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Hyper-Kloosterman sums and estimation of exponential
sums of polynomials of higher degrees

by

Yangbo Ye (Iowa City, Iowa)

1. Introduction. From a Davenport–Hasse identity of Gauss sums we
will deduce identities of hyper-Kloosterman sums. Using these identities the
theory of Kloosterman sheaves and equidistribution of hyper-Kloosterman
sums can be applied to the exponential sum

∑

xmod q

e
(
bx+ cxk

q

)

for some large k, where q = pa with a ≥ 1, and b and c are relatively
prime to the prime p. Using bounds of hyper-Kloosterman sums by Deligne,
Katz, Dąbrowski, and Fisher we then deduce new estimates of the above
exponential sum. Our bounds cannot be obtained by traditional methods as
our k may reach the order of q.

1.1. Davenport–Hasse identities of Gauss sums. Davenport and Hasse
established an identity of Gauss sums in [3]. Let p be an odd prime and
m > 1 a divisor of p − 1. Let η be a ramified character of order m on the
multiplicative group Q×p of the p-adic field Qp. Here by η being ramified we
mean that it is nontrivial on R×p ; the order of η is by definition the smallest
positive integer m such that ηm = 1. Then we know that the conductor
exponent of η, denoted by a(η), is equal to 1. Let ψ be an additive character
of Qp whose order is 0. Here the order of an additive character ϕ, denoted by
n(ϕ), is the largest integer n such that the character ϕ is trivial on p−nRp.
Let χ be any ramified multiplicative character on Qp satisfying

a(χ) = a(χη) = . . . = a(χηm−1) = 1.

Then the Davenport–Hasse identity of Gauss sums over the finite field Fp
can be written as
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(1) χ(mm)ε(χm, ψ; dx)ε(η, ψ; dx) . . . ε(ηm−1, ψ; dx)

= ε(χ, ψ; dx)ε(χη, ψ; dx) . . . ε(χηm−1, ψ; dx).

Here for a nontrivial additive character ϕ the ε-factor is defined as

(2) ε(χ, ϕ; dx) =





\
p−a(χ)−n(ϕ)R×p

χ−1(x)ϕ(x) dx if χ is ramified,

χ(pn(ϕ))pn(ϕ) if χ is unramified,

where dx is a Haar measure on Qp normalized by volume(Rp) = 1.
We point out that in (1) the conductor exponent a(χ) of the character

χ has to be 1. In order to have a Davenport–Hasse identity over the p-adic
field Qp we have to consider the case of a(χ) = a > 1. In [12] a generalized
Davenport–Hasse identity of Gauss sums is proved:

(3) χm(m)ε(χm, ψ; dx)qm−1
∏

1<j≤m

\
p[a/2]Rp

χ

(
1 +

j − 1
2j

y2
j

)
dyj

= (ε(χ, ψ; dx))m

when 1 < m < p and q = pa with a > 1. If a is even, then it simplifies to

χm(m)q(m−1)/2ε(χm, ψ; dx) = (ε(χ, ψ; dx))m.

We will use the approach in [12] to prove in Section 2 the following
generalization of the Davenport–Hasse identity.

Theorem 1. Let m > 1 be a divisor of p − 1, η a ramified multi-
plicative character of order m, and ψ an additive character of order zero.
Then for any ramified multiplicative character χ with conductor exponent
a(χ) = a > 1 we have

(4) χm(m)ηm(m−1)/2(m)ε(χmηm(m−1)/2, ψ; dx)

× qm−1
∏

1<j≤m

\
p[a/2]Rp

χ

(
1 +

j − 1
2j

y2
j

)
dyj

= ε(χ, ψ; dx)ε(χη, ψ; dx) . . . ε(χηm−1, ψ; dx)

where q = pa.

1.2. Identities of exponential sums. We write e(x) = e2πix. For a multi-
plicative character χ modulo an odd integer c > 1 we denote the Gauss sum
by

τc(χ) =
∑

xmod c
(x,c)=1

χ(x)e
(
x

c

)
.

From the original Davenport–Hasse identity in (1) we will deduce in Section
3 the following identity between a hyper-Kloosterman sum with character η
and an exponential sum.
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Theorem 2. Let p be a prime and m > 1 a divisor of p − 1. Denote
by η a multiplicative character modulo p of order m. Then for any integer
z which is relatively prime to p we have

(5)
∑

x1,...,xm mod p
(x1,p)=...=(xm,p)=1

η(x2x
2
3 . . . x

m−1
m )e

(
x1 + . . .+ xm + zx1 . . . xm

p

)

= τp(η) . . . τp(ηm−1)
∑

xmod p
(x,p)=1

e
(
mx+ zxm

p

)

where xx ≡ 1 mod p.

We point out that this identity is indeed the Diophantine manifestation
of a geometric isomorphism of sheaves in [8], Theorem 9.2.3. The generalized
Davenport–Hasse identity in Theorem 1 will imply a similar identity of the
hyper-Kloosterman sum. Its proof will be given in Section 4.

Theorem 3. Let p be a prime, m > 1 a divisor of p−1, and q = pa with
a > 1. Denote by η a multiplicative character modulo q of order m which
is also a multiplicative character modulo p. Then for any integer z which is
relatively prime to p we have

(6)
∑

x1,...,xm mod q
(x1,p)=...=(xm,p)=1

η(x2x
2
3 . . . x

m−1
m )e

(
x1 + . . .+ xm + zx1 . . . xm

q

)

=





q(m−1)/2
∑

xmod q
(x,p)=1

ηm(m−1)/2(x)e
(
mx+ zxm

q

)
if a is even,

q(m−1)/2

(
2m−1zm−1m

p

)
εm−1
p

∑

xmod q
(x,p)=1

ηm(m−1)/2(x)e
(
mx+ zxm

q

)

if a is odd ,
where xx ≡ 1 (mod q) and εp by definition equals 1 if p ≡ 1 (mod 4) and
equals i if p ≡ 3 (mod 4).

Note that whenm is odd, the character ηm(m−1)/2 is indeed trivial. When
m is even, ηm(m−1)/2 is a quadratic character. From the identity of Gauss
sums in (3) we can get a similar identity using the same proof.

Theorem 4. Let p be a prime, 1 < m < p, and q = pa with a > 1. Then
for any integer z which is relatively prime to p,

(7)
∑

x1,...,xm mod q
(x1,p)=...=(xm,p)=1

e
(
x1 + . . .+ xm + zx1 . . . xm

q

)
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=





q(m−1)/2
∑

xmod q
(x,p)=1

e
(
mx+ zxm

q

)
if a > 1 is even,

q(m−1)/2

(
2m−1zm−1m

p

)
εm−1
p

∑

xmod q
(x,p)=1

e
(
mx+ zxm

q

)
if a > 1 is odd.

1.3. Applications and estimation of exponential sums. We note that the
exponential sums on the left side of the identities in Theorems 2, 3, and 4
are all hyper-Kloosterman sums. Hyper-Kloosterman sums over a finite field,
like the one in Theorem 2, are studied extensively by Deligne [4] and Katz [6]
and [7]. In particular, these sums can be represented by Kloosterman sheaves
and their values are equidistributed with respect to a Haar measure. Our
identity in Theorem 2 implies that the same Kloosterman sheaves can be
used to study exponential sums of the type

∑

xmod p
(x,p)=1

e
(
mx+ zxm

p

)
or

∑

xmod p

e
(
bx+ cxp−m−1

p

)

when m | p − 1, where b, c, and z are relatively prime to p. Indeed, these
exponential sums have the same equidistribution pattern as the hyper-
Kloosterman sums.

In [4], [6] and [7] the estimate of hyper-Kloosterman sums with characters
was given implicitly (Theorem 4.1.1(1) of [7]): For the sum on the left side
of (5) we have∣∣∣∣

∑

x1,...,xm mod p
(x1,p)=...=(xm,p)=1

η(x2x
2
3 . . . x

m−1
m )e

(
x1 + . . .+ xm + zx1 . . . xm

p

)∣∣∣∣

≤ (m+ 1)pm/2.

We know that the Gauss sums in (5) have absolute value p1/2. Therefore
the identity in (5) implies an estimate of the exponential sum on the right
side

(8)
∣∣∣∣
∑

xmod p
(x,p)=1

e
(
mx+ zxp−m−1

p

)∣∣∣∣ ≤ (m+ 1)p1/2

when m | p− 1.
Now let us turn to Theorem 4. By [2] (Example 1.17), the hyper-Klooster-

man sum on the left side of (7) has the bounds

(9)
∣∣∣∣

∑

x1,...,xm mod q
(x1,p)=...=(xm,p)=1

e
(
x1 + . . .+ xm + zx1 . . . xm

q

)∣∣∣∣
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≤ (m+ 1)qm/2 when 1 < m < p− 1 and a > 1;

≤ p1/2qm/2 when m = p− 1 and a ≥ 5;

≤ pqm/2 when m = p− 1 and a = 4;

≤ p1/2qm/2 when m = p− 1 and a = 3;

≤ qm/2 when m = p− 1 and a = 2,

where p > 2 and q = pa. The identity in (7) then implies bounds for the
exponential sum on the right side

∑

xmod q
(x,p)=1

e
(
mx+ zxm

q

)
=

∑

xmod q
(x,p)=1

e
(
mx+ zxφ(q)−m

q

)

where φ(q) = pa−1(p− 1) is the Euler function. Together with the result in
(8) on the case of q = p we proved the following theorem. Note that

∑

xmod q
p|x

e
(
mx+ zxφ(q)−m

q

)
= 0

when a > 1 and 1 < m < p.

Theorem 5. Let p be an odd prime, q = pa, a ≥ 1, and 1 < m < p.
Then for any b and c relatively prime to p we have

(10)
∣∣∣∣
∑

xmod q

e
(
bx+ cxφ(q)−m

q

)∣∣∣∣

≤ (m+ 1)p1/2 + 1 when m > 1, m | p− 1, and a = 1;

≤ (m+ 1)q1/2 when 1 < m < p− 1 and a > 1;

≤ p1/2q1/2 when m = p− 1 and a ≥ 5;

≤ pq1/2 when m = p− 1 and a = 4;

≤ p1/2q1/2 when m = p− 1 and a = 3;

≤ q1/2 when m = p− 1 and a = 2.

We point out that our bounds cannot be obtained by traditional estima-
tion methods of exponential sums of the type (cf. Vaughan [11])

∑

xmod q

e
(
ax+ bxk

q

)
.
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Indeed, in the case of p Carlitz and Uchiyama [1] proved that

(11)
∣∣∣∣
∑

xmod p

e
(
P (x)
p

)∣∣∣∣ ≤ (k − 1)p1/2

based on the work of Weil on Riemann hypothesis for curves over finite
fields. Here P (x) = akx

k + . . . + a1x ∈ Z[x] is a polynomial of degree k
with (ak, . . . , a1, p) = 1. Loxton and Vaughan [10] proposed a question of
estimating exponential sums with polynomials of higher degrees and con-
jectured that the bound in (11) should be reduced to (kp)1/2. For the poly-
nomial bx + cxp−m−1 with b and c relatively prime to p and m | p − 1 our
estimate (m + 1)p1/2 is better and indeed nontrivial when m is fixed and
p ≡ 1 (mod m) is large.

In the case of q = pa with a > 1 Loxton and Smith [9] and Loxton and
Vaughan [10] improved an estimate of Hua [5] on

∑

xmod q

e
(
P (x)
q

)
.

For P (x) = bx+ cxk with b and c relatively prime to p they proved that

(12)
∣∣∣∣
∑

xmod q

e
(
bx+ cxk

q

)∣∣∣∣ ≤ q1/2dk−1(q)

where dk−1(q) is the number of representations of q as a product of k − 1
positive integers (e.g. dk−1(p) = k− 1). Since dk−1(pa) is a polynomial of k
of degree a, Loxton and Smith’s estimate in (12) becomes worst than trivial
when k is not O(p1/2). Our results in Theorem 5 can treat some of the
cases of high degree polynomials, namely bx + cxk with degree k between
pa − pa−1 − p and pa − pa−1 − 1.

Exponential sums associated with high degree polynomials have high
volatility. Their estimation might have applications in Waring’s problem
and other number theory problems.

Finally, let us go back to Theorem 3. As we remarked earlier the character
ηm(m−1)/2 is trivial when m is odd. Consequently, the identities in (6) and
(7) imply that

∑

x1,...,xm mod q
(x1,p)=...=(xm,p)=1

η(x2x
2
3 . . . x

m−1
m )e

(
x1 + . . .+ xm + zx1 . . . xm

q

)

=
∑

x1,...,xm mod q
(x1,p)=...=(xm,p)=1

e
(
x1 + . . .+ xm + zx1 . . . xm

q

)

when m > 1 is an odd divisor of p− 1 for q = pa with a > 1. Therefore the
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estimates of Da̧browski and Fisher [2] in (9) in this case are also true for the
sum twisted by the character η. This suggests that the same estimates might
also be true for hyper-Kloosterman sums twisted by other multiplicative
characters in the case of q = pa with a > 1.

2. The Davenport–Hasse identity over a p-adic field. In this sec-
tion we prove Theorem 1. The proof of the identity in (3), which holds for
any m greater than 1 and less than p, not necessarily dividing p−1, is similar
and can be found in [12]. Let χ be a ramified multiplicative character of Qp
with conductor exponent a(χ) = a > 1 and let η be a ramified multiplicative
character of Qp of order m > 1, where m | p− 1. Then a(η) = 1 and

a(χ) = a(χη) = . . . = a(χηm−1) = a.

For any additive character ψ of order zero we use the definition of local
ε-factor in (2) and get

ε(χ, ψ; dx)ε(χη, ψ; dx) . . . ε(χηm−1, ψ; dx)

=
\

(q−1R×p )m

χ−1(x1 . . . xm)η−1(x2x
2
3 . . . x

m−1
m )ψ(x1 + . . .+ xm) dx1 . . . dxm.

Using new variables y1 = x1q and yi = xiq/y1 for i = 2, . . . ,m, we get

qmχm(q)ηm(m−1)/2(q)
\

(R×p )m

χ−1(ym1 y2 . . . ym)

× η−1(ym(m−1)/2
1 y2y

2
3 . . . y

m−1
m )ψ

(
y1

q
(1 + y2 + . . .+ ym)

)
dy1 . . . dym.

Note that the character ηm(m−1)/2 is either unramified or ramified with
conductor exponent equal to 1. Since m < p and a > 1, the conductor
exponents of χm and χmηm(m−1)/2 are still a. Consequently, the integral
with respect to y1 vanishes unless 1 + y2 + . . . + ym ∈ R×p . Setting z =
y1(1 + y2 + . . .+ ym)/q we get

(13) ε(χ, ψ; dx)ε(χη, ψ; dx) . . . ε(χηm−1, ψ; dx)

= qm−1
\

q−1R×p

χ−m(z)η−m(m−1)/2(z)ψ(z) dz

×
\

y2,...,ym∈R×p
1+y2+...+ym∈R×p

χ

(
(1 + y2 + . . .+ ym)m

y2 . . . ym

)

× η
(

(1 + y2 + . . .+ ym)m(m−1)/2

y2y2
3 . . . y

m−1
m

)
dy2 . . . dym.
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The first integral on the right side equals ε(χmηm(m−1)/2, ψ; dx). Denote
the second integral by Im. Since a(χ) = a > 1, we set ym = y0(1 + u) where

y0 ∈ (R×p − (−(1 + y2 + . . .+ ym−1) + pRp))/(1 + p[(a+1)/2]Rp)

and u ∈ p[(a+1)/2]Rp. Rewrite the integrand of Im accordingly and integrate
it with respect to u; then we discover that the integral with respect to u
vanishes unless y0 ∈ (1 + y2 + . . .+ ym−1)/(m− 1) + p[a/2]Rp. Therefore the
integral with respect to ym in Im is actually taken over ym ∈ (1 + y2 + . . .+
ym−1)/(m− 1) + p[a/2]Rp with 1 + y2 + . . .+ ym−1 ∈ R×p . Consequently, by
setting ym = (1 + y2 + . . . + ym−1)/(m − 1) + y with y ∈ p[a/2]Rp we can
rewrite the integrand of Im as

χ

(
mm

(m− 1)m−1

)
η

(
mm(m−1)/2

(m− 1)(m−1)(m−2)/2

)
χ

(
(1 + y2 + . . .+ ym−1)m−1

y2 . . . ym−1

)

× η
(

(1 + y2 + . . .+ ym−1)(m−1)(m−2)/2

y2y2
3 . . . y

m−2
m−1

)
χ

(
1 +

(m− 1)3y2/(2m)
(1 + y2 + . . .+ ym−1)2

)
.

Changing variables we get

Im = Im−1χ

(
mm

(m− 1)m−1

)
η

(
mm(m−1)/2

(m− 1)(m−1)(m−2)/2

)
(14)

×
\

p[a/2]Rp

χ

(
1 +

(m− 1)y2

2m

)
dy.

Recall here that m < p. By using (14) repeatedly we finally get

(15) Im = χm(m)ηm(m−1)/2(m)
∏

1<j≤m

\
p[a/2]Rp

χ

(
1 +

j − 1
2j

y2
j

)
dyj .

Theorem 1 follows from (13) and (15).

3. Identities of exponential sums over a finite field. We will now
deduce Theorem 2 from the Davenport–Hasse identity in (1). Let p be an
odd prime, and m > 1 a divisor of p − 1. Using a ramified multiplicative
character η on Q×p of order m and an additive character ψ of order zero of
Qp we actually want to prove the following identity for any z ∈ R×p :

(16) ηm(m−1)/2(p)
∑

x1,...,xm∈R×p /(1+pRp)

η−1(x2x
2
3 . . . x

m−1
m )

× ψ
(

1
p

(
x1 + . . .+ xm +

z

x1 . . . xm

))

= ε(η, ψ; dx) . . . ε(ηm−1, ψ; dx)
∑

x∈R×p /(1+pRp)

ψ

(
1
p

(
mx+

z

xm

))
.
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We will show that the Mellin transformations of the two sides of (16) are
equal for any multiplicative character χ of Qp. Indeed, the Mellin transfor-
mation of the left side is equal to

pmηm(m−1)/2(p)
\
R×p

χ−1(z) dz
\

(R×p )m

η−1(x2x
2
3 . . . x

m−1
m )

× ψ
(

1
p

(
x1 + . . .+ xm +

z

x1 . . . xm

))
dx1 . . . dxm

where we wrote the sum with respect to x1, . . . , xm in terms of an integral.
Changing variables from z to y = z/(px1 . . . xm) and from xi to yi = xi/p,
i = 1, . . . ,m, we get

p−1χ−(m+1)(p)
\

p−1R×p

χ−1(y)ψ(y) dy
\

p−1R×p

χ−1(y1)ψ(y1) dy1

×
\

p−1R×p

χ−1η−1(y2)ψ(y2) dy2 . . .
\

p−1R×p

χ−1η1−m(ym)ψ(ym) dym.

Now we consider characters χ with a(χ) = 1 and χm 6= 1. Then we can
express the above integral as a product of local ε-factors and get the following
expression for the Mellin transformation of the left side of (16):
(17) p−1χ−(m+1)(p)ε(χ, ψ; dx)2ε(χη, ψ; dx) . . . ε(χηm−1, ψ; dx).

On the other hand, the Mellin transformation of the right side of (16)
equals

pε(η, ψ; dx) . . . ε(ηm−1, ψ; dx)
\
R×p

χ−1(z) dz
\
R×p

ψ

(
1
p

(
mx+

z

xm

))
dx.

If we change variables to y1 = z/(pxm) and y2 = mx/p, we get
p−1χ−(m+1)(p)χm(m)ε(η, ψ; dx) . . . ε(ηm−1, ψ; dx)

×
\

p−1R×p

χ−1(y1)ψ(y1) dy1

\
p−1R×p

χ−m(y2)ψ(y2) dy2.

When the character χ satisfies a(χ) = 1 and χm 6= 1, we get the following
expression for the Mellin transformation of the right side of (16):
(18) p−1χ−(m+1)(p)χm(m)ε(η, ψ; dx) . . . ε(ηm−1, ψ; dx)

× ε(χm, ψ; dx)ε(χ, ψ; dx).

By the Davenport–Hasse identity in (1) the expressions in (17) and (18)
are equal. Consequently, we have

(19) ηm(m−1)/2(p)
\
R×p

χ−1(z) dz
∑

x1,...,xm∈R×p /(1+pRp)

η−1(x2x
2
3 . . . x

m−1
m )

× ψ
(

1
p

(
x1 + . . .+ xm +

z

x1 . . . xm

))
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= ε(η, ψ; dx) . . . ε(ηm−1, ψ; dx)

×
\
R×p

χ−1(z) dz
∑

x∈R×p /(1+pRp)

ψ

(
1
p

(
mx+

z

xm

))

when a(χ) = 1 and χm 6= 1. By direct computation we can show that (19)
holds for other χ. Indeed, the integrals with respect to z vanish for ramified
χ with a(χ) 6= 1. If a(χ) = 1 and χm = 1, then the two sides in (19) are
both equal to

−p−1χ−1(p)ε(χ, ψ; dx)ε(η, ψ; dx) . . . ε(ηm−1, ψ; dx).

If χ is unramified, then the two sides of (19) become

p−1ε(η, ψ; dx) . . . ε(ηm−1, ψ; dx).

Since the equation in (19) now holds for any character χ, the identity in
(16) and Theorem 2 follow from Fourier’s inversion formula.

4. Identities of exponential sums over a p-adic field. In this section
we prove Theorem 3. If we set η to be the trivial character and take m > 1
to be any integer less than p, not necessarily a divisor of p−1, our proof can
be used verbatim to deduce Theorem 4 from the identity of local ε-factors
in (3).

As in Section 3 let p be an odd prime, and m > 1 a divisor of p − 1.
Denote by η a ramified multiplicative character on Q×p of order m and by
ψ an additive character of order zero of Qp. Let a > 1 and set q = pa. For
any z ∈ R×p we want to prove that

(20)
∑

x1,...,xm∈R×p /(1+qRp)

η−1(x2x
2
3 . . . x

m−1
m )

× ψ
(

1
q

(
x1 + . . .+ xm +

z

x1 . . . xm

))

=





q(m−1)/2
∑

x∈R×p /(1+qRp)

η−m(m−1)/2(x)ψ
(

1
q

(
mx+

z

xm

))
if a is even,

q(m−1)/2
(

2m−1zm−1m

p

)
εm−1
p

×
∑

x∈R×p /(1+qRp)

η−m(m−1)/2(x)ψ
(

1
q

(
mx+

z

xm

))
if a is odd.

Similarly to the computation in Section 3, for any multiplicative char-
acter χ with conductor exponent a(χ) = a the Mellin transform of the left
side of (20) equals
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q−1χ−(m+1)(q)η−m(m−1)/2(q)ε(χ, ψ; dx)2ε(χη, ψ; dx) . . . ε(χηm−1, ψ; dx).

By Theorem 1 the above becomes

χm(m)ηm(m−1)/2(m)χ−(m+1)(q)η−m(m−1)/2(q)ε(χ, ψ; dx)

× ε(χmηm(m−1)/2, ψ; dx)qm−2
∏

1<j≤m

\
p[a/2]Rp

χ

(
1 +

j − 1
2j

y2
j

)
dyj .

Since m < p, the conductor exponent of χmηm(m−1)/2 is still equal to a. By
the definition of ε-factor in (2) we get

χm(m)ηm(m−1)/2(m)χ−(m+1)(q)η−m(m−1)/2(q)

×
\

(q−1R×p )2

χ−1(x1)χ−mη−m(m−1)/2(x2)ψ(x1 + x2) dx1 dx2

× qm−2
∏

1<j≤m

\
p[a/2]Rp

χ

(
1 +

j − 1
2j

y2
j

)
dyj .

Changing variables from x1 and x2 to y = x2q/m and

z =
x1y

mq∏
1<j≤m

(
1 + j−1

2j y
2
j

)

we get

(21) qm
\
R×p

χ−1(z) dz
\
R×p

η−m(m−1)/2(y) dy

×
\

(p[a/2]Rp)m−1

ψ

(
1
q

(
my +

z

ym

∏

1<j≤m

(
1 +

j − 1
2j

y2
j

)))
dy2 . . . dym

= qm
\
R×p

χ−1(z) dz
\
R×p

η−m(m−1)/2(y)ψ
(

1
q

(
my +

z

ym

))
dy

×
∏

1<j≤m

\
p[a/2]Rp

ψ

(
(j − 1)z
2jqym

y2
j

)
dyj .

When a is even, the last integral with respect to yj equals q−1/2 and the
product on the right side equals q(1−m)/2. When a is odd, the integral equals

q−1/2γ

(
(j − 1)z
jpym

, ψ

)
= q−1/2γ

(
j(j − 1)ymz

p
, ψ

)

where γ is the Weil constant defined by
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\
Rp

ψ

(
bx2

2

)
dx = |b|−1/2

p γ(b, ψ)

for |b|p > 1. Since p is odd, we know that

γ

(
j(j − 1)ymz

p
, ψ

)
=
(

2j(j − 1)ymz
p

)
εp

where εp equals 1 if p ≡ 1 (mod 4) and equals i if p ≡ 3 (mod 4). Conse-
quently, the product on the right side of (21) becomes

q(1−m)/2
∏

1<j≤m

(
2j(j − 1)ymz

p

)
εp = q(1−m)/2εm−1

p

(
2m−1zm−1m

p

)
.

Back to (21), we have proved that

(22)
\
R×p

χ−1(z) dz
∑

x1,...,xm∈R×p /(1+qRp)

η−1(x2x
2
3 . . . x

m−1
m )

× ψ
(

1
q

(
x1 + . . .+ xm +

z

x1 . . . xm

))

=





q(m−1)/2
\
R×p

χ−1(z) dz
∑

y∈R×p /(1+qRp)

η−m(m−1)/2(y)ψ
(

1
q

(
my +

z

ym

))

if a is even,

q(m−1)/2εm−1
p

\
R×p

χ−1(z)
(

2m−1zm−1m

p

)
dz

×
∑

y∈R×p /(1+qRp)

η−m(m−1)/2(y)ψ
(

1
q

(
my +

z

ym

))
if a is odd,

for any multiplicative character χ with a(χ) = a and for any z ∈ R×p , when
a > 1.

Note that when m is even the above Jacobi symbol is a multiplicative
character of z with conductor exponent equal to 1, because p is odd. Con-
sequently, when χ is unramified or when χ is ramified with a(χ) 6= a, the
product of this Jacobi symbol and χ−1 is either unramified or is ramified
with conductor exponent not equal to a, because a > 1. From this obser-
vation and the fact that a > 1 we can see that both sides of (22) vanish
when χ is unramified or when χ is ramified with a(χ) 6= a. Therefore (22)
holds for any multiplicative character χ. By the Fourier inversion formula
we prove (20) and Theorem 3.
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[7] —, Gauss Sums, Kloosterman Sums, and Monodromy Groups, Ann. of Math. Stud.

116, Princeton Univ. Press, Princeton, 1988.
[8] —, Exponential Sums and Differential Equations, Ann. of Math. Stud. 124, Prince-

ton Univ. Press, Princeton, 1990.
[9] J. H. L o x t o n and R. A. S m i t h, On Hua’s estimate for exponential sums, J.

London Math. Soc. 26 (1982), 15–20.
[10] J. H. L o x t o n and R. C. V a u g h a n, The estimation of complete exponential sums,

Canad. Math. Bull. 28 (1985), 440–454.
[11] R. C. V a u g h a n, The Hardy–Littlewood Method , 2nd ed., Cambridge Tracts in

Math. 125, Cambridge Univ. Press, Cambridge, 1997.
[12] Y. Y e, The lifting of an exponential sum to a cyclic algebraic number field of a

prime degree, Trans. Amer. Math. Soc., to appear.

Department of Mathematics
The University of Iowa
Iowa City, Iowa 52242-1419
U.S.A.
E-mail: yey@math.uiowa.edu

Received on 14.2.1998 (3336)


