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Fitting ideals of class groups in a Zp-extension

by

Pietro Cornacchia (Asti)

1. Introduction. In Section 2 of this paper we prove a purely algebraic
result on the structure of torsion Iwasawa modules. Let p be a prime number,
let Γ be a profinite group isomorphic to Zp, and let χ : ∆→ Q∗p be a p-adic
character of a finite abelian group ∆ of order prime to p. We denote by
Oχ the discrete valuation ring Zp(χ). Let Λ = Oχ[[Γ ]] ∼= Oχ[[T ]] be the
Iwasawa algebra. The ring Λ is a local regular ring of dimension 2, with
maximal ideal m = (p, T ). For each n ∈ N, we set ωn = (1 + T )p

n − 1 ∈ Λ.
For any Λ-module M , we write Mn for M/ωnM . We denote by Gn the
unique quotient of Γ which is cyclic of order pn and by Gm,n the subgroup
of Gm of order pm−n. The symbol Ĥ denotes Tate cohomology groups. We
denote by FitR the Fitting ideals over a ring R. We prove the following

Theorem 1. Let M be a Λ-module which is finitely generated as a Zp-
module. Suppose that Mn has finite order for all n. Let T (M) be the torsion
Zp-submodule of M , and let charM be its characteristic ideal. We have

(1) T (M) ∼= Ĥi(Gm,n,Mm) for any i ∈ Z, provided that n and m − n
are sufficiently large,

(2) FitΛM = FitΛ T (M) · charM,

(3) #Mn = #T (M)n ·#(Λn/(charM)Λn).

Roughly speaking, the cohomology groups at finite levels determine the
Zp-torsion submodule T (M), while the characteristic ideal gives informa-
tion on the Zp-free part of M , that is, the quotient M/T (M). This infor-
mation is enough to determine the Fitting ideal of M and the orders of the
modules Mn. Observe that the condition that M is finitely generated as a
Zp-module is equivalent to saying that its Iwasawa µ-invariant is zero. This
is often the case for Λ-modules arising from arithmetic applications.
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In Section 3 we apply Theorem 1 to an arithmetic situation. Let K be a
totally real abelian number field with Galois group ∆ such that p -#∆. Sup-
pose that there is only one prime ℘ of K above p. If p = 2, we also require
thatK has prime power conductor. Let {Kn} be the cyclotomic Zp-extension
of K. Let χ be a nontrivial p-adic character χ : ∆ → Q∗p. For any Z[∆]-
module D, we define its χ-part (D⊗ZZp)⊗Zp[∆]Oχ. For more information on
χ-parts, see for example [3]. LetAn andBn denote respectively the χ-parts of
the ideal class group and of the group of units modulo cyclotomic units of the
field Kn. The group of cyclotomic units will be defined in Section 3. Let Λn ∼=
Λ/ωnΛ ∼= Oχ[Gal(Kn/K)]. M. Ozaki [15, 16] already studied the structure
of An and Bn as Λn-modules. We prove an equality of Fitting ideals.

Theorem 2. FitΛnAn = FitΛnBn for all n ∈ N.

In order to prove this we consider two Λ-modules: the projective limit A
of the groups An, and the projective limit C of the Pontryagin duals of the
groups Bn. We take duals, because the module C has functorial properties
analogous to those of A. We show that both A and C satisfy the hypothesis
of Theorem 1. Class field theory allows us to compare the cohomology groups
of An and Bn. The main conjecture of Iwasawa theory and the theory of
adjoints give us that A and C have the same characteristic ideal. Applying
Theorem 1(2) and descending at finite levels we obtain our claim. As an
immediate application of Theorem 1(3) we show that #An = #Bn for all
n (Theorem 3). This is a particular case of Theorem 9.2 of [12] (see also
Theorem 4.14 of [7]), but the proof in our situation is much simpler. In the
last section we make some remarks about the results obtained.

I would like to thank René Schoof for stimulating my interest in this
problem and Cornelius Greither for his preprint [8] and for helpful discus-
sions.

2. Fitting ideals of Λ-modules. In this section, we prove Theorem 1.
In order to proceed to the proof, we review some algebraic facts. Let F be
a torsion Λ-module which is a free finitely generated Zp-module. Since Λ is
regular of dimension 2, the Auslander–Buchsbaum formula implies that F
has projective dimension 1 over Λ. In particular, we have a resolution

(1) 0→ Λr1
λ→ Λr2 → F → 0.

In fact every projective Λ-module is free, because Λ is local, and we must
also have r1 = r2 = r because F is Λ-torsion. The Λ-Fitting ideal of F is
the principal ideal generated by the determinant of the matrix associated
with λ. For all height one prime ideals ℘ of Λ, the localization Λ℘ is a
principal ideal domain and (FitΛ F )℘ = FitΛ℘ F℘ = (charF )℘. The ideals
FitΛ F and charF are both principal and their localizations at all height
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one prime ideals of Λ coincide. This implies FitΛ F = charF . See also the
appendix of [14]. We now need a lemma.

Lemma 1. Let F be a Λ-module which is a free finitely generated Zp-
module. Let ω ∈ Λ and suppose that the distinguished polynomials associated
with charF and ω have no common zeros. Then TorΛ1 (Λ/ωΛ, F ) = 0.

P r o o f. Consider the short exact sequence induced by multiplication
with ω

0→ Λ
ω→ Λ→ Λ/ωΛ→ 0.

Tensoring with F induces an exact sequence

0→ TorΛ1 (Λ/ωΛ, F )→ F
ω→ F → F/ωF → 0.

Since TorΛ1 (Λ/ωΛ, F ) can be viewed as a submodule of F , it is Zp-free.
But since TorΛ1 (Λ/ωΛ, F ) is killed by both ω and charF , the hypothe-
sis implies that there exists a power of p which annihilates it. Therefore
TorΛ1 (Λ/ωΛ, F ) = 0 as we wanted to show.

Let now M be as in the theorem. We have a short exact sequence

(2) 0→ T (M)→M → F → 0

where F is a torsion Λ-module which is free and finitely generated as a Zp-
module. Let m ∈ N. Since M/ωmM has finite order, charM and ωm have
no common zeros. Therefore the above lemma applies to F . In particular,
tensoring (1) with Λ/ωmΛ we get a free Oχ[Gm] resolution of Fm, which
shows that Fm is Gm,n-cohomologically trivial, for all n ≤ m. We now
tensor (2) by Λ/ωmΛ. Using Lemma 1 we obtain

(3) 0→ T (M)m →Mm → Fm → 0.

Taking cohomology we get

(4) Ĥi(Gm,n,Mm) ∼= Ĥi(Gm,n, T (M)m)

for all m ≥ n and i ∈ Z. Since M is finitely generated as a Zp-module, the
torsion module T (M) has finite order. This implies that Γ p

n

acts trivially
on T (M), for sufficiently large n. Let now m > n be such that the norm
map NGm,n (sum of the elements of Gm,n) kills T (M). For example, it is
enough that pm−n is larger than #T (M). For such values of m and n, we
have Ĥi(Gm,n, T (M)m) ∼= T (M)m for all i ∈ Z. But since m > n, we
have T (M)m ∼= T (M). This, together with (4), implies the first assertion of
Theorem 1.

We now prove the second assertion. I am grateful to Cornelius Greither
for showing me the following argument. Start with sequence (2) and take
a resolution of F as in (1). Take a surjective map Λk → T (M), and let K
be its kernel. The map Λr → F extends to a map Λr → M and we get
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a surjective map Λk ⊕ Λr → M whose kernel will be denoted by K1. The
snake lemma gives us a commutative diagram with exact rows and columns

0 0 0

↓ ↓ ↓
0 → K → K1 → Λr → 0

↓ ↓ ↓
0 → Λk → Λk ⊕ Λr → Λr → 0

↓ ↓ ↓
0 → T (M) → M → F → 0

↓ ↓ ↓
0 0 0

The top row is split and we have K1
∼= K ⊕ Λr. After choosing a set

of generators for K, the map γ1 : K1 → Λk ⊕ Λr can be represented by a
matrix. The top left block B represents the map K → Λk, the bottom left
block is 0, and the bottom right block is a square matrix A representing the
map λ : Λr → Λr. It is clear that the Fitting ideal of M is generated by
the products of detA times an r × r minor of B. Since detA generates the
Fitting ideal of F , and the r × r minors of B generate the Fitting ideal of
T (M), the second assertion of Theorem 1 follows.

To prove the third assertion, consider the exact sequence (3). Since the
order is multiplicative in exact sequences, we only need to show that #Fm =
#(Λm/(charM)Λm). Since FitΛ F = (charM), we have FitΛm Fm =
(charM)Λm. In particular, it is a principal ideal. From [1, Ch. III, Sec. 9.4,
Prop. 6], we have

#Fm = #(Λm/FitΛmFm) = #(Λm/(charM)Λm).

The proof is now complete.

3. Ideal class groups and units modulo cyclotomic units. In this
section we apply Theorem 1 in order to study the ideal class groups in a
cyclotomic Zp-extension. Let K be a real abelian number field. Suppose
that p - [K : Q], and that in the ring of integers of K there is only one
prime above p. If p = 2, we require that the conductor of K is a prime
power. We denote by ∆ the Galois group of K over Q. Let χ : ∆→ Q∗p be a
nontrivial p-adic character of ∆. Let Kn be the unique field of degree pn over
K contained in the cyclotomic Zp-extension of K. We set Gn = Gal(Kn/K)
for all n ∈ N and Gm,n = Gal(Km/Kn) for all m ≥ n ≥ 0.
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The group of cyclotomic units for an abelian totally real number field
has been defined by W. Sinnott [19, Sec. 4]. Since we also want to deal with
the case p = 2, we slightly modify Sinnott’s definition. Let L be any real
abelian field. For all r ∈ N, let ζr be a primitive rth root of unity. We define
the group Cyc(Er) of cyclotomic elements of the field Er = Q(ζr + ζ−1

r ) as
the group of units of the form Z[Gal(Er/Q)](1 − ζr). Let L(r) = Er ∩ L.
We define the group of cyclotomic units of L as the group generated by the
norms NEr

L(r) Cyc(Er) for all r ∈ N. The difference with Sinnott’s definition is
that we take norms of the cyclotomic numbers from the real subfields of the
cyclotomic fields instead of the norms from the cyclotomic fields themselves.
Our group of cyclotomic units contains Sinnott’s one, and the index of the
two groups is a power of 2. In this way, we eliminate extra powers of 2 in
the index formulae relating class groups with unit groups.

For all m ∈ N, we denote by Cycm the χ-part of the cyclotomic units
of Km. Let fm be the conductor of Km. Observe that when p = 2 then fm
is divisible by at most two primes. By a theorem of H. Bass (Theorem 8.9
of [20] and the remarks on pp. 260–261) the only relations in the χ-part of
the cyclotomic units of Q(ζfm) are the distribution ones. This is the only
place where we use our hypothesis on K in the case p = 2. Since p - [K : Q],
the Oχ-module Cyc0 is cyclic. Since there is only one prime above p in the
ring of integers of K, and χ is not trivial, the group Cycm is a free rank one
Oχ[Gm]-module. In fact let

ηm = N
Q(ζfm+ζ−1

fm
)

Km
(1− ζfm)(χ).

The distribution relations for cyclotomic units imply that for k ≤ m, the
group Cyck is generated up to exponents χ(Frobp)− 1 by the norm of ηm,
where Frobp ∈ ∆ is the Frobenius element relative to p. Since there is only
one prime of K above p, the element χ(Frobp)−1 is an Oχ-unit. This means
that the map

Oχ[Gm]→ Cycm
defined by x → ηxm is surjective. Since both Oχ[Gm] and Cycm are free
Zp-modules of the same rank, the above map is an isomorphism.

We denote by An the χ-parts of the ideal class groups of Kn and by Bn
the χ-parts of the groups of units modulo cyclotomic units of the ring of
integers of Kn. For each n we define the group

Cn = HomZ(Bn,Qp/Zp).

Observe that #Bn = #Cn. We give Cn the structure of a Gn-module by
setting σϕ(b) = ϕ(σb) for all σ ∈ Gn, ϕ ∈ Cn and b ∈ Bn. For all pairs
of natural numbers m ≥ n there are norm maps Nm,n : Am → An and
maps jm,n : Bn → Bm. The maps jm,n induce maps Cm → Cn. We denote
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by A and by C the inverse limits of the projective systems {An} and {Cn}
respectively. These are compact Λ-modules. We need to know the relation
between the An and A and between the Cn and C respectively. Let γ be
a topological generator of Γ (it corresponds to 1 + T in the identification
Λ ∼= Oχ[[T ]]). We set γn = γp

n

.

Proposition 1. For all n, we have An ∼= A/A1−γn .

This is a classical result in Iwasawa theory. One uses the fact that in K
there is only one prime above p and that this prime is totally ramified in
the cyclotomic Zp-extension of K. See [20, Lemma 13.15].

We have a similar result for the groups Cn:

Proposition 2. For all n, we have Cn ∼= C/C1−γn .

P r o o f. Let m be any integer with m ≥ n, and let O∗m be the χ-part of
the units of Km. We have a short exact sequence

(5) 0→ Cycm → O∗m → Bm → 0.

Since Cycm ∼= Oχ[Gm], we get H1(Gm,n,Cycm) ∼= 0. Therefore after tak-
ing Gm,n-invariants, (5) stays exact and we get Bn ∼= B

Gm,n
m . Let σm,n be a

generator for Gm,n. We have a short exact sequence

0→ Bn → Bm
1−σm,n−−−−→B1−σm,n

m → 0.

We apply the contravariant exact functor Hom(−,Qp/Zp) and get

0→ Hom(B1−σm,n
m ,Qp/Zp)→ Cm → Cn → 0.

Now observe that Hom(B1−σm,n
m ,Qp/Zp) ∼= C

1−σm,n
m . This follows by dual-

izing the injection B
1−σm,n
m → Bm. We obtain the exact sequence

0→ C1−σm,n
m → Cm → Cn → 0.

We take the inverse limit with respect to m in the above sequence. Since the
inverse system Cm is surjective, the above exact sequence stays exact in the
limit. From the compactness of C, we see that the inverse limit of C1−σm,n

m

is exactly C1−γn . We finally get

0→ C1−γn → C → Cn → 0.

This concludes the proof.

The analogy of Proposition 2 with Proposition 1 is the reason why we
work with the groups Cn instead of Bn. Observe that by the theorem of
Ferrero–Washington A is a finitely generated Zp-module. By Proposition 2
together with Nakayama’s lemma, we deduce that C is a finitely generated
Λ-module. Combining this with Theorems 4.1 and 6.1 of [19] it follows that
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the µ invariant of C is zero. Therefore C is finitely generated over Zp too,
and is a torsion Λ-module. Therefore we can apply Theorem 1 to A and C.

Proposition 3. T (C) ∼= Hom(T (A),Qp/Zp).

P r o o f. Let m ≥ n ≥ 0. By Theorem 1, we are reduced to showing that
Ĥ0(Gm,n, Am) and Ĥ1(Gm,n, Cm) are dual abelian groups. By cohomologi-
cal duality, it is enough to show that for all i ∈ Z,

(6) Ĥi(Gm,n, Am) ∼= Ĥi(Gm,n, Bm).

This is proved in Proposition 2.6 of [11]. We repeat the proof. Let Cm denote
the χ-part of the idele class group of Km. Let Um denote the χ-part of the
unit ideles of Km. We have an exact sequence

0→ Bm → Um/Cycm → Cm → Am → 0.

Since χ is not the trivial character, the Gm,n-cohomology of Cm is trivial [18,
Sec. 4]. Since there is only one ramified prime in Km/Kn (the one above p),
the Gm,n-cohomology of Um is also trivial. On the other hand Cycm also
has trivial Gm,n-cohomology, because it is a freeOχ[Gm]-module. We deduce
that the groups Ĥi(Gm,n,Um/Cycm) are trivial. Therefore we obtain

Ĥi(Gm,n, Am) ∼= Ĥi+2(Gm,n, Bm).

Since the group Gm,n is cyclic, Tate cohomology is periodic with period 2,
and we finally get (6).

For a result similar to Proposition 3, see Theorem 2 of [10].
We now want to show that A and C have the same characteristic ideal.

In order to do that, we briefly recall the results we need from the theory
of adjoints [9, Sec. 1.3], [20, Sec. 15.5]. Observe that in the literature the
results are stated in the case Oχ = Zp, but they naturally extend to Oχ. Let
M be a noetherian torsion Λ-module. For all height one prime ideals ℘ of
Λ, we denote by Λ℘ the localization of Λ at ℘. Let ψ : M →⊕

℘(M ⊗ Λ℘)
be the natural map. We define the adjoint α(M) of M by

α(M) = HomZp(Cokerψ,Qp/Zp).

We define a Λ-module structure on α(M) by setting ξφ(x) = φ(ξx) for
ξ ∈ Λ, φ ∈ α(M), and x ∈ Cokerψ. The module α(M) is quasi-isomorphic
to M , therefore

(7) charM = charα(M).

We need an explicit formula for α(M). Let m be the maximal ideal of
Λ. Given M , there exists a sequence πn of nonzero elements of Λ such that
π0 ∈ m, πn+1 ∈ πnm and such that πn and charM have no common zeros
for all n ∈ N.
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Proposition 4. Let M be a noetherian torsion Λ-module. Let {πn} be
a sequence of elements in Λ as above. Then

α(M) ∼= lim←−HomZp(M/πnM,Qp/Zp)
where the inverse limit is taken with respect to the morphisms induced by

M/πnM →M/πmM, m ≥ n ≥ 0,

x mod πnM → (πm/πn)x mod πmM.

We now apply Proposition 4 to M = C. Since Cn ∼= C/ωnC is finite for
all n ∈ N, it follows that charC and ωn have no common zeros. Therefore
we can take {πn} = {ωn}. We obviously have HomZp(C/ωnC,Qp/Zp) ∼= Bn.
Therefore we obtain

(8) α(C) ∼= lim←−Bn
where the limit is taken with respect to the norm maps Bm → Bn with
m ≥ n. We now have

(9) charC = charα(C) = char lim←−Bn = charA.

The first equality is from (7), the second by (8), the third by the main
conjecture [17, 7] of Iwasawa theory. Since dual Λ-modules have the same
Fitting ideal [14, Appendix, Prop. 3], Proposition 3 implies that

(10) FitΛ T (A) = FitΛ T (C).

Denote by Λn the ring Λ/ωnΛ ∼= Oχ[Gn]. We can now prove Theorem 2
of the introduction.

Proof of Theorem 2. Combining (9) with (10) and applying Theorem
1(2), we obtain FitΛA = FitΛ C. From that and from Propositions 1 and 2,
we also obtain

FitΛnAn = FitΛnCn.

But, since Cn and Bn are duals, by [14, Appendix, Prop. 1] we get FitΛnCn
= FitΛnBn. This concludes the proof.

Theorem 3. For all n, #An = #Bn = #Cn.

P r o o f. Since obviously #Bn = #Cn, it is enough to prove that #An =
#Cn. By (9) and Theorem 1(3), we only need to show #T (A)n = #T (C)n.
By Proposition 3, we have

#T (C)n = # Hom(T (A),Qp/Zp)n = # Hom(T (A)Γ
pn

,Qp/Zp)

= #T (A)Γ
pn

= #T (A)n.

4. Concluding remarks. In this last section we make some observa-
tions. We keep the notations of the previous section.
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Proposition 5. The Λ-module C is cyclic.

P r o o f. Because of Proposition 2 and Nakayama’s lemma applied to the
local ring Λ, it is enough to prove that C0 is a cyclic Λ-module. This is
equivalent to saying that C0 is a cyclic Λ0

∼= Oχ module. Since B0
∼= C0

as Oχ-modules, it remains to show that B0 is cyclic over Oχ. Let O∗0 be
the χ-part of the units in the field K. Recall that O∗0 contains the free one-
dimensionalOχ-submodule of finite index Cyc0, and is torsion free because χ
is not trivial. By the structure theorem on finitely generated modules over a
principal ideal domain, O∗0 is a free one-dimensional Oχ-module. Therefore
B0, which is a quotient of O∗0 , is cyclic.

By the above proposition, the structure of C is determined by FitΛ C.
In particular, for all n, we have

(11) Cn ∼= Λn/(FitΛ C)Λn.

The module A is not cyclic in general, but if A0 is cyclic then A is cyclic
by Nakayama’s lemma, and An ∼= Cn as Galois modules for all n ∈ N. In
general, Theorem 2 puts some constraints on the structure of An. In fact,
using (11) and Theorem 3, we see that

#An = #Cn = #Λn/FitΛnCn = #Λn/FitΛnAn.

Let mn be the maximal ideal of Λn. The Λn-module Mn = Λn/mn×Λn/mn

has m2
n as Fitting ideal, and #Mn 6= #(Λn/FitΛnMn) for n > 0. Therefore

for n > 0 we cannot have An ∼= Λn/mn × Λn/mn.

With the same techniques of Section 3 we can prove Theorem 2 in the
case p = 2 with An replaced by the χ-part of the narrow ideal class group
of Kn and with Bn replaced by the χ-part of the group of totally positive
units of Kn modulo the square of cyclotomic units.

It is expected that in general the λ-invariant of the Iwasawa module A is
zero. This question has been studied by R. Greenberg [6]. In our terminology,
the condition λ = 0 for the Λ-module A is equivalent to A = T (A). In the
case A = T (A), there exists an algorithm [11] to compute FitΛ C.

One could try to generalize Theorem 2 to real abelian fields of prime
power conductor such that p | [K : Q]. Let P be the p-Sylow subgroup of
Gal(K/Q). We now have to substitute Λ ∼= Oχ[[T ]] with Λ[P ] ∼= Oχ[P ][[T ]].
This is no more a local regular ring and in general there exist Λ[P ]-modules
which are Zp-free, but have infinite projective dimension. If one assumes
an affirmative answer to Greenberg’s question, that is to say, A = T (A)
(hence also C = T (C)), then the techniques of this paper can be adapted
to prove again Theorem 2 in this situation. For a study of Λ[P ]-modules,
see [8].



88 P. Cornacchia

References

[1] N. Bourbaki, Algebra I, Springer, New York, 1989.
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