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1. Introduction. In recent years our understanding of various problems
of additive type involving sums of kth powers of integers has been advanced
by corresponding progress in estimates for exponential sums. The bulk of
these improvements have been engineered through the use of smooth Weyl
sums and their close kin (see, for example, [8], [11] and [12]). In a recent
memoir [4] devoted to various problems involving sums of biquadrates, the
authors applied the identity

(1.1) x4 + y4 + (x+ y)4 = 2(x2 + xy + y2)2

to obtain new conclusions beyond the reach of the current technology in-
volving smooth Weyl sums. The key observation of [4] is that the identity
(1.1) enables sums of three biquadrates to be treated as a square, at least
in so far as mean value estimates for exponential sums are concerned. Thus
we were able to employ in our investigations the extensive apparatus of the
Hardy–Littlewood method devoted to mixed problems involving squares, bi-
quadrates and so on. The purpose of this paper is to develop an analogous
treatment for sums of fifth powers and related polynomials. Although for
problems involving pure fifth powers our conclusions are not as sharp as
those attainable through the use of smooth Weyl sums, in contrast to the
latter methods we are able to treat sums of quite general quintic polynomials.

We illustrate our ideas with two theorems, the first of which we establish
in Section 3.
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Theorem 1. Let φ(x) denote a quintic polynomial with rational coef-
ficients taking integral values at integer values of the argument x. When
X is a large real number , write N (X) for the number of integers n with
1 ≤ n ≤ X which are represented in the form

(1.2) n = φ(x1) + . . .+ φ(x10),

with xi ∈ N (1 ≤ i ≤ 10) or with −xi ∈ N (1 ≤ i ≤ 10). Then for each
positive number ε one has

N (X)�ε X
1−ε.

We note that in the special case in which the polynomials φ under consid-
eration are pure fifth powers, one can establish sharper conclusions through
the use of smooth Weyl sums (see [1], [10] and [11]). In particular, the lat-
ter techniques may be wielded to show that sums of 9 fifth powers have
positive density. For arbitrary polynomials, the sharpest bounds hitherto
available stem from the diminishing ranges techniques of Thanigasalam [6]
and Vaughan [7], although such bounds are recorded in the literature only
in the special case where the polynomials are fifth powers. In the latter
circumstances, for example, [7, (3.20)] is tantamount to the lower bound

N (X)� X0.99575.

We investigate Waring’s problem for quintic polynomials in Sections 4–9.

Theorem 2. Let φ(x) and ψ(x) denote polynomials with rational coeffi-
cients taking integral values at integer values of the argument x, and having
respective degrees 5 and k ≥ 2. Let L denote the set of positive integers, n,
for which the congruence

(1.3)
20∑

i=1

φ(xi) + ψ(x21) ≡ n (mod q)

has a solution for all q ∈ N. Then the set L has positive density , and every
sufficiently large integer n ∈ L can be written in the form

(1.4) n =
20∑

i=1

φ(xi) + ψ(x21),

with xi ∈ Z (1 ≤ i ≤ 21).

We note that in the special case in which the polynomials φ and ψ are
both fifth powers, the number of summands may be reduced from 21 to 17
(see [11]). Moreover, the aforementioned techniques of Thanigasalam [6] and
Vaughan [7] should permit the conclusion of Theorem 2 to be established
whenever ψ(x) has degree k ≤ 6. However, the sharpest result along these
lines available in the literature is apparently due to H. B. Yu [13], who proves
an analogue of Theorem 2 which shows that whenever n is a sufficiently large
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natural number satisfying a local solubility hypothesis analogous to (1.3),
then n can be written in the form

n =
24∑

i=1

φ(xi)

(we note that Yu also remarks on the possibility of applying the methods of
Vaughan [7] so as to reduce the number of summands from 24 to 21). As an
immediate consequence of Theorem 2 above one may reduce the number of
summands in the latter representation from 24 to 21.

A few remarks are in order concerning the local solubility condition im-
plicit in Theorem 2. Suppose that Φ(x) is a quintic polynomial with rational
coefficients taking integral values at integer values of the argument x. We
can easily assume that Φ(0) = 0. Write dΦ for the highest common factor
amongst all the values of Φ(x) as x varies over Z. Then whenever dΦ > 1,
any integer represented as a sum of values of Φ(x) must necessarily be di-
visible by dΦ. For the purposes of this discussion, therefore, it makes sense
to define a new polynomial Φ̃(x) = d−1

Φ Φ(x) with dΦ̃ = 1, and to consider
the representation of integers n in the form

(1.5) n = Φ̃(x1) + . . .+ Φ̃(xs).

When

(1.6) Φ̃(x) = 16F5(x)− 8F4(x) + 4F3(x)− 2F2(x) + F1(x),

in which

Fi(x) = x(x− 1) . . . (x− i+ 1)/i! (1 ≤ i ≤ 5),

it follows from work of Hua [3] that whenever s < 31, there is a certain arith-
metic progression of integers n for which the equation (1.5) is locally insolu-
ble. Consequently, at least when the polynomial ψ(x) is equal to the quintic
polynomial φ(x), the local solubility condition described in the statement of
Theorem 2 is necessary. However, rather recent work of Yu [13] shows that
Hua’s example (1.6) is essentially the only barrier to local solubility when
s ≥ 16. Thus, if φ(x) satisfies the hypothesis that dφ = 1, and

(1.7) 2 -φ(1) and φ(x) ≡ φ(1)Φ̃(x) (mod 32),

in which Φ̃(x) is defined by (1.6), then the congruence

(1.8) n ≡ φ(x1) + . . .+ φ(xs) (mod q)

is soluble for each natural number q whenever s ≥ 31, and when s < 31 there
is an arithmetic progression of integers, and a modulus q, for which (1.8)
is insoluble. Meanwhile, if the polynomial φ(x) does not satisfy (1.7), then
the congruence (1.8) is soluble for each natural number q whenever s ≥ 16.
Consequently, for polynomials φ(x) satisfying dφ = 1, the local solubility
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condition implicit in (1.3) may be ignored provided only that φ(x) does not
satisfy (1.7) (and, moreover, this conclusion is independent of the polynomial
ψ(x)).

In its simplest form, the polynomial identity underlying our proofs of
Theorems 1 and 2 takes the shape

(h+ x)5 + (h+ y)5 + (h+ x+ y)5 + (h− x)5(1.9)

+ (h− y)5 + (h− x− y)5

= 2h(10(x2 + xy + y2)2 + 20h2(x2 + xy + y2) + 3h4),

an identity which one can recognise as being closely related to (1.1) through
the observation that for a fixed h, the polynomial (h+ x)5 + (h− x)5 takes
the quartic shape at4 + bt2 + c amenable to (1.1). Our idea is to use (1.9) to
specialise 6 fifth powers (or more generally 6 quintic polynomials) in such
a way that their sum may be treated as a cubic polynomial with a linear
factor. Although one of the variables occurring in the latter polynomial
is restricted to the values of the binary quadratic form x2 + xy + y2, the
integers represented by the latter polynomial are rather dense amongst the
rational integers. Thus, by making use of the identity (1.9) within suitable
mean values of exponential sums, one may wield the tools applicable to such
mixed problems familiar to practitioners of the Hardy–Littlewood method.
Of course, in order to handle quite general quintic polynomials one must
adjust the scheme described above, but it transpires that such adjustments
are not fatal to our proposed course of action.

Throughout, the letter k denotes a fixed integer exceeding 1. We adopt
the convention that whenever the letter ε appears in a statement, either
explicitly or implicitly, then we assert that the statement holds for every
sufficiently small positive number ε. The “value” of ε may consequently
change from statement to statement. The implicit constants in Vinogradov’s
notation � and �, and in Landau’s notation, will depend at most on k,
ε and the coefficients of the polynomials φ and ψ, unless stated otherwise.
When x is a real number, we write [x] for the greatest integer not exceeding
x, and when n is an integer and p is a prime number we write pr ‖n when
pr |n but pr+1 -n. Finally, we adopt the convention throughout that any
variable denoted by the letter p is implicitly assumed to be a prime number.

2. Preliminaries. We begin with some simplifying observations which
ease our subsequent deliberations. We also exploit this opportunity to record
some notation. Let φ(x) and ψ(x) be polynomials satisfying the hypotheses
of Theorem 2 (of course, the hypotheses of the statement of Theorem 1 are
then automatically satisfied by φ(x)). Let c be the least natural number with
the property that cψ(x) ∈ Z[x], and when q is a natural number, define the
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integer λ(q) = λ(q, ψ) by

(2.1) λ(q, ψ) = q
∏

p|q
pt‖c

pt.

Let b be the least natural number with the property that bφ(x) ∈ Z[x]. Then
on observing that the representation (1.4) of the integer n is equivalent to

20∑

j=1

b(φ(xj)− φ(0)) + bψ(x) = b(n− 20φ(0)),

it is evident that there is no loss of generality in assuming that the polyno-
mial φ(x) has integer coefficients, and that φ(0) = 0. We may also suppose
without loss of generality that the leading coefficient of φ(x) is positive, for
we may replace φ(x) by φ(−x) whenever necessary.

Having made the transformations described in the previous paragraph,
let d denote the least common divisor of the coefficients of φ(x). Suppose
that the integer n which we seek to represent in the form (1.4) satisfies
n ≡ r (mod d), with 1 ≤ r ≤ d. Then in view of the presumed solubility of
the congruence (1.3), there exists an integer s with 1 ≤ s ≤ λ(d) such that
whenever x ≡ s (mod λ(d)), one has ψ(x) ≡ r (mod d). But if we write

ψ1(x) = d−1(ψ(λ(d)x+ s)− r),
then we find that the representation (1.4) of n is derived from the represen-
tation of the integer (n− r)/d provided by

20∑

j=1

d−1φ(xj) + ψ1(x21) = (n− r)/d.

We may consequently suppose without loss of generality that d = 1, by
simply replacing φ(x) by φ(x)/d, and ψ(x) by ψ1(x).

In conclusion, it suffices to establish Theorem 2 when φ(x) takes the
form

(2.2) φ(x) = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x,

where aj ∈ Z (1 ≤ j ≤ 5), a5 > 0 and (a1, a2, a3, a4, a5) = 1. We henceforth
assume that the latter is indeed the case. Note that we may make the same
simplifications also in the proof of Theorem 1. Also, the positivity of the
density of L for the general case follows easily from that when the polynomial
φ(x) takes the simplified form (2.2).

Before moving on to establish Theorems 1 and 2, we first record some
additional notation. We take N to be a large real parameter, and consider
large real numbers P and Q (which we fix later) satisfying

(2.3) N1/5 � P � N1/5 and N1/k � Q� N1/k.
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We write

Φ(x, y, z) = φ(z + x) + φ(z + y) + φ(z + x+ y)(2.4)

+ φ(z − x) + φ(z − y) + φ(z − x− y),

and define the exponential sums

(2.5) f(α) =
∑

P/2<x≤P
e(φ(x)α), g(α) =

∑
√
Q<y≤Q

e(ψ(y)α)

and

(2.6) F (α) =
∑

1≤x,y≤P/3

∑

P<z≤2P

e(Φ(x, y, z)α).

3. A mean value estimate. We next establish a mean value estimate
fundamental to our proof of Theorem 2, and from which Theorem 1 follows
as an immediate corollary.

Lemma 3.1. One has
1\
0

|F (α)2f(α)8| dα� P 9+ε.

P r o o f. On applying Cauchy’s inequality to (2.6), we obtain

(3.1) |F (α)|2 ≤ PF1(α),

where

F1(α) =
∑

P<z≤2P

∣∣∣
∑

1≤x,y≤P/3
e(Φ(x, y, z)α)

∣∣∣
2

=
∑

P<z≤2P

∑

1≤x1,y1≤P/3

∑

1≤x2,y2≤P/3
e(Φ1(x,y, z)α),

and

(3.2) Φ1(x,y, z) = Φ(x1, y1, z)− Φ(x2, y2, z).

It therefore follows from (3.1) and orthogonality that

(3.3)
1\
0

|F (α)2f(α)8| dα ≤ P
1\
0

F1(α)|f(α)|8 dα = PV1(P ),

where V1(P ) denotes the number of solutions of the diophantine equation

(3.4) Φ1(x,y, z) =
4∑

j=1

(φ(vj)− φ(wj)),

with

(3.5) 1 ≤ xi, yi ≤ P/3 (i = 1, 2),
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and

(3.6) P < z ≤ 2P, P/2 < vj , wj ≤ P (1 ≤ j ≤ 4).

We next note that as a consequence of Taylor’s theorem, one has

φ(z + x) + φ(z − x) = 2φ(z) + φ′′(z)x2 + 1
12φ
′′′′(z)x4.

Then on recalling the identity (1.1) together with the simpler identity

x2 + y2 + (x+ y)2 = 2(x2 + xy + y2),

we deduce from (2.4) that

(3.7) Φ(x, y, z) = 6φ(z) + 2φ′′(z)(x2 + xy+ y2) + 1
6φ
′′′′(z)(x2 + xy+ y2)2.

We remark that the identity (3.7) constitutes the promised generalisation
of (1.9). But on substituting (3.7) into (3.2), we obtain

Φ1(x,y, z) = 2(u1 − u2)(φ′′(z) + 2(5a5z + a4)(u1 + u2)),

where
uj = x2

j + xjyj + y2
j (j = 1, 2).

Consequently, on noting that for any positive integer n, the number of solu-
tions of the diophantine equation x2+xy+y2 = n is O(nε) (see, for example,
[2]), we deduce from (3.4)–(3.6) that

(3.8) V1(P )� P εV2(P ),

where V2(P ) denotes the number of solutions of the diophantine equation

(3.9) s (φ′′(z) + t(5a5z + a4)) =
4∑

j=1

(φ(vj)− φ(wj))

with z, v and w satisfying (3.6), and with

(3.10) |s| ≤ P 2 and 1 ≤ t ≤ 2P 2.

We divide into cases, writing V3(P ) for the number of solutions of (3.9)
counted by V2(P ) in which

(3.11)
4∑

j=1

(φ(vj)− φ(wj))

is zero, and writing V4(P ) for the corresponding number of solutions in
which the expression (3.11) is non-zero. Thus, on recalling (3.3) and (3.8),
one has

(3.12)
1\
0

|F (α)2f(α)8| dα� P 1+ε(V3(P ) + V4(P )).

Consider first the solutions s, t, z,v,w counted by V3(P ). From (3.6),
the number of available choices for z is at most P , and, moreover, since P is
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large, 5a5z + a4 is necessarily non-zero. But if the expression (3.11) is zero,
then it follows from (3.9) either that s is zero, or else that the integer

t = − φ′′(z)
5a5z + a4

is non-zero. Hence it follows from (3.10) that for a fixed choice of z, the
total number of available choices for s and t counted by V3(P ) is O(P 2).
But the number of choices for v and w for which the expression (3.11) is
zero may be bounded by means of Hua’s Lemma (see [9, Lemma 2.5]). Thus
one obtains

(3.13) V3(P )� P 3
1\
0

|f(α)|8 dα� P 8+ε.

Next consider the solutions s, t, z,v,w counted by V4(P ). Plainly, there
are at most P 8 possible choices of v and w for which the expression (3.11)
is non-zero. Fix any one such, and write m for the corresponding value of
(3.11). From (3.9) we see that s is a divisor of the non-zero integer m,
whence by elementary estimates for the divisor function there are at most
O(P ε) possible choices for s. Fix any one such value of s, and substitute
z̃ = 5a5z + a4 into (3.9). With a modicum of computation, one obtains

(3.14) z̃(4z̃2 +A1 + 25a2
5t) = 25a2

5m/s−A0,

where

A0 = 8a3
4 − 30a3a4a5 + 50a2a

2
5 and A1 = 30a3a5 − 12a2

4.

Since z is large, one sees that z̃ is large, and so the positivity of t ensures
that the expression on the left hand side of (3.14) is non-zero. Consequently,
the integer m′ = 25a2

5m/s − A0 is also non-zero. But z̃ is a divisor of this
fixed integer m′, whence there are at most O(P ε) possible choices for z̃,
and hence for z. For any fixed choice of z, one may determine t from the
non-trivial linear equation following from (3.14), namely

t = (m′/z̃ −A1 − 4z̃2)/(25a2
5).

Thus we may conclude that the total number of solutions s, t, z,v,w of this
type is

(3.15) V4(P )� P 8(P ε)2 = P 8+2ε.

Recalling (3.12), the conclusion of the lemma is obtained by combining (3.13)
and (3.15).

We are now equipped to complete the proof of Theorem 1 in routine
manner. Recall the notation concluding Section 2, and fix P by taking P =
1
4 (N/a5)1/5. When n is a positive integer, denote by r(n) the number of
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representations of n in the form

n = Φ(x, y, z) +
4∑

i=1

φ(vi),

with

(3.16) 1 ≤ x, y ≤ P/3, P < z ≤ 2P, P/2 < vi ≤ P (1 ≤ i ≤ 4).

Then on recalling the notation of the statement of Theorem 1, it follows
from (2.4) that whenever r(n) > 0, one has that n is represented in the
form (1.2). Thus

(3.17) N (N) ≥
∑

1≤n≤N
r(n)>0

1.

But on considering the underlying diophantine equation, from Lemma 3.1
one has

(3.18)
∑

1≤n≤N
r(n)2 =

1\
0

|F (α)2f(α)8| dα� P 9+ε.

Since, moreover, it follows from Cauchy’s inequality that
( ∑

1≤n≤N
r(n)

)2
≤
( ∑

1≤n≤N
r(n)>0

1
)( ∑

1≤n≤N
r(n)2

)
,

we deduce from (3.16)–(3.18) that

N (N)� (P 7)2(P 9+ε)−1 � N1−ε.

This completes the proof of Theorem 1.

4. An auxiliary singular series: initial skirmishing. Rather than
employing the exponential sum F (α) defined by (2.6) in a full frontal attack
on the proof of Theorem 2 through the medium of the Hardy–Littlewood
method, we aim to outflank the difficulties inherent in handling such ex-
ponential sums by considering the major arc contribution arising from the
problem of representing the integer n in the form

n =
8∑

i=1

φ(xi) + ψ(x9).

In principle, only conventional weapons are required in such a manoeuvre,
but difficulties associated with controlling the singular series require extra
discipline to achieve a successful conclusion. The object of the next four
sections is to seize control of this singular series.
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Before proceeding further, we arm ourselves with some notation useful in
subsequent operations. Recall the notation λ(q) = λ(q, ψ) defined in (2.1).
When q ∈ N and a ∈ Z, write

(4.1) S(q, a) =
q∑
r=1

e(aφ(r)/q) and S1(q, a) =
λ(q)∑
r=1

e(aψ(r)/q).

Lemma 4.1. When a ∈ Z and q ∈ N satisfy (a, q) = 1, one has

S(q, a)� q4/5+ε and S1(q, a)� q1−1/k+ε.

Further , when p is a prime number and p - a, then

S(p, a)� p1/2 and S1(p, a)� p1/2.

P r o o f. The estimates provided by the lemma are by now well known;
see, for example, [9, Theorem 7.1] and [5, Corollary 2F of Chapter II].

When q and m are natural numbers, define next

(4.2) S(q,m) = q−8λ(q)−1
q∑
a=1

(a,q)=1

S(q, a)8S1(q, a)e(−am/q),

and when p is a prime number, write

(4.3) T (p,m) =
∞∑

h=0

S(ph,m).

We then define the auxiliary singular series S(m) central to our subsequent
investigations by

(4.4) S(m) =
∞∑
q=1

S(q,m).

Finally, denote by Mm(q) the number of solutions of the congruence

(4.5) φ(w1) + . . .+ φ(w8) + ψ(w9) ≡ m (mod q),

with

1 ≤ wj ≤ q (1 ≤ j ≤ 8) and 1 ≤ w9 ≤ λ(q).

As experts will anticipate, the singular series S(m) has sufficiently rapid
convergence that it may be expressed as a product of local densities, as we
now show.

Lemma 4.2. Let m be an integer. Then the following hold.

(i) For each prime number p the series T (p,m) is absolutely convergent ,
and

T (p,m) = 1 +O(p−6/5).
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Moreover , the sum S(m) is absolutely convergent , the product
∏
p T (p,m)

is absolutely convergent , and

S(m) =
∏
p

T (p,m).

(ii) One has
∞∑
q=1

q1/k|S(q,m)| � 1.

(iii) One has 0 ≤ S(m)� 1.

P r o o f. Let m be a natural number. Then when p is a prime number, it
follows from (4.2) together with Lemma 4.1 that

(4.6) S(p,m)� p−7/2.

When q is an arbitrary natural number, meanwhile, again from Lemma 4.1,

(4.7) S(q,m)� q−9(q)(q4/5+ε)8(q1−1/k+ε)� q−3/5−1/k+9ε.

It therefore follows from (4.3) that T (p,m) is absolutely convergent. Further,
on substituting (4.6) and (4.7) into (4.3), we deduce that

T (p,m)− 1� p−7/2 +
∞∑

h=2

p−(3/5+1/k−ε)h � p−6/5,

and consequently the standard theory of Euler products shows that∏
p T (p,m) is absolutely convergent. But the standard theory of exponential

sums (see, for example, [9, §2.6]) shows that S(q,m) is a multiplicative func-
tion of q. Then on recalling (4.4), the absolute convergence of

∏
p T (p,m) en-

sures that S(m) is absolutely convergent, and also that S(m) =
∏
p T (p,m).

This completes the proof of part (i) of the lemma.
In order to establish part (ii), we have only to note that by (4.6) and

(4.7), for each prime p one has
∞∑

h=0

ph/k|S(ph,m)| − 1� p1/k−7/2 +
∞∑

h=2

p−(3/5−ε)h � p2ε−6/5,

and hence the multiplicativity of S(q,m) ensures that
∞∑
q=1

q1/k|S(q,m)| =
∏
p

( ∞∑

h=0

ph/k|S(ph,m)|
)
� 1.

Finally, on recalling (4.1), the argument of the proof of Lemma 2.12 of
[9] shows that for every natural number H, one has

(4.8)
H∑

h=0

S(ph,m) = p−7H(λ(pH))−1Mm(pH).
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On recalling (4.3) and (4.5), therefore, we find that for each prime p, one
has T (p,m) ≥ 0, whence also

S(m) =
∏
p

T (p,m) ≥ 0.

The proof of part (iii) of the lemma is completed on noting that part (ii)
leads immediately from (4.4) to the upper bound S(m)� 1.

The estimates provided by Lemma 4.2 suffice for our analysis of the local
factors of the singular series for larger primes, but for smaller primes we
must work harder. The following lemma shows that the existence of suitable
solutions to the congruence (4.5) suffices to provide a useful lower bound on
T (p,m).

Lemma 4.3. Let % be a positive integer , and suppose that γ and δ are
non-negative integers with % = 2γ+1−δ and γ ≥ 2δ−1. Let m be a natural
number and p be a prime number. Suppose that when q = p%, the congruence
(4.5) is soluble with

(4.9) pγ ‖φ′(w1) and pδ | 1
2φ
′′(w1).

Then
T (p,m)� p−8%.

P r o o f. Suppose that the hypotheses of the statement of the lemma are
satisfied, and that for some integer l and a natural number H with H ≥ %,
one has φ(w1) ≡ l (mod pH). Write

α = p−H(φ(w1)− l) and β = p−γφ′(w1).

Then α ∈ Z, and in view of (4.9) also β ∈ Z and (β, p) = 1. Thus, since

(4.10) H − γ ≥ γ + 1− δ ≥ max{1, δ},
it follows from the Binomial Theorem that for each integer t one has

φ(w1 + pH−γt)

≡ φ(w1) + pH−γφ′(w1)t+ p2(H−γ)φ
′′(w1)

2
t2 (mod p3(H−γ)),

whence by (4.9),

(4.11) φ(w1 + pH−γt) ≡ l + (α+ βt)pH (mod p2(H−γ)+δ).

But (β, p) = 1, so that one may solve the congruence α + βt ≡ 0 (mod p),
say with t = t. Moreover, by (4.10) one has

2(H − γ) + δ ≥ (H − γ + δ) + (γ + 1− δ) = H + 1,

and thus by (4.11),

(4.12) φ(w1 + pH−γt) ≡ l (mod pH+1).
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Applying the Binomial Theorem again, one obtains from (4.9) also

φ′(w1 + pH−γt) ≡ φ′(w1) + pH−γφ′′(w1)t ≡ φ′(w1) (mod pH−γ+δ).

Thus, on noting that (4.10) yields H − γ + δ ≥ γ + 1, it follows from (4.9)
that

(4.13) pγ ‖φ′(w1 + pH−γt).

Further, again applying the Binomial Theorem in combination with (4.9)
and (4.10), one has

(4.14) 1
2φ
′′(w1 + pH−γt) ≡ 1

2φ
′′(w1) ≡ 0 (mod pδ).

On collecting together (4.12)–(4.14), we conclude that if the congruence

(4.15) φ(w1) ≡ l (mod pH)

has a solution w1 satisfying (4.9) for some H with H ≥ 2γ + 1 − δ, then
such holds also with H replaced by H + 1. Consequently, by induction on
H, we deduce that the congruence (4.15) has a solution w1 satisfying (4.9)
for every integer H with H ≥ 2γ + 1− δ.

Suppose next that when q = p%, the congruence (4.5) has a solution
w satisfying the hypotheses of the statement of the lemma. We take vj
(2 ≤ j ≤ 9) to be any integers with

(4.16) vj ≡ wj (mod p%) (2 ≤ j ≤ 8) and v9 ≡ w9 (mod λ(p%)).

Write

l = m−
8∑

j=2

φ(vj)− ψ(v9).

Then by assumption, the congruence φ(w1) ≡ l (mod p%) is satisfied with
the conditions (4.9) holding. Thus, as a consequence of the discussion of
the previous paragraph, the congruence φ(ξ) ≡ l (mod pH) has a solution
ξ for every integer H with H ≥ %. Summing over all possible choices of vj
(2 ≤ j ≤ 9) satisfying (4.16), we deduce that for each H ≥ % one has

Mm(pH) ≥ (pH−%)7(λ(pH)/λ(p%)) = p8(H−%).

We therefore conclude from (4.8) that for each H ≥ %, one has
H∑

h=0

S(ph,m) ≥ pH−8%(λ(pH))−1 � p−8%,

and so it follows from (4.3) that T (p,m)� p−8%. This concludes the proof
of the lemma.

5. An auxiliary singular series: the contribution of the larger
primes. We must now grapple with the problem of showing that the singular
series S(m) is bounded away from zero. We begin by dismissing the larger
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primes in routine manner, following a little notation. When s and q are
natural numbers, denote by K(q, s) = K(q, s;φ) the set of residue classes
modulo q that can be represented in the form

(5.1) φ(w1) + . . .+ φ(ws)

with wj ∈ Z (1 ≤ j ≤ s). Similarly, denote by K∗(q, s) = K∗(q, s;φ) the
set of residue classes modulo q that are represented in the form (5.1) with
wj ∈ Z (1 ≤ j ≤ s) and (φ′(w1), q) = 1. We then define

K(q, s) = card(K(q, s)) and K∗(q, s) = card(K∗(q, s)).
Note that in view of the vanishing of the constant term of φ(x) provided by
(2.2), we may suppose that 0 ∈ K(q, s).

Lemma 5.1. For each natural number m, one has
∏

p≥7

T (p,m)� 1.

P r o o f. By Lemma 4.2(i), one has for each natural number m and prime
p the estimate

T (p,m) = 1 +O(p−6/5),

and thus there is a real number C exceeding 7, depending only on k and the
coefficients of φ and ψ, such that

(5.2)
∏

p≥C
T (p,m) ≥ 1/2.

In order to establish the conclusion of the lemma, therefore, it suffices to
consider primes p with 7 ≤ p < C.

Suppose that p is a prime with p ≥ 7. On recalling (2.2), we see that for
each integer n, the congruence φ(x) ≡ n (mod p) has at most 5 solutions
modulo p. Moreover, since p > 5 the congruence φ′(x) ≡ 0 (mod p) has at
most 4 solutions modulo p. Consequently,

K(p, 1) ≥ p/5 and K∗(p, 1) ≥ (p− 4)/5,

so that since p ≥ 7,

K(p, 1) ≥ [p/5] + 1 and K∗(p, 1) ≥ [p/5].

On applying the Cauchy–Davenport theorem (see [9, Lemma 2.14]), we
therefore deduce that

(5.3) K∗(p, 8) ≥ min{p, κ(p)},
where

(5.4) κ(p) = K∗(p, 1) + 7(K(p, 1)− 1) ≥ 8[p/5].
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But it follows from (5.4) that whenever p ≥ 11, one has

κ(p) ≥ 8(p− 4)/5 ≥ p,
and moreover a direct calculation from (5.4) yields κ(7) ≥ 8. Thus we deduce
from (5.3) that K∗(p, 8) = p, whence for every integer m, the hypotheses of
Lemma 4.3 are satisfied with γ = δ = 0. We therefore conclude from Lemma
4.3 that whenever p ≥ 7 one has T (p,m)� p−8, whence

(5.5)
∏

7≤p<C
T (p,m)� 1.

The conclusion of the lemma follows by combining (5.2) and (5.5).

We conclude this section by considering the contribution of the prime 5.

Lemma 5.2. Let L be defined as in the statement of Theorem 2. Then
whenever n ∈ L, for any integers xj , yj , zj (j = 1, 2) one has

T (5, n− Φ(x1, y1, z1)− Φ(x2, y2, z2))� 1.

P r o o f. We suppose first that K(5, 1) ≥ 2, and further that for some
integer x one has 5 -φ′(x). Then by the Cauchy–Davenport theorem (see
[9, Lemma 2.14]) we have K(5, 4) = 5, whence K∗(5, 8) = 5. Thus we
deduce that the hypotheses of Lemma 4.3 are satisfied with γ = δ = 0. We
may therefore conclude from Lemma 4.3 that for every integer m, one has
T (5,m)� 1.

Next suppose that K(5, 1) = 1, and that for some integer x one has
5 -φ′(x). In view of the vanishing of the constant term in (2.2), we therefore
see that 5 |φ(y) for every integer y, whence by (2.4) it follows that whenever
u, v, w ∈ Z, one has

(5.6) 5 |Φ(u, v, w).

Notice that when n ∈ L, the solubility of the congruence (1.3), together
with the observation that 5 |φ(xi) (1 ≤ i ≤ 20), implies that the congruence
ψ(ξ) ≡ n (mod 5) is soluble. We are therefore forced to conclude that when
n ∈ L and m ≡ n (mod 5), then the congruence (4.5) is soluble when q = 5,
and, moreover, soluble with 5 -φ′(w1). Thus the hypotheses of Lemma 4.3
are satisfied with γ = δ = 0, whence by Lemma 4.3 one has T (5,m) � 1.
In this case, therefore, it follows from (5.6) that whenever n ∈ L, for any
integers xj , yj , zj (j = 1, 2), one has

T (5, n− Φ(x1, y1, z1)− Φ(x2, y2, z2))� 1.

Finally, we suppose that 5 |φ′(x) for every integer x. By referring to
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(2.2), a simple calculation yields

(5.7)

a1 = φ′(0),

24a2 = 8(φ′(1)− φ′(−1))− (φ′(2)− φ′(−2)),

72a3 = 16(φ′(1) + φ′(−1))− (φ′(2) + φ′(−2))− 30φ′(0),

48a4 = −2(φ′(1)− φ′(−1)) + (φ′(2)− φ′(−2)),

120a5 = −4(φ′(1) + φ′(−1)) + (φ′(2) + φ′(−2)) + 6φ′(0).

Since by hypothesis we have 5 |φ′(x) for each x, it follows from (5.7) that
5 | aj for 1 ≤ j ≤ 4. By our assumption following (2.2) that (a1, a2, a3, a4, a5)
= 1, therefore, we have also 5 - a5. Suppose next that 25 |φ′(x) for each
integer x. Then the last equation of (5.7) implies that 5 | a5, a contradiction
which ensures the existence of an integer x with 25 -φ′(x). On referring to
(2.2) once again, moreover, one finds that the above observations ensure that
for every integer x, one has 5 | 1

2φ
′′(x). But φ(x) ≡ a5x

5 ≡ a5x (mod 5), so
that K(25, 1) contains at least 4 residue classes coprime to 5, as well as the
zero residue class. Consequently, an application of the Cauchy–Davenport
theorem (see [9, Lemma 2.14]) yields K(25, 6) = 25. In view of the discussion
contained in this paragraph, therefore, it follows that for every integer m,
the hypotheses of Lemma 4.3 are satisfied with γ = δ = 1 and p = 5.
We therefore deduce from Lemma 4.3 that for every integer m one has
T (5,m)� 1.

Collecting together the conclusions of the preceding three paragraphs
completes the proof of the lemma.

6. An auxiliary singular series: the contribution of the prime 3.
When it comes to estimating T (p,m) for p = 2 and 3, we pay heavily for
the use of the identity (3.7), and our arguments become considerably more
complicated than those of the previous section. We tackle the prime 3 in
this section, beginning with a lemma of a somewhat combinatorial flavour
concerning the simultaneous solubility modulo 3 of the congruences

(6.1)
tj + rj ≡ u6j−5, tj + sj ≡ u6j−3, tj + rj + sj ≡ u6j−1,

tj − rj ≡ u6j−4, tj − sj ≡ u6j−2, tj − rj − sj ≡ u6j .

Lemma 6.1. Suppose that u1, . . . , u16 are integers. Then there exists
a relabelling of the ui (1 ≤ i ≤ 16), and there exist integers rj , sj , tj
(j = 1, 2), with the property that for j = 1, 2 the congruences (6.1) are
satisfied simultaneously modulo 3.

P r o o f. Suppose that u1, . . . , u16 are integers. By the pigeon-hole princi-
ple, amongst any 7 integers there must be three integers mutually congruent
modulo 3. Consequently, by applying this observation twice and relabelling
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the ui (1 ≤ i ≤ 16), we may suppose that for j = 1, 2 one has

u6j−5 ≡ u6j−3 ≡ u6j (mod 3) and u6j−4 ≡ u6j−2 ≡ u6j−1 (mod 3).

Then the dozen congruences (6.1) are satisfied modulo 3 with

rj = sj = 2u6j−5 + u6j−4 and tj = −(u6j−5 + u6j−4) (j = 1, 2).

This completes the proof of the lemma.

We now estimate T (3,m).

Lemma 6.2. Let L be defined as in the statement of Theorem 2, and
suppose that n ∈ L. Then there exist integers rj , sj , tj (j = 1, 2) such that
whenever xj , yj , zj (j = 1, 2) are integers satisfying the congruences

(6.2) xj ≡ rj (mod 3), yj ≡ sj (mod 3) and zj ≡ tj (mod 3)

(j = 1, 2),

one has

(6.3) T (3, n− Φ(x1, y1, z1)− Φ(x2, y2, z2))� 1.

P r o o f. We divide our argument into a number of cases.

(a) Suppose that 3 -φ′(x) for some integer x. On the one hand, if
K(3, 1) ≥ 2, then it follows from the Cauchy–Davenport theorem (see [9,
Lemma 2.14]) that K(3, 2) = 3, whence for every integer m the hypotheses
of Lemma 4.3 are satisfied with γ = δ = 0 and p = 3. We therefore conclude
from Lemma 4.3 that in such circumstances one has T (3,m)� 1 for every
integer m. On the other hand, if K(3, 1) = 1, then it follows from (2.2) that
for every integer x one has 3 |φ(x). Moreover, similarly, it follows from (2.4)
that for all integers u, v, w one has

(6.4) 3 |Φ(u, v, w).

Notice that when n ∈ L, the solubility of the congruence (1.3), together
with the observation that 3 |φ(xi) (1 ≤ i ≤ 20), implies that the congruence
ψ(ξ) ≡ n (mod 3) is soluble. We are therefore forced to conclude that when
n ∈ L and m ≡ n (mod 3), then the congruence (4.5) is soluble when
q = 3, and further, that it is soluble with 3 -φ′(w1). Thus the hypotheses of
Lemma 4.3 are satisfied with γ = δ = 0 and p = 3, whence by Lemma 4.3 one
has T (3,m)� 1. In this case, therefore, it follows from (6.4) that whenever
n ∈ L, the lower bound (6.3) holds for any integers xj , yj , zj (j = 1, 2).

(b) Suppose that 3 |φ′(x) for every integer x, but that for some integer y
one has 9 -φ′(y). Observe that it follows from (2.2) that for every integer x
one has

φ′(x) ≡ 2a5x
2 + (a4 − a2)x+ a1 ≡ 0 (mod 3),
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whence by our initial hypothesis one necessarily has

(6.5) a5 ≡ a1 ≡ 0 (mod 3) and a4 ≡ a2 (mod 3).

In particular, for every integer x,

(6.6) φ′′(x) = 20a5x
3 + 12a4x

2 + 6a3x+ 2a2 ≡ 2a4 (mod 3).

We subdivide our argument into further cases, according to whether or not
3 | a4.

(i) Suppose that 3 | a4. In view of (6.5) one has 3 | aj for j = 1, 2, 4, 5,
so that by our assumption following (2.2) that (a5, a4, a3, a2, a1) = 1, one
has 3 - a3. Consequently, it follows from (2.2) that φ(x) ≡ a3x (mod 3) for
every integer x. Since 3 - a3, therefore, the set K(9, 1) contains at least 2
residue classes coprime to 3, as well as the zero residue class. Then an
application of the Cauchy–Davenport theorem (see [9, Lemma 2.14]) shows
that K(9, 4) = 9. But by hypothesis, the congruence (6.6) implies that for
every integer x one has 3 |φ′′(x). We therefore conclude that for every integer
m the hypotheses of Lemma 4.3 are satisfied with γ = δ = 1 and p = 3.
It therefore follows from Lemma 4.3 that T (3,m) � 1 for each integer m,
whence the lower bound (6.3) again follows.

(ii) Suppose that 3 - a4. In view of (2.2) and (6.5), one has

(6.7) φ(±3) ≡ 9(a4 ± a1/3) (mod 27),

whence, on recalling our hypothesis that 3 - a4, it follows that we may choose
an integer ξ0 with ξ0 = ±3 such that

(6.8) 9 ‖φ(ξ0).

Next we observe that if both φ(1) and φ(−1) are divisible by 3, then in view
of (2.2) and (6.5) one has a3 ≡ a4 (mod 3) and a3 ≡ −a4 (mod 3), whence
3 | a4. This contradicts our initial hypothesis, so plainly one has either

(6.9) 3 -φ(1) or 3 -φ(−1).

Also, we observe that by (6.6) and the Binomial Theorem, one has for eve-
ry ξ,

φ(ξ ± 3) ≡ φ(ξ)± 3φ′(ξ) + 9φ′′(ξ)/2 (mod 27)(6.10)

≡ φ(ξ) + 9(a4 ± φ′(ξ)/3) (mod 27).

Let ω denote the choice of ±1 which in (6.9) provides that 3 -φ(ω). Then
we claim that there exists a residue ξ, with ξ ≡ ω (mod 3), which satisfies

(6.11) φ′(ξ) ≡ a1 (mod 9).

In order to verify this assertion, write

(6.12) g(ξ) = (φ′(ξ)− a1)/ξ = 2a2 + 3a3ξ + 4a4ξ
2 + 5a5ξ

3,
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and observe that the claimed solubility of the congruence (6.11) is equivalent
to the solubility, with ξ ≡ ω (mod 3), of the congruence g(ξ) ≡ 0 (mod 9).
But in view of (6.5), it follows from (6.12) that g(ω) ≡ 0 (mod 3). Moreover,
again from (6.12), one has

g′(ω) = 3a3 + 8a4ω + 15a5ω
2 ≡ 8a4ω (mod 3),

whence by hypothesis one has 3 - g′(ω). Thus we may conclude from Hensel’s
Lemma that there exists a residue ξ with ξ ≡ ω (mod 3) and g(ξ) ≡ 0
(mod 9). This establishes the desired solubility of (6.11).

Take ξ1 to be the choice of ξ supplied by the solubility of (6.11), and note
that in view of the choice of ω in the previous paragraph, one has 3 -φ(ξ1).
Then by (6.7), (6.10) and (6.11), one has

φ(ξ1 + ξ0) ≡ φ(ξ1) + φ(ξ0) (mod 27).

On recalling (6.8), therefore, we may conclude that there exist integers
ξ0, ξ1, ξ2 with ξ0 = ±3, 3 - ξ1, ξ2 = ξ1 + ξ0 and

(6.13) 9 ‖φ(ξ0), 3 -φ(ξ1), φ(ξ2) ≡ φ(ξ1) + φ(ξ0) (mod 27).

Observe next that every residue class modulo 27 is represented in the
form µφ(ξ1) + νφ(ξ0) with 0 ≤ µ ≤ 8 and 1 ≤ ν ≤ 3. In order to confirm
this observation, it suffices to show that whenever

(6.14) µφ(ξ1) + νφ(ξ0) ≡ µ′φ(ξ1) + ν′φ(ξ0) (mod 27),

with 0 ≤ µ, µ′ ≤ 8 and 1 ≤ ν, ν′ ≤ 3, then necessarily µ = µ′ and ν = ν′.
But in view of (6.13), the congruence (6.14) implies that (µ− µ′)φ(ξ1) ≡ 0
(mod 9), whence µ = µ′, and thus also (ν − ν′)φ(ξ0) ≡ 0 (mod 27), whence
ν = ν′. Consequently, given any integer l, there exist integers µ and ν
satisfying

l ≡ µφ(ξ1) + νφ(ξ0) (mod 27),

and with 0 ≤ µ ≤ 8 and 1 ≤ ν ≤ 3. On making use of (6.13) we may
reformulate the latter congruence in the shapes

l ≡ (µ− ν)φ(ξ1) + νφ(ξ2) + (8− µ)φ(0) (mod 27)

and

l ≡ µφ(ξ1) + νφ(ξ0) + (8− µ− ν)φ(0) (mod 27).

It follows that the congruence

(6.15) φ(w1) + . . .+ φ(w8) ≡ l (mod 27)

has the solution w given by

wj =

{
ξ1 when 1 ≤ j ≤ µ− ν,
ξ2 when µ− ν + 1 ≤ j ≤ µ,
0 when µ+ 1 ≤ j ≤ 8,
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whenever µ > ν, and has the solution w given by

wj =

{
ξ1 when 1 ≤ j ≤ µ,
ξ0 when µ+ 1 ≤ j ≤ µ+ ν,
0 when µ+ ν + 1 ≤ j ≤ 8,

when µ ≤ ν.
Consider now the solution of (6.15) provided by the above choices of w.

In the former instance, one necessarily has µ− ν ≥ 1 and ν ≥ 1, and in the
latter instance one has ν ≥ 1 and 8−µ−ν ≥ 2. Consequently, in the former
case there are wi equal to ξ1 and wj equal to ξ2, for some i and j, and in
the latter case there are wi equal to ξ0 and wj equal to 0, for some i and
j. Next note that by (6.6), for every integer x it follows from the Binomial
Theorem that

φ′(x± 3) ≡ φ′(x)± 3φ′′(x) ≡ φ′(x)± 6a4 (mod 9).

By hypothesis, moreover, one has 3 - a4. Consequently, in view of our defi-
nitions of ξ0, ξ1, ξ2, one has 3 ‖φ′(ξ1) or 3 ‖φ′(ξ2), and also 3 ‖φ′(0) or
3 ‖φ′(ξ0). Then in either of the above instances, there is a solution w of the
congruence (6.15) in which, for some j, one has 3 ‖φ′(wj). By relabelling
variables, therefore, there is no loss of generality in supposing that for every
integer l, the congruence (6.15) is soluble with 3 ‖φ′(w1). For every integer
m, therefore, the hypotheses of Lemma 4.3 are satisfied with γ = 1, δ = 0
and p = 3. We therefore conclude from Lemma 4.3 that T (3,m) � 1 for
every integer m, whence the lower bound (6.3) follows immediately.

(c) Suppose that 9 |φ′(x) for every integer x. On recalling (5.7), we find
that our initial hypothesis implies that 9 | a1, and that 3 | aj for j = 2, 4, 5.
By our assumption following (2.2) that (a1, a2, a3, a4, a5) = 1, therefore, we
have also 3 - a3. Moreover, on noting that our initial hypothesis dictates that

φ′(1) + φ′(−1) ≡ 10a5 + 6a3 + 2a1 ≡ 0 (mod 9),

we deduce that a5 ≡ 3a3 (mod 9), whence for every integer x one has

(6.16) φ′′(x) = 20a5x
3 + 12a4x

2 + 6a3x+ 2a2 ≡ 2(6a3x+ a2) (mod 9).

Similarly, for every integer x one has

φ′′′(x) = 60a5x
2 + 24a4x+ 6a3 ≡ 6a3 (mod 9),

whence by the Binomial Theorem together with (6.16),

φ(x± 3) ≡ φ(x)± 3φ′(x) + 9φ′′(x)/2± 27φ′′′(x)/6 (mod 81)(6.17)

≡ φ(x) + 27((2a3x+ a2/3)± (a3 + φ′(x)/9)) (mod 81).

Next observe that since 3 - a3, there exists an integer ξ for which 3 - (2a3ξ +
a2/3). But then one cannot have

(2a3ξ + a2/3) + ω(φ′(ξ)/9 + a3) ≡ 0 (mod 3)
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for both ω = 1 and ω = −1. Consequently, for some ω1, ω2 ∈ {+1,−1}, it
follows from (6.17) that

φ(ξ + 3ω1) ≡ φ(ξ) + 27ω2 (mod 81),

whence there exist integers ξ1 and ξ2 with

(6.18) φ(ξ2) ≡ φ(ξ1) + 27 (mod 81).

Finally, observe also that if 27 |φ′(x) for every integer x, then the equations
(5.7) provide that 3 | a3, leading to a contradiction. Thus there exists an
integer ξ0 with 27 -φ′(ξ0), and in view of our initial hypothesis the latter
implies that

(6.19) 9 ‖φ′(ξ0).

Next, since for every integer x one has φ(x) ≡ a3x (mod 3), we notice
that the set K(27, 1) contains at least 2 residue classes coprime to 3, as
well as the zero residue class. Consequently, an application of the Cauchy–
Davenport theorem (see [9, Lemma 2.14]) yields K(27, 13) = 27, whence for
any integers v and n, there exist integers uj (1 ≤ j ≤ 17) satisfying

(6.20) φ(u1) + . . .+ φ(u17) + 2φ(ξ1) + φ(ξ0) + ψ(v) ≡ n (mod 27).

By relabelling variables, therefore, it follows from Lemma 6.1 that there
exist integers rj , sj , tj (j = 1, 2) with the property that for j = 1, 2, the
congruences (6.1) hold simultaneously modulo 3. For these integers rj , sj , tj
(j = 1, 2), suppose that x,y, z are integers satisfying the congruences (6.2).
Then on noting that the congruence (6.17) ensures that whenever x ≡ y
(mod 3), one has φ(x) ≡ φ(y) (mod 27), we find from (2.4) and (6.1) that
the congruence

(6.21) Φ(x1, y1, z1) + Φ(x2, y2, z2) ≡ φ(u1) + . . .+ φ(u12)

holds modulo 27. Then (6.20) implies that

φ(u13) + . . .+ φ(u17) + 2φ(ξ1) + φ(ξ0) + ψ(v)

≡ n− Φ(x1, y1, z1)− Φ(x2, y2, z2) (mod 27),

whence there exists a choice for d with d ∈ {0, 27, 54} such that

(6.22) φ(u13) + . . .+ φ(u17) + 2φ(ξ1) + φ(ξ0) + ψ(v) + d

≡ n− Φ(x1, y1, z1)− Φ(x2, y2, z2) (mod 81).

But by (6.18), we have

φ(ξ1) + φ(ξ2) ≡ 2φ(ξ1) + 27 (mod 81),

and

2φ(ξ2) ≡ 2φ(ξ1) + 54 (mod 81),
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and so it is apparent from (6.22) that the congruence

(6.23) φ(w1) + . . .+ φ(w8) + ψ(w9) ≡ n− Φ(x1, y1, z1)− Φ(x2, y2, z2)

is soluble modulo 81 with

w1 = ξ0, wi ∈ {ξ1, ξ2} (i = 2, 3), wj = uj+9 (4 ≤ j ≤ 8), w9 = v.

On recalling (6.16) and (6.19), therefore, which imply that 9 ‖φ′(ξ0) and
3 |φ′′(ξ0), we conclude that the hypotheses of Lemma 4.3 are satisfied for
the integer

(6.24) m = n− Φ(x1, y1, z1)− Φ(x2, y2, z2)

with γ = 2, δ = 1 and p = 3. We therefore deduce from Lemma 4.3 that
T (3,m)� 1, whence the lower bound (6.3) follows immediately.

This completes the proof of the lemma.

7. An auxiliary singular series: the contribution of the prime 2.
We now bound T (2,m) from below, the analysis here being somewhat more
delicate than in the previous section. We begin with a combinatorial lemma
similar to Lemma 6.1.

Lemma 7.1. The following hold.

(i) Suppose that u1, . . . , u16 are integers with u2j−1 ≡ u2j (mod 4) for
1 ≤ j ≤ 8. Then there exists a relabelling of the ui (1 ≤ i ≤ 16), and there
exist integers rj , sj , tj (j = 1, 2), with the property that for j = 1, 2, the
congruences (6.1) hold simultaneously modulo 4.

(ii) Suppose that u1, . . . , u19 are integers. Then there exists a relabelling
of the ui (1 ≤ i ≤ 19), and there exist integers rj , sj , tj (j = 1, 2), with
the property that for j = 1, 2, the congruences (6.1) hold simultaneously
modulo 4.

(iii) Suppose that u1, . . . , u18 are integers, and suppose that there is an
integer u with the property that uj 6≡ u (mod 4) (1 ≤ j ≤ 18). Then there
exists a relabelling of the ui (1 ≤ i ≤ 18), and there exist integers rj , sj , tj
(j = 1, 2), with the property that for j = 1, 2, the congruences (6.1) hold
simultaneously modulo 4.

P r o o f. We begin by establishing part (i) of the lemma. Suppose that
u1, . . . , u16 are integers. By the pigeon-hole principle, amongst any 5 integers
there are three of the same parity, and at least two of the latter integers are
mutually congruent modulo 4. Applying this observation to the integers u2j

with 1 ≤ j ≤ 8, it follows from the hypothesis of part (i) of the lemma that
there is a relabelling of the ui (1 ≤ i ≤ 16) such that for j = 1, 2 one has

u6j−5 ≡ u6j−4 ≡ u6j−3 ≡ u6j−2 (mod 4),

u6j−1 ≡ u6j (mod 4) and u6j−5 ≡ u6j−1 (mod 2).
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Thus the dozen congruences (6.1) are satisfied simultaneously modulo 4 with

rj = sj = u6j−5 − u6j−1 and tj = u6j−1 (j = 1, 2).

Next we establish part (ii). Suppose that u1, . . . , u19 are integers. Again,
by the pigeon-hole principle, amongst any 5 integers there are two integers
mutually congruent modulo 4. Thus we may relabel the ui (1 ≤ i ≤ 19) so
that u2j−1 ≡ u2j (mod 4) for 1 ≤ j ≤ 8. Consequently, the hypotheses of
part (i) of the lemma are now satisfied, and the desired conclusion follows
from the previous paragraph.

Finally we consider part (iii). Suppose that u1, . . . , u18 are integers sat-
isfying the hypotheses of part (iii). Then because these integers omit a con-
gruence class modulo 4, amongst any 4 such integers there are two which
are mutually congruent modulo 4. Thus we may relabel the ui (1 ≤ i ≤ 18)
so that u2j−1 ≡ u2j (mod 4) for 1 ≤ j ≤ 8. We therefore conclude that the
hypotheses of part (i) of the lemma are again satisfied, whence the desired
conclusion again follows immediately.

This completes the proof of the lemma.

We now launch our offensive on the prime 2.

Lemma 7.2. Let L be defined as in the statement of Theorem 2, and
suppose that n ∈ L. Then there exist integers rj , sj , tj (j = 1, 2) such that
whenever xj , yj , zj (j = 1, 2) are integers satisfying the congruences

(7.1) xj ≡ rj (mod 4), yj ≡ sj (mod 4), zj ≡ tj (mod 4) (j = 1, 2),

then

(7.2) T (2, n− Φ(x1, y1, z1)− Φ(x2, y2, z2))� 1.

P r o o f. We divide our proof into a plethora of cases.

(a) Suppose that 2 -φ′(x) for some integer x. On the one hand, if K(2, 1)
= 2, then it follows immediately that for every integer m, the hypotheses of
Lemma 4.3 are satisfied with γ = δ = 0 and p = 2. Thus we deduce from
Lemma 4.3 that T (2,m) � 1 for every integer m. On the other hand, if
K(2, 1) = 1, then necessarily φ(x) is even for every integer x, and thus it
follows from (2.4) that Φ(u, v, w) is even for all integers u, v, w. But if n ∈ L,
then by the solubility of the congruence (1.3), the congruence ψ(ξ) ≡ n
(mod 2) must be soluble. Then whenever n ∈ L and m ≡ n (mod 2), one
sees that the hypotheses of Lemma 4.3 are satisfied with γ = δ = 0 and
p = 2, whence Lemma 4.3 shows that T (2,m)� 1. Then in either case one
has the lower bound (7.2).

(b) Suppose that 2 |φ′(x) for every integer x, and for some integer y one
has 4 -φ′(y). Since for every integer x one has

φ′(x+ 2) ≡ φ′(x) + 2φ′′(x) ≡ φ′(x) (mod 4),
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our initial hypothesis implies that either 4 -φ′(0) or 4 -φ′(1). Suppose ini-
tially that in fact 2 ‖φ′(x) for all even integers x. Then whenever n ∈ L,
the solubility of the congruence (1.3) ensures that there exist integers uj
(1 ≤ j ≤ 20) and v satisfying

(7.3) φ(u1) + . . .+ φ(u20) + ψ(v) ≡ n
modulo 8. But our initial hypothesis ensures that for every integer x,

(7.4) φ(x+ 4) ≡ φ(x) + 4φ′(x) ≡ φ(x) (mod 8),

so that we may suppose without loss of generality, that 0 ≤ uj ≤ 3 (1 ≤ j
≤ 20). If uj ∈ {1, 3} (1 ≤ j ≤ 20) then at least 10 of the uj are equal to some
single value, whence by relabelling the uj (1 ≤ j ≤ 20), we may suppose
that u13 = . . . = u20. But then one has

(7.5) φ(u13) + . . .+ φ(u20) ≡ 0 (mod 8),

and so we may solve the congruence (7.3) with uj = 0 (13 ≤ j ≤ 20). There
is no loss of generality, therefore, in supposing that u20 is even, whence
2 ‖φ′(u20). In the contrary case in which 2 ‖φ′(x) for all odd integers x,
we may proceed in like manner. In this instance, if the congruence (7.3) is
soluble with uj ∈ {0, 2} (1 ≤ j ≤ 20), then we may relabel variables so
that u13 = . . . = u20, and (7.5) again holds. But then we may solve the
congruence (7.3) with uj = 1 (13 ≤ j ≤ 20). There is no loss of generality in
this second case, therefore, in supposing that u20 is odd, whence 2 ‖φ′(u20).
Thus in either case we may suppose that (7.3) has a solution with 2 ‖φ′(u20).

Next we observe that by applying Lemma 7.1(ii) to the integers u1, . . .
. . . , u19 occurring in (7.3), it follows by relabelling the ui (1 ≤ i ≤ 19)
that there exist integers rj , sj , tj (j = 1, 2) satisfying the dozen congruences
(6.1) simultaneously modulo 4. For these integers rj , sj , tj (j = 1, 2), suppose
that x,y, z are integers satisfying the congruences (7.1). Then by (7.4) the
congruence (6.21) is satisfied modulo 8, and on recalling the conclusion of
the previous paragraph, we deduce that the congruence (6.23) has a solution
modulo 8 with

wj = u21−j (1 ≤ j ≤ 8), w9 = v, 2 ‖φ′(w1).

Consequently, the hypotheses of Lemma 4.3 are satisfied for the integer m
given by (6.24) with γ = 1, δ = 0 and p = 2. It therefore follows from
Lemma 4.3 that T (2,m) � 1, whence the lower bound (7.2) follows imme-
diately.

(c) Suppose that 4 |φ′(x) for every integer x, and for some integer y one
has 8 -φ′(y). Observe that by (2.2) one has

(7.6) 1
2φ
′′(x) ≡ a3x+ a2 (mod 2) and 1

2φ
′′′(x) ≡ a3 (mod 2).
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Thus, by the Binomial Theorem, for every integer x one has

φ(x+ 4) ≡ φ(x) + 4φ′(x) + 8φ′′(x) (mod 32)(7.7)

≡ φ(x) + 4φ′(x) + 16(a3x+ a2) (mod 32),

φ(x+ 2) ≡ φ(x) + 2φ′(x) + 2φ′′(x) (mod 8)(7.8)

≡ φ(x) + 4(a3x+ a2) (mod 8),

φ′(x+ 2) ≡ φ′(x) + 2φ′′(x) + 2φ′′′(x) (mod 8)(7.9)

≡ φ′(x) + 4(a3x+ a2 + a3) (mod 8).

Further, on noting that (7.7) implies that φ(x+4) ≡ φ(x) (mod 16) for every
integer x, it follows from the definition of L that for every n ∈ L, there exist
integers uj (1 ≤ j ≤ 20) and v with the property that the congruence (7.3)
holds modulo 16, and moreover 0 ≤ uj ≤ 3 (1 ≤ j ≤ 20).

We subdivide our argument according to the respective parities of a2

and a3.

(i) Suppose that both a2 and a3 are odd. It follows from (7.6) that for
odd x one has 4 |φ′′(x). Further, the relation (7.9) implies that φ′(3) ≡
φ′(1) + 4 (mod 8), so that either 8 -φ′(1) or 8 -φ′(3). Suppose temporarily
that the former is the case, whence by hypothesis we have 4 ‖φ′(1). Consider
a solution u, v of the congruence (7.3) modulo 16, of the type ensured by the
argument above. Since (7.8) shows that 2φ(3) ≡ 2φ(1) (mod 16), it follows
that whenever two of the uj are equal to 3, then we may replace both by
1 without affecting the validity of the congruence (7.3). Suppose next that
at most one of the uj is equal to 3, and that none are equal to 1. Then we
may relabel variables so that for some ν with 0 ≤ ν ≤ 19, one has uj = 0
for 1 ≤ j ≤ ν, and uj = 2 for ν + 1 ≤ j ≤ 19. Moreover, since (7.8) shows
that 4φ(0) ≡ 4φ(2) (mod 16), it follows that whenever ν ≥ 4 we may adjust
the values of the uj so that uj = 2 for ν − 3 ≤ j ≤ ν, without altering the
validity of (7.3). Thus we may suppose that 0 ≤ ν ≤ 3. But then uj = 2
for 4 ≤ j ≤ 19, and so we may replace these 16 values of uj by 1 without
altering the validity of (7.3) modulo 16. In any case, we may suppose that at
least one of the uj is equal to 1, and by relabelling variables we may suppose
further that u20 = 1 without loss of generality. If in fact 8 -φ′(3), whence
4 ‖φ′(3), then we may proceed along the same path, mutatis mutandis, and
conclude that u20 = 3 via a relabelling of variables. Thus in either case it
follows that with ξ0 = 1 or 3, one may relabel variables so that u20 = ξ0
and 4 ‖φ′(u20).

Next observe that by applying Lemma 7.1(ii) to the integers u1, . . . , u19,
we may guarantee that by suitably relabelling variables, there exist integers
rj , sj , tj (j = 1, 2) satisfying the dozen congruences (6.1) simultaneously
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modulo 4. For these integers rj , sj , tj (j = 1, 2), suppose that x,y, z are
integers satisfying the congruences (7.1). Then by (7.7) one finds that the
congruence (6.21) is satisfied modulo 16, and hence, on recalling the conclu-
sion of the previous paragraph, it follows that the congruence (6.23) modulo
16 has a solution with

wj = u21−j (1 ≤ j ≤ 8), w9 = v, 4 ‖φ′(w1), 2 | 1
2φ
′′(w1).

Consequently, the hypotheses of Lemma 4.3 are satisfied for the integer m
defined by (6.24) with γ = 2, δ = 1 and p = 2. We therefore obtain from
Lemma 4.3 the lower bound T (2,m)� 1, whence (7.2) follows immediately.

(ii) Suppose that a2 is even and a3 is odd. We may again apply (7.9), in
this instance to deduce that φ′(2) ≡ φ′(0) + 4 (mod 8). Further, the con-
gruence (7.8) implies that φ(2) ≡ φ(0) (mod 8) and φ(3) ≡ φ(1) (mod 4).
Also, it follows from (7.6) that for even integers x one has 4 |φ′′(x). On
interchanging the roles of {1, 3} and {0, 2}, therefore, we find that the ar-
gument of part (i) may be applied, mutatis mutandis, in order to establish
the lower bound (7.2) also in this case.

(iii) Suppose that both a2 and a3 are even. It now follows from (7.6) that
for every integer x one has 4 |φ′′(x). Also, on noting that our hypothesis
(c) implies that 4 |φ′(0) and 4 |φ′(1), and recalling (2.2), we find that nec-
essarily both a1 and a5 are even. Then our assumption following (2.2) that
(a1, a2, a3, a4, a5) = 1 leads to the conclusion that a4 is odd. Consequently,
φ(1) must be odd, and so K(16, 1) contains at least two elements, namely
0 and φ(1). We therefore deduce from the Cauchy–Davenport theorem (see
[9, Lemma 2.14]) that K(16, 15) = 16. By the hypothesis (c), there is an
integer ξ0 with 4 ‖φ′(ξ0). We take u20 = ξ0, and then solve the congruence
(7.3) modulo 16 for uj (1 ≤ j ≤ 19) and v. The latter is possible in view
of our earlier observation that K(16, 15) = 16. We now find ourselves in a
position essentially identical with that holding at the start of the concluding
paragraph of case (i) above, and thus we may apply an identical argument
to establish the desired lower bound (7.2).

(iv) Suppose that a2 is odd and a3 is even. We begin by noting that (7.9)
implies that for every integer x one has

(7.10) φ′(x+ 2) ≡ φ′(x) + 4 (mod 8).

Moreover, if y is an integer with 8 |φ′(y), then by (7.7) one has

(7.11) φ(y + 4) ≡ φ(y) + 16 (mod 32).

Consequently, if w1 and w2 are integers with w1 ≡ w2 + 2 (mod 4), then
by suitably relabelling variables, we may suppose without loss of generality
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that

(7.12) φ(w1 + 4) ≡ φ(w1) + 16 (mod 32) and 4 ‖φ′(w2).

For if 8 |φ′(w1), then the first relation in (7.12) follows from (7.11), and
the second relation follows from (7.10). Meanwhile, if 8 -φ(w1), then by the
hypothesis (c) we have 4 ‖φ′(w1), and it follows from (7.10) that 8 |φ′(w2),
whence from (7.11) we have φ(w2 + 4) ≡ φ(w2) + 16 (mod 32).

Consider next a solution u, v of the congruence (7.3) modulo 16, of the
type ensured by the conclusion of the opening paragraph of case (c) above.
Since 0 ≤ uj ≤ 3 (1 ≤ j ≤ 20), an application of the pigeon-hole principle
guarantees that at least 5 of the uj are equal, whence by relabelling variables
we may suppose that

u16 = . . . = u20.

On recalling (7.8), one finds that 4φ(u20) ≡ 4φ(u20±2) (mod 16), and thus
if we replace uj by u20 + 2 for 16 ≤ j ≤ 19, or by u20 − 2 for 16 ≤ j ≤ 19,
then the congruence (7.3) remains valid modulo 16. Thus, by the argument
leading to (7.12), we may relabel variables so that

u19 ≡ u20 + 2 (mod 4),(7.13)

φ(u19 + 4) ≡ φ(u19) + 16 (mod 32) and 4 ‖φ′(u20).(7.14)

Applying the pigeon-hole principle once again with the integers uj (1 ≤
j ≤ 18), we find that we may relabel the uj with 1 ≤ j ≤ 18 so that
u2j−1 = u2j (1 ≤ j ≤ 7). It is possible that two of the uj with 15 ≤ j ≤ 18
are equal, in which case we relabel the latter variables so that u15 = u16.
Otherwise, the sets {u15, u16, u17, u18} and {0, 1, 2, 3} are necessarily equal,
and by (7.13) and (7.14) we may relabel the uj with 15 ≤ j ≤ 20 so that
u15 = u20, u16 ≡ u17 + 2 (mod 4), and moreover so that 4 ‖φ′(u16). In this
latter case we relabel variables so as to interchange u16 and u20, and similarly
u17 and u19. Consequently, in any case, we can assume that the congruence
(7.3) modulo 16 has a solution u, v satisfying (7.14), and with u2j−1 = u2j

(1 ≤ j ≤ 8). By relabelling the variables uj (1 ≤ j ≤ 16), therefore, it follows
from Lemma 7.1(i) that there exist integers rj , sj , tj (j = 1, 2) with the
property that the dozen congruences (6.1) hold simultaneously modulo 4. For
these integers rj , sj , tj (j = 1, 2), suppose that x, y, z are integers satisfying
the congruences (7.1). Then by (7.7) one finds that the congruence (6.21) is
satisfied modulo 16, and hence, by (7.14), that the congruence (6.23) modulo
16 has a solution with

wj = u21−j (1 ≤ j ≤ 8), w9 = v,

4 ‖φ′(w1) and φ(w2 + 4) ≡ φ(w2) + 16 (mod 32).(7.15)

But the final relation of (7.15) permits us, if necessary, to adjust the value
of w2 so as to replace the congruence (6.23) modulo 16 by the stronger con-
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gruence (6.23) modulo 32. Thus the hypotheses of Lemma 4.3 are satisfied
for the integer m given by (6.24) with γ = 2, δ = 0 and p = 2. We therefore
conclude from Lemma 4.3 that T (2,m)� 1, whence the lower bound (7.2)
follows immediately.

(d) Suppose that 8 |φ′(x) for every integer x. On recalling (2.2), we
find that

φ′(0) = a1 ≡ 0 (mod 8), φ′(1)− φ′(−1) ≡ 4a2 ≡ 0 (mod 8),

φ′(2) ≡ 12a3 + 4a2 + a1 ≡ 0 (mod 8),

φ′(1) + φ′(−1) = 10a5 + 6a3 + 2a1 ≡ 0 (mod 8).

Consequently, a5, a3, a2, a1 are all even. Then by our assumption following
(2.2) that (a5, a4, a3, a2, a1) = 1, one finds that a4 is odd. Thus we deduce
from (2.2) that for every integer x one has

(7.16) φ′′(x) ≡ (4 + 6a3)x+ 2a2 (mod 8) and φ′′′(x) ≡ 6a3 (mod 8).

An application of the Binomial Theorem now reveals that for every integer
x one has

φ(x+ 4) ≡ φ(x) + 4φ′(x) + 8φ′′(x) (mod 64)(7.17)

≡ φ(x) + 4φ′(x) + 16((2 + 3a3)x+ a2) (mod 64),

φ(x+ 2) ≡ φ(x) + 2φ′(x) + 2φ′′(x) + 4φ′′′(x)/3 (mod 16)(7.18)

≡ φ(x) + 4((2 + 3a3)x+ a2) (mod 16),

φ′(x+ 2) ≡ φ′(x) + 2φ′′(x) + 2φ′′′(x) + 4φ′′′′(x)/3 (mod 16)(7.19)

≡ φ′(x) + (8 + 12a3)x+ 4a2 + 12a3 (mod 16).

We divide our argument according to the respective residue classes of a3

and a2 modulo 4.

(i) Suppose that a3 ≡ 2 (mod 4) and a2 ≡ 0 (mod 4). In this case it
follows from (7.16)–(7.19) that for every integer x, one has

φ′′(x) ≡ 0 (mod 8), φ(x+ 2) ≡ φ(x) (mod 16),(7.20)

φ′(x+ 2) ≡ φ′(x) + 8 (mod 16), φ(x+ 4) ≡ φ(x) (mod 32).(7.21)

Notice, in particular, that by hypothesis the first congruence of (7.21) implies
that for every integer x, one has either

(7.22) 8 ‖φ′(x) or 8 ‖φ′(x+ 2).

Observe next that whenever n ∈ L, the solubility of the congruence (1.3)
implies that there exist integers uj (1 ≤ j ≤ 20) and v for which the con-
gruence (7.3) is soluble modulo 32. In view of the second congruence of
(7.21), moreover, we may suppose without loss of generality that 0 ≤ uj ≤ 3
(1 ≤ j ≤ 20) in the latter solution. On noting (7.20), we may apply the
argument of the second paragraph of case (iv) of part (c) to show, subject
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to a suitable relabelling of the uj (1 ≤ j ≤ 20), that there exists a solution
u, v of the congruence (7.3) modulo 32 with the property that u19 ≡ u20 +2
(mod 4). In view of (7.22), therefore, we may relabel the uj (1 ≤ j ≤ 20) in
such a way that 8 ‖φ′(u20). By relabelling the uj with 1 ≤ j ≤ 19, it now
follows from Lemma 7.1(ii) that there exist integers rj , sj , tj (j = 1, 2) with
the property that the dozen congruences (6.1) hold simultaneously mod-
ulo 4. For these integers rj , sj , tj (j = 1, 2), suppose that x,y, z are integers
satisfying the congruences (7.1). Then by (7.21) one finds that the congru-
ence (6.21) is satisfied modulo 32, and hence, by the above argument, that
the congruence (6.23) modulo 32 has a solution with 8 ‖φ′(w1). On recalling
(7.20), we find that the hypotheses of Lemma 4.3 are satisfied for the inte-
ger m given by (6.24) with γ = 3, δ = 2 and p = 2. We therefore conclude
from Lemma 4.3 that T (2,m) � 1, whence the lower bound (7.2) follows
immediately.

(ii) Suppose that a3 ≡ 0 (mod 4) and a2 ≡ 2 (mod 4). We begin by
noting that all the residue classes modulo 32 are represented in the form
µφ(1) + νφ(2) with 0 ≤ µ ≤ 7 and 0 ≤ ν ≤ 3. In order to establish this
claim, it suffices to show that whenever

(7.23) µφ(1) + νφ(2) ≡ µ′φ(1) + ν′φ(2) (mod 32)

with 0 ≤ µ, µ′ ≤ 7 and 0 ≤ ν, ν′ ≤ 3, then necessarily µ = µ′ and ν = ν′. But
in view of our earlier hypotheses, the congruence (7.18) implies that 8 ‖φ(2),
and further φ(1) ≡ a4 (mod 2), whence φ(1) is odd. Thus (7.23) implies that
(µ − µ′)φ(1) ≡ 0 (mod 8), whence µ = µ′. Consequently, (ν − ν′)φ(2) ≡ 0
(mod 32), so that in view of our earlier observation that 8 ‖φ(2) we have
ν = ν′.

Observe next that by hypothesis, it follows from (7.19) that φ′(2) ≡
φ′(0) + 8 (mod 16). Further, if x is even and 16 |φ′(x), then by (7.17) one
has φ(x+ 4) ≡ φ(x) + 32 (mod 64). Thus there exist even integers u19, u20

satisfying

(7.24) φ(u19 + 4) ≡ φ(u19) + 32 (mod 64) and 8 ‖φ′(u20).

Fix these choices of u19 and u20, and fix also any choice of v and n. Then it
follows from the discussion of the previous paragraph that there are integers
µ and ν, with 0 ≤ µ ≤ 7 and 0 ≤ ν ≤ 3, such that the congruence (7.3) is
satisfied modulo 32 with

(7.25) uj =

{ 1 when 1 ≤ j ≤ µ,
2 when µ+ 1 ≤ j ≤ µ+ ν,
0 when µ+ ν + 1 ≤ j ≤ 18.

Notice that the choice of uj (1 ≤ j ≤ 18) provided by (7.25) has the property
that uj 6≡ 3 (mod 4) for 1 ≤ j ≤ 18. Then it follows from Lemma 7.1(iii)
that by relabelling the uj with 1 ≤ j ≤ 18, there exist integers rj , sj , tj (j =
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1, 2) with the property that the dozen congruences (6.1) hold simultaneously
modulo 4. For these integers rj , sj , tj (j = 1, 2), suppose that x,y, z are
integers satisfying the congruences (7.1). Notice that by making use of our
hypotheses in (7.17) one finds that φ(x + 4) ≡ φ(x) (mod 32) for every
integer x. Thus the congruence (6.21) is satisfied modulo 32, and hence, by
(7.24), the congruence (6.23) modulo 32 has a solution with

wj = u21−j (1 ≤ j ≤ 8), w9 = v,

8 ‖φ′(w1) and φ(w2 + 4) ≡ φ(w2) + 32 (mod 64).(7.26)

But the final relation of (7.26) permits us, if necessary, to adjust the value
of w2 so as to replace the congruence (6.23) modulo 32 by the stronger con-
gruence (6.23) modulo 64. On recalling (7.16), it follows from the hypothesis
(ii) that the hypotheses of Lemma 4.3 are satisfied for the integer m given by
(6.24) with γ = 3, δ = 1 and p = 2. We therefore conclude from Lemma 4.3
that T (2,m)� 1, whence the lower bound (7.2) follows immediately.

(iii) Suppose that a3 ≡ a2 ≡ 0 (mod 4). We again see that φ(1) is odd,
and further the congruence (7.18) in this instance shows that 8 ‖ (φ(3) −
φ(1)). In this case, therefore, we find that all residue classes modulo 32 are
represented in the form µφ(1) + ν(φ(3) − φ(1)) for some integers µ and ν
satisfying 0 ≤ ν ≤ 3 ≤ µ ≤ 10. Consequently, given an integer m, the
congruence

φ(u1) + . . .+ φ(u18) ≡ m (mod 32)
has a solution of the form

uj =

{ 1 when 1 ≤ j ≤ µ− ν,
3 when µ− ν + 1 ≤ j ≤ µ,
0 when µ+ 1 ≤ j ≤ 18.

Also, by (7.19) one has φ′(3) ≡ φ′(1) + 8 (mod 16), and by (7.17) we see
that whenever x is odd and 16 |φ′(x), then φ(x+ 4) ≡ φ(x) + 32 (mod 64).
Then we may conclude that there are odd integers u19 and u20 satisfying
(7.24). On interchanging the roles of the sets {0, 1, 2} and {0, 1, 3}, therefore,
we may apply the argument concluding our treatment of the previous case,
mutatis mutandis, in order to establish the lower bound (7.2) in the present
case.

(iv) Suppose that a3 ≡ a2 ≡ 2 (mod 4). In this case (7.18) shows that
8 ‖φ(2), and (7.19) shows that for all integers x one has

(7.27) φ′(x+ 2) ≡ φ′(x) (mod 16).

Regrettably, at this stage we are forced to subdivide our argument still
further.

(1) Suppose that φ′(0) ≡ φ′(1) ≡ 8 (mod 16). Then for all integers x,
the congruence (7.27) shows that 8 ‖φ′(x). By (7.17), moreover, for every
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integer x one has

(7.28) φ(x+ 4) ≡ φ(x) (mod 64).

Since all residue classes modulo 64 can now be represented in the form
µφ(1) + νφ(2) with 0 ≤ µ, ν ≤ 7, it is immediate that K(64, 14) = 64.
Consequently, for every integer n, the congruence (7.3) is soluble modulo
64. By relabelling the uj with 1 ≤ j ≤ 19, it now follows from Lemma 7.1(ii)
that there exist integers rj , sj , tj (j = 1, 2) with the property that the dozen
congruences (6.1) hold simultaneously modulo 4. For these integers rj , sj , tj
(j = 1, 2), suppose that x,y, z are integers satisfying the congruences (7.1).
Then by (7.28) one finds that the congruence (6.21) is satisfied modulo 64,
and hence that the congruence (6.23) modulo 64 has a solution. Further,
since 8 ‖φ′(x) for every x, the latter solution necessarily satisfies 8 ‖φ′(w1).
On recalling (7.16), it follows from the hypothesis (iv) that the hypotheses
of Lemma 4.3 are satisfied for the integer m given by (6.24) with γ = 3,
δ = 1 and p = 2. We therefore conclude from Lemma 4.3 that T (2,m)� 1,
whence the lower bound (7.2) follows immediately.

(2) Suppose that φ′(0) ≡ 8 (mod 16) and φ′(1) ≡ 0 (mod 16), or φ′(0) ≡
0 (mod 16) and φ′(1) ≡ 8 (mod 16). As in the previous case, all residue
classes modulo 64 are represented in the form µφ(1)+νφ(2) with 0 ≤ µ, ν ≤
7, and it is immediate that K(64, 14) = 64. We take u19 = 1 and u20 = 0, or
u19 = 0 and u20 = 1, in the respective cases, and observe that (7.17) implies
that φ(u19 + 4) ≡ φ(u19) + 32 (mod 64). Consequently, on noting our initial
hypothesis, we find that the conditions (7.24) are satisfied, and thus we may
apply the argument of case (d)(ii) above without further alteration in order
to establish the lower bound (7.2).

(3) Suppose that φ′(0) ≡ φ′(1) ≡ 0 (mod 16). Then it follows from (7.27)
that 16 |φ′(x) for every integer x, and so on recalling the hypothesis (iv), it
follows from (7.17) that for every integer x one has

(7.29) φ(x+ 4) ≡ φ(x) + 32 (mod 64).

Next, again recalling the hypothesis (iv), we find from (7.16) that for ev-
ery integer x one has φ′′(x) ≡ 4 (mod 8) and φ′′′(x) ≡ 0 (mod 4). Conse-
quently, by the Binomial Theorem, for every integer x one has

(7.30) φ′(x+ 4) ≡ φ′(x) + 4φ′′(x) + 8φ′′′(x) ≡ φ′(x) + 16 (mod 32).

When n ∈ L, it follows from the solubility of the congruence (1.3) that
there are integers uj (1 ≤ j ≤ 20) and v such that the congruence (7.3) is sat-
isfied modulo 32. On applying Lemma 7.1(ii) to the integers uj (1 ≤ j ≤ 19),
we deduce that there exist integers rj , sj , tj (j = 1, 2) for which the dozen
congruences (6.1) hold simultaneously modulo 4. For these integers rj , sj , tj
(j = 1, 2), suppose that x,y, z are integers satisfying the congruences (7.1).
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Then by (7.29) one finds that the congruence (6.21) is satisfied modulo 32.
Define the integer m as in (6.24). Also, set w9 = v, and set w1 = u13 or
w1 = u13 +4 in such a way that 16 ‖φ′(w1). The latter is possible, of course,
by (7.30). Then in view of (7.29), we obtain

(7.31) φ(w1) + φ(u14) + . . .+ φ(u20) + ψ(w9) ≡ m− 32l (mod 256),

for some integer l.
Next, for 14 ≤ j ≤ 20, we put

(7.32) ξj = (φ(uj + 4)− φ(uj))/32,

and define Cj = {0, ξj}. It follows from (7.29) that ξj is odd for every j,
and thus repeated application of the Cauchy–Davenport theorem (see [9,
Lemma 2.14]) shows that every residue class modulo 8 is represented in the
form η14 + . . . + η20 with ηj ∈ Cj (14 ≤ j ≤ 20). Thus, given the integer l
occurring in (7.31), there exists a set J ⊆ {14, 15, . . . , 20} with the property
that ∑

j∈J
ξj ≡ l (mod 8),

whence by (7.32),

(7.33)
∑

j∈J
φ(uj + 4) +

∑

j 6∈J
14≤j≤20

φ(uj) ≡
20∑

j=14

φ(uj) + 32l (mod 256).

On putting wj−12 = uj+4 or wj−12 = uj according to whether or not j ∈ J
for 14 ≤ j ≤ 20, we deduce from (7.31) and (7.33) that

φ(w1) + . . .+ φ(w8) + ψ(w9) ≡ m (mod 256).

In view of our earlier observations to the effect that φ′′(x) ≡ 4 (mod 8) for
every x, and 16 ‖φ′(w1), we may conclude that the hypotheses of Lemma 4.3
are satisfied with γ = 4, δ = 1 and p = 2. We thus deduce from Lemma 4.3
that T (2,m)� 1, whence the lower bound (7.2) follows immediately.

This concludes the proof of the lemma.

8. Averaging the auxiliary singular series, and the density of L.
In this section we conclude our discussion of the auxiliary singular series by
extracting the consequences of the above discussion necessary for our proof
of Theorem 2. We begin with an estimate concerning a suitable average
of the auxiliary singular series. When P is a large real number and n is a
natural number, we define the averaged singular series S̃(n;P ) by

S̃(n;P ) =
∑

1≤x1,y1≤P/3
1≤x2,y2≤P/3

∑

P<z1,z2≤2P

S(n− Φ(x1, y1, z1)− Φ(x2, y2, z2)).
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Lemma 8.1. Let P be a large real number. Then whenever n ∈ L, one
has S̃(n;P )� P 6.

P r o o f. Suppose that P is a large real number and n ∈ L. Then by
the Chinese Remainder Theorem, it follows from Lemmata 6.2 and 7.2 that
there exist integers rj , sj , tj (j = 1, 2) such that whenever xj , yj , zj (j = 1, 2)
are integers satisfying the congruences

(8.1) xj ≡ rj (mod 12), yj ≡ sj (mod 12), zj ≡ tj (mod 12)

(j = 1, 2),

then one has

(8.2) T (p, n− Φ(x1, y1, z1)− Φ(x2, y2, z2))� 1

for both p = 2 and p = 3. Then on recalling Lemmata 5.1 and 5.2, and
making use of Lemma 4.2(i), we deduce that whenever x,y, z satisfy (8.1),
one has

S(n− Φ(x1, y1, z1)− Φ(x2, y2, z2))� 1.

We therefore conclude from Lemma 4.2(iii) that

S̃(n;P )�
∑

1≤x1,y1≤P/3

∑

1≤x2,y2≤P/3

∑

P<z1,z2≤2P

1,

where we now restrict the summation to be over x,y, z satisfying (8.1).
Consequently, S̃(n;P )� P 6, and so the proof of the lemma is complete.

We complete this section by demonstrating that the set L has positive
density, and this we achieve cheaply by making use of the discussion in
Sections 5–7. We take a to be a large positive integer, and define the integer
n0 by n0 = 20φ(a) + ψ(1). Then plainly we have n0 ∈ L. Observe that
by (4.3) and (4.8), it follows that whenever T (p,m) > 0, then necessarily
the congruence (4.5) is soluble with q = ph for every natural number h.
In particular, Lemma 5.1 shows that the congruence (4.5) is soluble with
q = ph for every prime p with p ≥ 7, and every natural number h. Next write
q0 = 28 ·34 ·52, and take p to be one of 2, 3 and 5. Observe that since n0 ∈ L,
the arguments of the proofs of Lemmata 5.2, 6.2 and 7.2 show that whenever
n ≡ n0 (mod q0), then there exist integers xj , yj , zj (j = 1, 2) such that the
lower bound (8.2) holds. It follows that the congruence (4.5) is soluble with
the integer m given by (6.24), and with q = ph for every natural number
h. On recalling (2.4), therefore, we may conclude that whenever n ≡ n0

(mod q0), then the congruence (1.3) is soluble with q = ph, for any prime
p and natural number h, whence by the Chinese Remainder Theorem, the
same must hold for every natural number q. Thus L contains, at least, the
arithmetic progression n ≡ n0 (mod q0), and consequently L has positive
density. Thus we have established the first claim of Theorem 2.
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9. Application of the Hardy–Littlewood method. Our analysis
of the auxiliary singular series now complete, we may move on to apply
the Hardy–Littlewood method. We begin by recalling some consequences of
well-known estimates for the exponential sums f(α) and g(α). When β ∈ R,
we write

v(β) =
P\
P/2

e(φ(t)β) dt and v1(β) =
Q\
√
Q

e(ψ(t)β) dt.

Lemma 9.1. Let α ∈ R, and suppose that β ∈ R, a ∈ Z and q ∈ N satisfy
α = β + a/q and (a, q) = 1. Then

(9.1) f(α) = q−1S(q, a)v(β) +O(q(1 +N |β|))
and

(9.2) g(α) = (λ(q))−1S1(q, a)v1(β) +O(q(1 +N |β|)).
Further , when β ∈ R one has

(9.3) v(β)� P (1 +N |β|)−1/5 and v1(β)� Q(1 +N |β|)−1/k.

P r o o f. The estimates (9.1) and (9.2) are immediate from [9, Theorem
7.2], and the estimates (9.3) follow from [9, Theorem 7.3].

Let n ∈ L, and write R(n) for the number of representations of n in
the form (1.4) with xi ∈ Z (1 ≤ i ≤ 21). If R(n) is infinite, of course, then
there is nothing left to prove, so we suppose that R(n) is finite. Then by
considering the underlying diophantine equation, it follows from (2.4) via
orthogonality that

(9.4) R(n) ≥
1\
0

F (α)2f(α)8g(α)e(−nα) dα.

When B ⊆ [0, 1), write

(9.5) R(n; B) =
\
B

F (α)2f(α)8g(α)e(−nα) dα.

Write X = Q1/(15k), and define the major arcs M by

M =
⋃

0≤a≤q≤X
(a,q)=1

M(q, a),

where
M(q, a) = {α ∈ [0, 1) : |α− a/q| ≤ q−1XN−1}.

Notice that the M(q, a) comprising M are mutually disjoint. Also, define
the minor arcs m by m = [0, 1) \M. By (9.4) and (9.5), therefore, we have

(9.6) R(n) ≥ R(n; M) +R(n; m).
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The minor arcs may be swiftly disposed of. By Weyl’s inequality (see [9,
Lemma 2.4]), one has

sup
α∈m
|g(α)| � Q1+εX−21−k � Q1−2η,

where η = (k2k+4)−1. Then by Lemma 3.1, it follows from (9.5) that

(9.7) R(n; m) ≤ sup
α∈m
|g(α)|

1\
0

|F (α)2f(α)8| dα� P 9Q1−η.

On recalling (2.6), we next find from (9.5) that

(9.8) R(n; M)

=
∑

1≤x1,y1≤P/3
1≤x2,y2≤P/3

∑

P<z1,z2≤2P

T (n− Φ(x1, y1, z1)− Φ(x2, y2, z2)),

where for each integer m we write

(9.9) T (m) =
\

M

f(α)8g(α)e(−mα) dα.

Write

J(m) =
∞\
−∞

v(β)8v1(β)e(−mβ) dβ,(9.10)

J(m; q,X) =
X/(qN)\
−X/(qN)

v(β)8v1(β)e(−mβ) dβ(9.11)

and

T (m;X) =
∑

1≤q≤X
S(q,m)J(m; q,X),(9.12)

where S(q,m) is defined as in (4.2). By Lemma 9.1, whenever α ∈M(q, a) ⊆
M, one has

f(α)− q−1S(q, a)v(α− a/q)� q(1 +N |α− a/q|)� X

and

g(α)− (λ(q))−1S1(q, a)v1(α− a/q)� q(1 +N |α− a/q|)� X.

Thus, on making use of trivial estimates for f(α) and g(α), we find that
whenever α ∈M(q, a) ⊆M, one has

f(α)8g(α)− (λ(q))−1q−8S(q, a)8S1(q, a)v(α− a/q)8v1(α− a/q)
� XP 8 +XP 7Q.
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Since the measure of M is O(X2N−1), we deduce from (2.3) and (9.9)–(9.12)
that

(9.13) T (m)− T (m;X)� X3P 8N−1 +X3P 7QN−1 � P 3QX−1.

Also, again by Lemma 9.1, when q ≤ X one has

J(m; q,X)− J(m)� P 8Q

∞\
X/(qN)

(1 +Nβ)−8/5−1/k dβ(9.14)

� P 3Q(q/X)1/k.

Further, by (4.4) and Lemma 4.2(ii) one has

(9.15)
∣∣∣S(m)−

∑

1≤q≤X
S(q,m)

∣∣∣�
∑

q>X

(q/X)1/k|S(q,m)| � X−1/k.

Furthermore, it follows from Lemma 4.2(iii) and Lemma 9.1 that

(9.16) S(m)� 1 and J(m)� P 3Q.

Combining the estimates (9.14)–(9.16) together with (9.12), we deduce
that

T (m;X)−S(m)J(m) =
∑

1≤q≤X
S(q,m)(J(m; q,X)− J(m))

− J(m)
(
S(m)−

∑

1≤q≤X
S(q,m)

)

� P 3QX−1/k
(

1 +
∑

1≤q≤X
q1/k|S(q,m)|

)
.

Then by (9.13) and Lemma 4.2(ii), we have

(9.17) T (m) = S(m)J(m) +O(P 3QX−1/k).

Substituting (9.17) into (9.8), we obtain

(9.18) R(n; M) = U(n) +O(P 9QX−1/k),

where

(9.19) U(n) =
∑

1≤x1,y1≤P/3
1≤x2,y2≤P/3

∑

P<z1,z2≤2P

S(m)J(m),

and here m is the integer defined in (6.24).
We must now analyse the singular integral J(m). Since P and Q are

large, we may suppose without loss of generality that φ(t) is monotone for
t ≥ P/2, and similarly that ψ(t) is monotone for t ≥ √Q. A change of
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variable therefore yields

v(β) =
φ(P )\
φ(P/2)

e(uβ)
φ′(φ−1(u))

du and v1(β) =
ψ(Q)\
ψ(
√
Q)

e(uβ)
ψ′(ψ−1(u))

du.

Consequently,

v(β)8v1(β) =
∞\
−∞

J̃(u)e(uβ) du,

where

J̃(u) =
\
B(u)

(Ξ(u; u))−1 du,(9.20)

Ξ(u; u) = |ψ′(ψ−1(u− u1 − u2 − . . .− u8))|
8∏

i=1

φ′(φ−1(ui)),(9.21)

and B(u) is the region defined by the inequalities

(9.22)
φ(P/2) ≤ ui ≤ φ(P ) (1 ≤ i ≤ 8),

u− ψ1 ≤ u1 + . . .+ u8 ≤ u− ψ2,

where

ψ1 = max{ψ(
√
Q), ψ(Q)} and ψ2 = min{ψ(

√
Q), ψ(Q)}.

Thus it follows from Fourier’s integral formula that J(m) = J̃(m). We now
fix P and Q by taking

50φ(3P ) = N and ψ(Q) = N

when the leading coefficient of ψ is positive, and by taking

φ(P/2) = N and ψ(Q) = −20φ(3P )

when the leading coefficient of ψ is negative. These equations determine P
and Q uniquely, and plainly these choices for P and Q satisfy (2.3). Suppose
that m is an integer satisfying

N/2− 12φ(3P ) ≤ m ≤ N.
Then

m− ψ1 ≤ 8φ(P/2) and m− ψ2 ≥ 8φ(P ),

and so it follows from (9.20)–(9.22) that

J̃(m) =
\

[φ(P/2),φ(P )]8

(Ξ(m; u))−1 du� (P−4)8Q1−k(φ(P )− φ(P/2))8.
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Consequently,

(9.23) J(m)� P 3Q.

Suppose now that N/2 < n ≤ N . Then when 1 ≤ xi, yi ≤ P/3 (i = 1, 2)
and P < z1, z2 ≤ 2P , it is apparent that

N/2− 12φ(3P ) ≤ n− Φ(x1, y1, z1)− Φ(x2, y2, z2) ≤ N.
Then by Lemma 4.2(iii) together with (9.19) and (9.23), we have

U(n)� P 3Q
∑

1≤x1,y1≤P/3
1≤x2,y2≤P/3

∑

P<z1,z2≤2P

S(n− Φ(x1, y1, z1)− Φ(x2, y2, z2)),

whence by Lemma 8.1, whenever n ∈ L ∩ [N/2, N ] one has U(n) � P 9Q.
On recalling (9.6), (9.7) and (9.18), therefore, we may conclude that when
n ∈ L∩ [N/2, N ] one has R(n)� P 9Q, and thus the proof of Theorem 2 is
complete.
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