φn(x,−1/(4q2) − 3/4) in Qp. Formal
Laurent series expansions of the periodic points of a quadratic map seem to
have been first considered by Bach [ba]. (Cf. also [tvw], [m3, Lemma 1].)

Furthermore, if {ξ0, ξ1, . . . , ξn−1} is an n-cycle of the map fq in Q((q)),
then

ξi =
εi

2q
+

∞∑
k=0

a
(i)
k qk,

where εi = ±1, the sequence {εk}k≥0 has minimal period n, and the coeffi-
cients a

(i)
k satisfy the following system of recurrences:

εia
(i)
k+1 = a

(i+1)
k −

k∑
j=0

a
(i)
j a

(i)
k−j for k ≥ 1 and i = 0, . . . , n− 1,

with initial conditions a
(i)
0 = εiεi+1/2, a

(i)
1 = εi(a

(i+1)
0 +1/2). The sequence

{a(0)
k } we get in this manner for n = 1 is essentially the sequence of Catalan

numbers, and for n = 3 and 4 the sum of the sequences {a(i)
k } in a given orbit

appears to be an analogue of the Catalan numbers. It would be interesting to
know if, like the Catalan numbers, these sequences have other combinatorial
interpretations.

In Section 4, I give an application of the above q-expansions to computing
various polynomials related to the dynamical system x → x2 + c, including
the polynomials whose roots are the multipliers (or traces) of the orbits of
a given period n.

I am grateful to Joe Silverman for making me aware of the article [w1].
I also thank Franco Vivaldi for his remarks concerning the series expan-
sions in Section 4 and Andrew Bremner for his help in the computations of
Section 2.
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2. Rational points on Φ4(x, c) = 0. If we let f(x) = x2 + c, as above,
the polynomial Φ4(x, c) is given explicitly by

Φ4(x, c) = x12 + 6cx10 + x9 + (3c + 15c2)x8 + 4cx7 + (1 + 12c2 + 20c3)x6

+ (2c + 6c2)x5 + (4c + 3c2 + 18c3 + 15c4)x4 + (1 + 4c2 + 4c3)x3

+ (c + 5c2 + 6c3 + 12c4 + 6c5)x2 + (2c + c2 + 2c3 + c4)x

+ 1 + 2c2 + 3c3 + 3c4 + 3c5 + c6,

and from [mv] the discriminant of Φ4(x, c) is

discx Φ4(x, c) = (5 + 4c)2(5− 8c + 16c2)3(135 + 108c + 144c2 + 64c3)4(1)
= ∆2

4,2∆
3
4,1∆

4
4,4,

where

∆4,1(c) = 5− 8c + 16c2, ∆4,2(c) = −(5 + 4c),
∆4,4(c) = 135 + 108c + 144c2 + 64c3.

By results of [mv], the roots of ∆4,d = 0 for d = 1 or 2 are the values of c for
which one of the 4-cycles collapses to a d-cycle, and the roots of ∆4,4 = 0
are the values of c for which two 4-cycles coincide.

Lemma 1. If p is an odd prime, then Φ4(x, c) is irreducible over Fp.

P r o o f. Let τ4(z) be the polynomial whose roots are the traces of roots of
Φ4(x, c) in an orbit, i.e., the numbers t = α+f(α)+f2(α)+f3(α), Φ4(α, c) =
0. A computation on Mathematica shows that τ4(z) = z3 + (4c + 3)z + 4.
This polynomial is irreducible over Fp. For if τ4(z) were reducible, it could
only have a factor of the form z − a, where a is constant, and then z − a
would have to divide 4z and z3 + 3z + 4, which is impossible if p is odd.
We may therefore apply Proposition 18 of [m3], which states that Φ4(x, c)
is irreducible over Fp for any odd prime p for which τ4(z) is irreducible and
for which two conditions hold:

(i) p does not divide disc ∆4,1(c) = −256;
(ii) some irreducible factor of ∆4,1(c) (mod p) does not divide ∆4,2(c).
Since Res(∆4,1(c),∆4,2(c)) = 27 · 5, it suffices to check condition (ii) for

the prime 5: ∆4,1(c) = c(c + 2), ∆4,2(c) = c (mod 5). This proves the
lemma.

Lemma 1 implies that the equation Φ4(x, c) = 0 defines a function field
K = Q(x, c) of degree 12 over Q(c). Since the map σ : (x, c) → (f(x), c)
is an automorphism of K/Q(c) it follows that the fixed field Kσ of this
automorphism has degree 3 over Q(c). As in Lemma 1, we let z be the trace
of x to the field Kσ:

z = trKσ/Q(c)(x) = (1 + σ + σ2 + σ3)(x)(2)

= (1 + σ)(1 + σ2)(x) = (1 + σ)w,
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where

(3) w = (1 + σ2)(x) = x + f2(x) = x4 + 2cx2 + x + c + c2.

A straightforward computation shows that

z = x8+4cx6+(1+2c+6c2)x4+(1+2c+4c2+4c3)x2+x+3c+2c2+2c3+c4.

The quantity x has degree 12 over Q(c), so this computation shows that
z 6∈ Q(c) and z generates Kσ over Q(c). As was already pointed out in the
proof of Lemma 1, the minimal polynomial of z is h(Z) = Z3+(4c+3)Z+4,
which implies that c = (−z3 − 3z − 4)/(4z). Hence Kσ = Q(z) is rational.
Furthermore, the minimal polynomial of w over Kσ = Q(z) is k(W ) =
W 2 − zW − 1, so that z = (w2 − 1)/w and the intermediate field Q(w)
between Kσ and K is also rational.

By factoring Φ4(x, c) = Φ4(x, (−z3 − 3z− 4)/(4z)) over Kσ we find that
x is a root of the quartic polynomial

p(X, z) = X4 − zX3 − z2 + 3z + 4
2z

X2 +
z3 + 2z2 + 5z + 8

4
X(4)

− z6 + 2z5 + 4z4 + 6z3 − 5z2 − 8z − 16
16z2

.

This gives a generic factorization which is similar to the factorization of
Φ3(x,−(s2 + 7)/4) in [m1, Lemma 4]. Similarly, after replacing z by
(w2−1)/w and factoring over Q(w) we find that x is a root of the quadratic
polynomial

q(x,w) = x2 − wx +
w6 − 2w4 − 2w3 − 2w + 1

4w2(w2 − 1)
.

We have

discx q(x, w) =
(w2 + 1)(w2 + 2w − 1)

w2(w2 − 1)
,

and so Q(x, c) is generated over Q(w) by the square root of this discrimi-
nant. In particular, the genus of Q(x, c) is 2 (cf. [bo] or [m3, Theorem C]).
Summarizing, we have

Proposition 2. The curve defined by Φ4(x, c) = 0 has genus 2. Its
function field is generated by w and ∆, where ∆2 = (w4 − 1)(w2 + 2w − 1)
and x is determined by

(5) x =
w

2
± ∆

2(w3 − w)
.

Moreover , w is given in terms of x and c by equation (3).

Because the discriminant of (w4 − 1)(w2 + 2w − 1) is −221, the above
calculations are also valid in characteristic p, where p is odd, and 2 is the
only prime of bad reduction for the curve Φ4(x, c) = 0.
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In order to show that the curve Φ4(x, c) = 0 is modular, we put u =
−(w + 1)/(w − 1). Then

w =
u− 1
u + 1

, ∆2 = (w4 − 1)(w2 + 2w − 1) =
−16u(u2 + 1)(u2 − 2u− 1)

(u + 1)6
.

Setting v = (u + 1)3∆/4 gives the birationally equivalent curve

(6) v2 = u(u2 + 1)(1 + 2u− u2).

This is the equation given by Washington [w1, p. 774] for the modular curve
X1(16). The above discussion proves

Proposition 3. The curve Φ4(x, c) = 0 is birationally equivalent to the
modular curve X1(16).

Theorem 4. There are no finite rational solutions (x, c) of the equation
Φ4(x, c) = 0. In other words, there are no rational values of c for which the
quadratic map f(x) = x2 + c has a rational 4-cycle.

P r o o f. From (5) we have

x =
u− 1

2(u + 1)
± v

2u(u− 1)
.

Washington [w1] shows that the only rational points on the curve (6) are
the six points (0, 0), (±1,±2) and the point at infinity (see [w1]). Hence the
only prime divisors of the function field of (6) having degree 1 over Q are the
six prime divisors p∞, p, q1, q2, r1, r2 for which, in multiplicative notation,

(u) =
p2

p2
∞

, (v) =
pa

p5
∞

,

(u− 1) =
q1q2

p2
∞

, (u + 1) =
r1r2

p2
∞

,

(v − 2) =
q1r1b1

p5
∞

, (v + 2) =
q2r2b2

p5
∞

.

Here a, b1 and b2 are divisors which do not involve any of the six primes
listed above. To prove the theorem, it suffices to show that each of these six
prime divisors is a pole divisor of x. From the above equations it is clear
that the pole divisor of v/(u(u − 1)) is pp∞q1q2, and the pole divisor of
(u− 1)/(u + 1) is r1r2. Hence the pole divisor of x is exactly the product of
these six primes (agreeing with the fact that [K : Q(x)] = 6). This proves
the theorem.

3. Four-cycles of quadratic maps and modular functions. We
pursue the connection between our curve and X1(16) more fully by using
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Φ1(x) = f(x)− x = x2 − x + c to define the expression

η =
Φ1(f2(x))

Φ1(x)
= x6 + x5 + (3c + 1)x4 + (2c + 1)x3

+ (3c2 + 3c)x2 + (c2 + 2c)x + c3 + 2c2

= (x2 + x + c)(x4 + (2c + 1)x2 + c2 + 2c).

By results of [ms] this expression is a unit in the ring Q[x, c]. (In [ms] it is
called a dynamical unit since it is defined in terms of the dynamics of the
map x → f(x).) This is convenient since η is conjugate to its reciprocal:

σ2(η) =
Φ1(x)

Φ1(f2(x))
=

1
η
.

It follows that η is quartic over Kσ = Q(z), and is expressed in terms of x
and z by

η =
−12− 7z + 6z2 + 2z3 + 2z4 + z5

8
− 4 + 9z + 7z2 + 3z3 + z4

4
x(7)

+
3z − z3

2
x2 + (z + z2)x3.

With this expression the minimal polynomial of η over Kσ is easily seen
to be

hη(Y ) = Y 4 − z2Y 3 − (z3 + 2z2 + 4z + 2)Y 2 − z2Y + 1.

But this is the same polynomial that Washington gives as fH(X) in [w1]:

fH(X) = X4 −H2X3 − (H3 + 2H2 + 4H + 2)X2 −H2X + 1.

The function H is a modular function on Γ0(16), the “Hauptmodul”, which
generates the function field for the curve X0(16):

H(τ) =
2

∑
n∈Z q(2n)2∑

n∈Z q(2n+1)2
(8)

=
1
q

+ 2q3 − q7 + . . . =
∏∞

n=0(1 + q8n+4)2

q
∏∞

n=1(1 + q8n)2
, q = e2πiτ .

The polynomial fH(X) is the minimal polynomial over C(H) of the function

(9) β1(τ) = q−2
∏

n≡±5,±7 (mod 16)
n>0

(1− qn)
∏

n≡±1,±3 (mod 16)
n>0

(1− qn)−1,

and of its “conjugate” function

(10) β2(τ) = −q−1
∏

n≡±3,±7 (mod 16)
n>0

(1− qn)
∏

n≡±1,±5 (mod 16)
n>0

(1− qn)−1,
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both of which are modular functions for Γ1(16). (See [w1]. I use βi in place
of Washington’s notation α∗i . There is a misprint in the definition of the
function α2 in [w1]: the Klein forms k(0, 1/16) and k(0, 3/16) should be
interchanged in the formula for α2 on p. 772. This gives the above product
expansion (10) of β2 = α∗2, in which the positions of the terms with n ≡ ±1
and n ≡ ±3 (mod 16) are reversed from what they are in [w1]. This misprint
does not affect any of Washington’s arguments.)

Thus we can give an explicit parametrization of the curve Φ4(x, c) = 0
by setting z = H(τ), η = β1(τ). From our calculations above we have
immediately

(11) c = c(τ) = −H3 + 3H + 4
4H

.

Using (7) and (4) we also find that

z(z + 2)x = 1
2 (z + 1)(z2 − 2z − 2) + z(z + 1)(z2 + z + 2)η(12)

+ (z + 1)(z2 − z + 1)η2 − zη3.

Hence the curve Φ4(x, c) = 0 can be parametrized in terms of H and β1 by
(11) and

x = x(τ) =
1
2 (H + 1)(H2 − 2H − 2) + H(H + 1)(H2 + H + 2)β1

H(H + 2)
(13)

+
(H + 1)(H2 −H + 1)β2

1 −Hβ3
1

H(H + 2)
.

From (8) and (9), (11) and (12) we find the q-expansions

c(τ) =
−1
4q2

− 3
4
− q − q2 + 2q5 − 1

2
q6 − 5q9 + 2q10 + 10q13(14)

+
1
4
q14 − 18q17 − 5q18 + 32q21 +

1
2
q22 + . . . ,

x(τ) =
1
2q

+
1
2

+ q + q3 − q4 − q5 + q6 − 1
2
q7 + q8 + q9(15)

− q10 − q12 − 2q13 − 1
2
q15 + 3q16 + 4q17 − q18

+ 2q19 − 5q20 − 4q21 + 3q22 + . . .

It is clear from (8), (9), (11) and (13) that c(τ) has coefficients in (1/4)Z and
x(τ) has coefficients in (1/2)Z. By (2), the Hauptmodul H can be recovered
as the trace of the function x(τ):

H(τ) = x + f(x) + f2(x) + f3(x), x = x(τ).

This parametrization raises the question: how does the automorphism σ :
x → f(x) = x2 + c sit inside the automorphisms of C(H,β1)/C(H)? Using
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the above results and [w1, p. 772] it is not hard to check that σ coincides with
the action of the linear fractional transformation τ → (11τ −2)/(−16τ +3):
if q = e2πiτ and A =

(
11 −2

−16 3

)
, then x(τ)|A = x2(τ) + c(τ).

The above parametrization yields q-expansions for one 4-cycle of the map
f . The following proposition shows that there are q-expansions for all of
the n-periodic points of f(x) = x2 + c, for c = −(H3 + 3H + 4)/(4H), for
any n ≥ 1 (cf. [m3, Lemma 1], [ba] and [tvw]).

Proposition 5. Let c be the formal power series

c = − 1
4q2

− 3
4

+
∞∑

k=1

ckqk,

where the ck are rational numbers. If n ≥ 1, then all the n-periodic points
of f(x) = x2 + c in the algebraic closure of Q((q)) lie in Q((q)) and have
the form

(16) ξn = ± 1
2q

± 1
2

+
∞∑

k=1

akqk,

where the coefficients ak (for k ≥ 1) lie in Z[c1, c2, . . .]. In the case where c
is given by (11), the ak lie in (1/2)Z.

P r o o f. We let {ε0, ε1, . . .} be an infinite sequence of ±1’s. We will first
show that there is a unique series ξn of the form (16) for which

(17) f j(ξn) = εj
1
2q

+ O(1) for j ≥ 0,

where O(1) represents a power series in Q[[q]]. If ξn = ε0/(2q) + . . . is a
series of the form (16), then

f(ξn) =
(

ε0
1
2

1
q

+ a0 +
∞∑

k=1

akqk

)2

− 1
4q2

− 3
4

+
∞∑

k=1

ckqk(18)

=
ε0a0

q
+ ε0a1 + a2

0 −
3
4

+
∞∑

k=1

(
ε0ak+1 + ck +

∑
i+j=k

aiaj

)
qk.

For condition (17) to hold with i = 1 we must have a0 = ε0ε1/2. Then for
f2(ξn) to be ε2/(2q)+O(1) it is necessary that ε0a1−1/2 = ±1/2 = ε1ε2/2,
i.e., a1 is determined by ε2 and equals −1, 0 or 1. If the coefficients ak have
been determined for k ≤ i− 1 so that (17) holds for j ≤ i, then

f i(ξn) =
εi

2q
+ b0 +

∞∑
k=1

bkqk,

where

bk = ε0ε1 . . . εi−1ak+i + pk(c1, . . . , ck+i−1, a1, . . . , ak+i−1), k ≥ 0,
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and the polynomial pk has integer coefficients for k ≥ 1. (Note that the
terms involving a0 in

∑
i+j=k aiaj combine to give 2a0ak = ±ak.) Hence

condition (17) with j = i+1, and equation (18) with εi for ε0, b0 for a0 and
b1 for a1, determine b0 = ±1/2 and ai uniquely. This proves existence and
uniqueness of the series ξn.

Now consider a periodic sequence {ε0, ε1, . . .} with period n. The unique
series ξn satisfying (17) must be an n-periodic point of f by virtue of the
equations

f i(fn(ξn)) = εi+n/(2q) + O(1) = εi/(2q) + O(1) = f i(ξn) for i ≥ 0.

Since there are 2n distinct periodic sequences {ε0, ε1, . . .} having period n,
and distinct sequences correspond to different periodic points, all of the 2n

n-periodic points of f are accounted for by this method and lie in Q((q)).
We can also show that the coefficients ak, for k ≥ 1, of any n-periodic

point ξn lie in the ring Z[c1, c2, . . .]. This is clear for k = 1 since a1 = 0
or ±1 from above. Suppose this is true of the coefficients ai for i ≤ k, for
any n-periodic point ξn. If ak and a′k are the coefficients of ξn and f(ξn),
respectively, then from (18) we have ε0ak+1+ck+

∑
i+j=k aiaj = a′k, whence

the claim follows for ak+1.
If the ck all lie in Z, for k ≥ 1, then the same is true of the ak, by this

argument. It remains to prove the claim that ak ∈ (1/2)Z if the series c is
defined by (11). The series ξn and c satisfy the relation Φn(ξn, c) = 0, where

Φn(x, c) =
∏
d|n

(fd(x)− x)µ(n/d) =
∏

i

(x± 1/(2q) + a
(i)
0 + . . .),

and the second product is over the dn = degx Φn(x, c) primitive n-periodic
points of f(x). I claim that (2q)dnΦn(x, c) = An(2qx, 4q2c), where An(u, v)
is a polynomial with coefficients in Z[q] and is monic in u. To see this, it
suffices to show that any term ckxl in Φn satisfies 2k + l ≤ dn. From the
above product for Φn(x, c) it is clear that the leading term of the coefficient
of xl has degree ≥ −(dn − l) in q. Since degq c = −2, it follows that
−2k ≥ −(dn − l), or that 2k + l ≤ dn holds, as claimed.

Because the series 4q2c lies in Z[[q]] it follows that 2qξn is integral over
Z[[q]]. But the ring Z[[q]] is integrally closed in its quotient field Q((q)).
(This follows from the fact that Zp[[q]], as a unique factorization domain, is
integrally closed in Qp((q)), for all primes p; cf. [w2, p. 115 and p. 268].)
Hence 2qξn lies in Z[[q]], i.e., the coefficients of ξn lie in (1/2)Z, as claimed.

A similar proposition can be proved for maps of the form f(x) = x2+qx.

4. The substitution c = −1/(4q2)−3/4 and remarks on computa-
tion. Proposition 5 suggests using the simpler substitution c = −1/(4q2)−
3/4 in place of the substitution c = −(H2 + 3H + 4)/(4H). In this case the
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coefficients ak (k ≥ 1) of all the periodic points of f(x) = x2+c lie in Z. With
a slight variation from the notation in Section 3 we let {ξ0, ξ1, . . . , ξn−1} be
an n-cycle of the map fq(x) = x2 − 1/(4q2) − 3/4 in the field Q((q)), for
n ≥ 1, and we set

ξi =
εi

2q
+

∞∑
k=0

a
(i)
k qk,

where εi = ±1 and the sequence (ε0, ε1, . . . , εn−1) has minimal period n.
Note that the orbit {ξ0, ξ1, . . . , ξn−1} is completely determined by the se-
quence (ε0, ε1, . . . , εn−1), by Proposition 5. Equation (18) and the equation
f(ξi) = ξi+1 imply the following system of recurrences for the coefficients of
the ξi:

(19) εia
(i)
k+1 = a

(i+1)
k −

k∑
j=0

a
(i)
j a

(i)
k−j for k ≥ 1 and i = 0, . . . , n− 1,

with the initial conditions

(20) a
(i)
0 = εiεi+1/2, a

(i)
1 = εi(a

(i+1)
0 + 1/2).

Proposition 6. The curve Φn(x, c) = 0 has infinitely many points de-
fined over the p-adic field Qp, for any prime p.

P r o o f. Set c = −1/(4q2) − 3/4, where q is any p-adic integer divisible
by p. Then the series given above for ξi is clearly convergent in Qp, and
the computations of Proposition 5 show that this series represents a root of
Φn(x, c) in Qp.

It can also be shown that the series ξi is convergent for complex q satis-
fying |q|−1 > M for large enough M , so that Φn(x, c) = 0 also has infinitely
many points defined over R. Alternatively, by [m1, Thm. 4] or [rw], the
rational curve Φ3(x, c) = 0 has infinitely many real points (x, c), and for any
such c, f(x) = x2 + c has real periodic points of all periods, by Sharkovskĭı’s
theorem [de, p. 60]. This implies that Φn(x, c) = 0 violates the Hasse prin-
ciple whenever Φn(x, c) = 0 has no finite rational points. By Theorem 4 and
the results of [fps], this is the case for n = 4 and 5.

The q-series we get with c = −1/(4q2) − 3/4 are particularly useful for
computing various polynomials related to the dynamical system x → x2 +c,
including the multiplier polynomial δn(x, c), whose roots are the multipliers
of the different orbits of a given period n (see [vh1], [vh2], [mv]), and the
trace polynomial τn(x, c), whose roots are the traces of the different orbits.
We now indicate how the polynomial τn(x, c) may be computed.

Using the map fq(x) = x2 − 1/(4q2) − 3/4, find the q-expansion of the
trace zi(q) of the ith orbit of period n, where 1 ≤ i ≤ r and r is the
total number of orbits of period n. This is very easy to do using the above
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recurrences (19)–(20). Then form the polynomial

τ(x, q) =
r∏

i=1

(x− zi(q)).

Since this polynomial, when expressed in terms of x and c, lies in Z[x, c],
no positive powers of q will occur in the coefficients. Therefore it is only
necessary to compute to the term qr−1 in zi(q) in order to get an accurate
result; if the zi(q) are known to the qr−1 term, then the product of d of these
series will be correct to the qr−d term. Once the product τ(x, q) has been
computed, drop all positive powers of q, and then substitute q2 = −1/(4c+3)
in the coefficients of τ(x, q) to get τn(x, c).

For example, with n = 5, we compute

z1(q) =
3
2q

+
1
2

+ q − 2q2 − 3q3 + 4q4 − 4q5 + O(q6) for orbit (++++−),

z2(q) =
1
2q

+
1
2

+ q + 2q2 + 5q3 − 2q4 − 8q5 + O(q6) for orbit (+++−−),

z3(q) =
1
2q

− 3
2
− q + q3 − 2q4 + 2q5 + O(q6) for orbit (++−+−).

Then

τ(x, q) =
3∏

i=1

(x− zi(q))(x− zi(−q))

= x6 + x5 −
(

21
4

+
11
4q2

)
x4

−
(

5
2

+
9

2q2

)
x3 +

(
647
16

+
19
8q2

+
19

16q4

)
x2

+
(

1017
16

+
99
8q2

+
17

16q4

)
x +

1901
64

+
269
64q2

+
79

64q4
− 9

64q6
.

Putting −(4c + 3) for 1/q2 yields the polynomial

τ5(x, c) = x6 + x5 + (3 + 11c)x4 + (11 + 18c)x3 + (44 + 19c + 19c2)x2

+ (36− 24c + 17c2)x + 32 + 28c + 40c2 + 9c3.

A similar computation shows that

τ6(x, c) = x9 − x8 + (2 + 24c)x7 + (14 + 8c)x6 + (49 + 16c + 144c2)x5

+ (175 + 16c + 112c2)x4 + (140− 136c + 160c2 + 256c3)x3

+ (196 + 552c + 480c2 + 256c3)x2

+ (448 + 416c− 304c2 − 256c3)x− 384c− 592c2 − 256c3.
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The fact that discx τn(x, c) is equal to a square times the polynomial
∆n,n(c) (by [m3, Corollary 3 to Theorem B, and Proposition 9d]), whose
roots are the complex values of c for which two n-cycles collide, allows an
efficient means of computing the latter polynomial (see [mv]).

Exactly the same process works for the multiplier polynomial δn(x, c),
except that here the individual periodic points need to be computed to the
term qnr−1 in order that the multiplier, which is a product of n series in
an orbit, may be correct up to the term qn(r−1) (the leading term of the
q-series for a multiplier is ±1/qn; cf. [vh2]).

The q-series can also be used to establish irreducibility in individual
cases. For example, we may use the above series zi(q) to show that τ5(x, c)
is irreducible over any field F of odd characteristic. Since c = −1/(4q2)−3/4
is invariant under q → −q, the same must be true of any irreducible factor
of τ5(x,−1/(4q2) − 3/4). If the latter is reducible, then it must have an
irreducible factor of the form (x − zi(q))(x − zi(−q)). But it is easy to see
that positive powers of q will occur in each of the sums zi(q) + zi(−q):

z1(q) + z1(−q) = 1− 4q2 + 8q4 + . . . ,

z2(q) + z2(−q) = 1 + 4q2 − 4q4 + . . . ,

z3(q) + z3(−q) = − 3− 4q4 + . . .

Hence no combination (x − zi(q))(x − zi(−q)) lies in F [x, c], which proves
the claim that τ5(x, c) is irreducible over F .

As in Section 2 the irreducibility of τ5(x, c) and Proposition 18 of [m3]
may be used to show that Φ5(x, c) is irreducible over any field of odd char-
acteristic (see [mv] for the computation of the polynomials ∆5,1(c) and
∆5,5(c)). A somewhat more elaborate calculation shows the same for τ6(x, c)
and Φ6(x, c) (see [m3]). I conjecture that this is true of the polynomials
τn(x, c) and Φn(x, c), for any n.

5. Cyclic quartic extensions with quadratic automorphisms.
In this section we use the arithmetic of the function field K developed in
Sections 2 and 3 to characterize the quartic fields considered in [w1] by
means of their automorphism polynomials. At the same time this gives a
characterization of the cyclic quartic extensions of Q which have θ → θ2 +a
as an automorphism. The fields that Washington considers are defined using
the polynomial

fh(x) = x4 − h2x3 − (h3 + 2h2 + 4h + 2)x2 − h2x + 1.

Whenever fh(x) is irreducible over F , its roots generate a cyclic quartic
extension of F .
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Theorem 7. Let F be a field whose characteristic is different from 2,
and let N be a cyclic quartic extension of F. The following are equivalent :

(a) There is an h in F so that fh(x) is irreducible over F and N is
generated by a root of fh(x).

(b) There are a in F and θ in N so that N = F (θ) and Gal(N/F ) is
generated by the map θ → θ2 + a.

In other words, a field N is one of Washington’s cyclic quartic fields if
and only if there is a generator of Gal(N/F ) whose automorphism polyno-
mial (in terms of an appropriate generator) is quadratic.

Remark. 1) If an automorphism of Gal(N/F ) is expressible as a quad-
ratic polynomial in some generator of N , then by completing the square it
is easy to see that this polynomial may be taken to have the form x2 + a.

2) The proof will show that the quantities a and h are related by a =
−(h3 + 3h + 4)/(4h).

3) See [m2, Theorem 2] for an analogous result concerning cyclic cubic
extensions.

P r o o f (of Theorem 7). First assume that N = F (θ) is a cyclic quartic
extension of F and that θ → θ2 + a is a generating automorphism for
N/F . Then (θ, a) is a point on the curve Φ4(x, c) = 0; hence, there is a
prime divisor P of the function field K = F (x, c) for which x ≡ θ and
c ≡ a (mod P ). Further, if t = traceF θ, then z ≡ t (mod P ), so that
(t, a) satisfies the equation t3 + (4a + 3)t + 4 = 0. It follows that t 6= 0
by assumption on the characteristic of F . Thus a = −(t3 + 3t + 4)/(4t),
and looking at p(x, z) = 0 (see (4)) modulo P gives that p(θ, t) = 0. Since
[N : F ] = 4, the quartic polynomial p(X, t) is irreducible over F . Defining
the constant ξ to be η (mod P ), we find that ft(ξ) = 0, and from (7) it is
clear that ξ ∈ N . We need to show that ft(X) is irreducible over F also.
If it is not irreducible, then ξ has degree 1 or 2 over F . This is impossible
if t 6= −2, by (12) (θ would also have degree 1 or 2 over F ). Moreover, t
cannot be −2, since p(x,−2) = (x2+x−1/4)2 is reducible. Hence N = F (ξ),
showing that (b) implies (a).

To prove (a) implies (b), assume that N = F (ξ), where fh(ξ) = 0 and
fh(X) is irreducible over F . Then h cannot be a zero of the discriminant
h2(h2 + 4)3(h + 2)6 of fh(X), since otherwise fh(X) would be reducible.
Hence the solution (η, z) = (ξ, h) on fz(η) = 0 defines a prime divisor P of
K = F (z, η) = F (x, c). Thus we can define θ by x ≡ θ (mod P ), or

h(h + 2)θ = 1
2 (h + 1)(h2 − 2h− 2) + h(h + 1)(h2 + h + 2)ξ

+ (h + 1)(h2 − h + 1)ξ2 − hξ3,

and we have p(θ, h) = 0. Considering (7) mod P shows that θ generates
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N over F , so that p(X, h) is irreducible over F . Finally, p(X, z) divides
p(X2 + c, z) = p(X2 − (z3 + 3z + 4)/(4z), z) identically in X and z, so that
the roots of p(X, h) are just the elements of the orbit of θ under f(x) = x2+a,
where a = −(h3 +3h+4)/(4h). Hence θ → θ2 +a generates Gal(N/F ), and
this completes the proof of the theorem.
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