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Some diophantine equations of the form xn + yn = zm

by

Bjorn Poonen (Berkeley, Calif.)

1. Introduction. Let m and n be positive integers. A solution (x, y, z) ∈
Z3 to the equation xn + yn = zm will be called primitive if gcd(x, y, z) = 1.
A solution (x, y, z) will be called trivial if xyz is in {−1, 0, 1}. The purpose
of this paper is to complete the proof of the following two theorems.

Theorem 1. The equation xn + yn = z2 has no nontrivial primitive
solutions for n ≥ 4.

Theorem 2. Assume the Shimura–Taniyama conjecture. Then the equa-
tion xn + yn = z3 has no nontrivial primitive solutions for n ≥ 3.

We say “complete” because Darmon and Merel [DM] have proved both
theorems (1) for prime n ≥ 7, by applying the Shimura–Taniyama conjecture
to Frey curves. (The Frey curves arising in their proof for Theorem 1 have
semistable reduction at 3 and 5, and the Shimura–Taniyama conjecture for
such elliptic curves had already been settled by Diamond’s extension of the
results of Wiles, Taylor–Wiles, etc.)

Since the truth of either theorem for a given n implies its truth for any
multiple of n, we are left with only the cases n = 4, 5, 6, 9 in Theorem 1 and
n = 3, 4, 5 in Theorem 2. The cases n = 4 and n = 6 in Theorem 1 are due
to Fermat and Euler, respectively. The cases n = 3 and n = 4 in Theorem 2
are due to Euler and Lucas, respectively. (See [DM] for references and more
historical details.) Therefore the only equations remaining to be treated are

x9 + y9 = z2, x5 + y5 = z2, x5 + y5 = z3.
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(1) They prove a third theorem as well, that xn+yn = 2zn has no nontrivial primitive

solutions once n ≥ 3. The small exponent cases of this equation had already been solved
by Dénes [De, Satz 9].
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We have listed these in order of increasing difficulty, which is also the order
in which we will tackle them.

For the most part, the method we use is the standard 2-descent for ellip-
tic curves. But for the last equation, we will use the explicit descent recently
developed by Schaefer for curves of the form yp = f(x), to find the rank of
a certain 3-dimensional Jacobian. (See also [PS] for a further generalization
of this method.) Once that is done, we will need to find the Mordell–Weil
group of a 2-dimensional quotient A, without having an equation for a curve
of which A is the Jacobian (2). Although the theory behind these techniques
is certainly not new, carrying them out in a practical amount of time will
require some tricks (see the final paragraph, for example) and use of GP-
PARI (3). We hope and expect that these methods will be useful not only
for solving other generalized Fermat equations, but also for explicitly deter-
mining rational solutions to other diophantine equations.

Remark. The equations xn + yn = z2 for n ≤ 3, and xn + yn = z3 for
n ≤ 2 each have infinitely many nontrivial primitive solutions. See [Be] for
a general procedure for parameterizing the solutions of such equations.

2. The equation x9+y9 = z2. Suppose (x, y, z) is a nontrivial primitive
solution to x9 + y9 = z2. Then the factors x3 + y3 and x6 − x3y3 + y6 of
the left hand side are nonzero. If a prime p divides both of them, p also
divides 3x6 and 3y6, but gcd(x, y) = 1, so p can only be 3. Thus from
unique factorization we obtain

(1) εv2 = x6 − x3y3 + y6

where ε = ±1 or ±3, and v ∈ Z. Then (U, V ) = (x/y, v/y3) is a rational
point on the genus 2 curve

(2) εV 2 = U6 − U3 + 1.

Since the right hand side is positive for U ∈ R, ε must be 1 or 3.
The curve (42) admits two involutions other than the hyperelliptic one:

(U, V ) 7→ (1/U, V/U3) and (U, V ) 7→ (1/U,−V/U3). The corresponding quo-
tients are elliptic curves birational to

(3) εY 2 = X3 − 21X + 37

and

(4) εY 2 = X3 − 9X + 9,

respectively.

(2) Actually we will prove only #A(Q) ≤ 2, which will suffice for our purposes.
(3) In fact, it is not even clear from the beginning that the methods will succeed; we

will need certain Mordell–Weil ranks to be zero, or at least not too large.



Diophantine equations 195

For ε = 1, (43) is curve 324A1 in Cremona’s tables [Cr], and has rank 0
and torsion subgroup of order 3. Hence when ε = 1, the curve (41) has at
most six rational points. On the other hand, it is easy to list six points:
those with U = 0, U = 1, and U = ∞. Therefore these are all. They give
rise only to trivial solutions (x, y, z).

Similarly for ε = 3, (44) is curve 324A2 in [Cr], which has rank 0 (it is
isogenous to curve 324A1) and trivial torsion subgroup. Hence when ε = 3,
the curve (41) has at most two rational points. We can list two: those with
U = −1. But again, these give rise only to trivial solutions (x, y, z).

3. The equation x5 + y5 = z2. Suppose that (x, y, z) is a nontrivial
primitive solution to x5+y5 = z2. As in Section 2, using unique factorization
in Z, we have {

x+ y = εw2
1,

x4 − x3y + x2y2 − xy3 + y4 = εw2
2,

where ε = ±1 or ±5 and gcd(w1, w2) = 1. Looking at the second equation
over R rules out the cases ε = −1 or −5. If ε = 5, then we obtain a rational
point with X-coordinate x/y on the genus 1 curve

(5) 5Y 2 = X4 −X3 +X2 −X + 1.

This curve has a rational point (−1, 1), so it is an elliptic curve, and in fact
it is birational to the curve 200D1 in [Cr]. Its Mordell–Weil rank is 0, and
its torsion subgroup has order 2, so the only points on (45) are those with
X = −1. Therefore from now on, we may assume that ε = 1.

Let ζ be a primitive 5th root of unity, and let O = Z[ζ]. We may factor
x5 + y5 over Q(ζ) into x + ζy and x4 − ζx3y + ζ2x2y2 − ζ3xy3 + ζ4y4. If
a prime π in this number field divides both factors, then as before it must
divide 5; i.e., it must be the prime 1− ζ. The class number of Q(ζ) is 1, and
its unit group modulo squares is generated by −1 and τ := (1 +

√
5)/2, so

that {
x+ ζy = δv2

1 ,

x4 − ζx3y + ζ2x2y2 − ζ3xy3 + ζ4y4 = δv2
2 ,

where v1, v2 ∈ O and δ = ±τ i(1 − ζ)j for some i, j ∈ {0, 1}. If j = 1, then
x+ζy is divisible by 1−ζ, and then so is x+y = (x+ζy)+y(1−ζ). But x+y
is an integer, so this means that 5 divides x+y. Also x4−x3y+x2y2−xy3+y4

equals 5x4 modulo x + y, so x4 − x3y + x2y2 − xy3 + y4 is divisible by 5,
contradicting ε = 1. Thus j = 0. Now, working in O/4O, and checking all
x, y ∈ {0, 1, 2, 3} such that gcd(x, y, 2) = 1 and such that x + y is a square
modulo 4, we find that x+ ζy can equal δ times a square in O modulo 4 for
δ = ±τ i only if δ = 1.
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Thus we find a Q(ζ)-rational point P with X-coordinate x/(ζy) on the
elliptic curve

(6) E : Y 2 = X4 −X3 +X2 −X + 1.

(We choose (0, 1) as origin on E.) Its minimal Weierstrass model is

(7) Y 2 = (X + 2)(X2 −X − 1).

Let us compute the group E(Q(ζ)). Let K = Q(
√

5), β = −(5 +
√

5)/2.
Since Q(ζ) = K(

√
β), the rank of E(Q(ζ)) is the sum of the ranks of E(K)

and Eβ(K), where Eβ denotes the β-twist of E. In turn, the rank of E(K)
is the sum of the ranks of E(Q) and E5(Q) where E5 is the 5-twist of E.
These last two curves are 200B1 and 200D1 in [Cr], and they have ranks 1
and 0, respectively. The point (−1, 1) on (47) is a generator modulo torsion.

We now compute the rank of Eβ(K). Factoring the right hand side of (47)
over K, we find that Eβ has a model

(8) Eβ : Y 2 = X(X − 1)(X + τ)

over K. Let∞1 and∞2 denote the real places of K for which
√

5 is positive
and negative, respectively. Let S = {∞1,∞2, 2}. Note that Eβ has good
reduction outside S. Let (K×/K×2)S denote the subgroup of K×/K×2 rep-
resented by elements α such that ordv(α) is even for all v 6∈ S. In our case,
−1, τ , and 2 represent a basis for (K×/K×2)S . Then we have the usual
2-descent homomorphism

φ : Eβ(K)/2Eβ(K)→ (K×/K×2)S × (K×/K×2)S ,(9)

(X,Y ) 7→ (X,X − 1).

One must use a special formula for some of the 2-torsion points: φ maps the
identity on Eβ to (1, 1), the point (0, 0) to (−τ,−1), and the point (1, 0) to
(1, 1). In particular, the point (1, 0) is a double in Eβ(K): in fact, it is the
double of the 4-torsion point (1 + τ, 1 + 2τ), which is mapped by φ to (1, τ).

Let Ri denote the completion of K at ∞i. Since Eβ has all its 2-torsion
defined over Ri, the F2-dimension of Eβ(Ri)/2Eβ(Ri) is 1, and any point on
the real component not containing the origin will be a generator. For R1,
−τ < 0, so we may take any point with X-coordinate between −τ and 0 as
generator. The image of the local descent homomorphism

(10) Eβ(R1)/2Eβ(R1)→ R×1 /R
×2
1 × R×1 /R×2

1

is hence generated by (−1,−1). Similarly, for R2, 0 < −τ < 1, so we may
take a point with X-coordinate between 0 and −τ , and the image of

(11) Eβ(R2)/2Eβ(R2)→ R×2 /R
×2
2 × R×2 /R×2

2

is generated by (1,−1).
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Let K2 denote the completion of K at the (inert) prime 2. If (X,Y ) ∈
Eβ(K2) and the 2-adic valuation of X is nonnegative, then at most one of
X, X−1, X+τ can be divisible by 2, so the valuations of X and X−1 must
be even in order for X(X − 1)(X + τ) to be a square. Similarly if the 2-adic
valuation of X is negative, then it equals the 2-adic valuations of X− 1 and
X + τ , and all three must be even. Thus the image of

(12) Eβ(K2)/2Eβ(K2)→ K×2 /K
×2
2 ×K×2 /K×2

2

is contained in the subgroup on the right with even 2-adic valuation in each
component.

The only elements of (K×/K×2)S × (K×/K×2)S that can map into
the local images of (410), (411), and (412) are (1, 1), (1, τ), (−τ,−1), and
(−τ,−τ). Thus the 2-Selmer group of Eβ over K is at most 2-dimensional
over F2. On the other hand, all the 2-torsion of Eβ is defined over K, so the
torsion subgroup of Eβ(K) already surjects onto this 2-dimensional group.
Hence Eβ(K) has rank 0.

The rank of E(Q(ζ)) is then 1 + 0 + 0 = 1, and the group E(Q) modulo
torsion must be of 2-power index in E(Q(ζ)) modulo torsion. We check
that neither (−1, 1) nor its translate (3,−5) by the nontrivial torsion point
in E(Q) are doubles in E(Q(ζ)). Hence (−1, 1) is a generator of E(Q(ζ))
modulo torsion.

We next calculate the torsion subgroup of E(Q(ζ)). Note that E is iso-
morphic to Eβ over Q(ζ), and we already know that Eβ has at least 8
torsion points over Q(ζ) (all the 2-torsion, and a 4-torsion point). On the
other hand, the reduction of E at a degree 1 prime of Q(ζ) above 11 is an
elliptic curve over F11 with 16 points, and the reduction at a prime above 41
has 40 points, so the torsion subgroup of E(Q(ζ)) has order exactly 8.

Let σ denote the nontrivial automorphism in Gal(Q(ζ)/K), which in
particular takes ζ to ζ−1. Since the generator of the free part of E(Q(ζ)) and
all the 2-torsion are defined over K, the entire group E(Q(ζ)) is mapped by
σ−1 into a Gal(Q(ζ)/Q)-stable group of order at most 2 (in fact, exactly 2).
The only such nontrivial group is generated by the 2-torsion point in E(Q).
In particular, Pσ −P is either trivial or this 2-torsion point. Translation by
this 2-torsion point in the original model (46) is given by the map

(X,Y ) 7→ (1/X,−Y/X2),

as can be seen from the fact that this map is an involution defined over
Q without a fixed point. Since P has X-coordinate x/(ζy), we find that
x/(ζ−1y) = x/(ζy) or x/(ζ−1y) = (ζy)/x. Each possibility gives rise only to
trivial solutions to our original equation.

4. The equation x5 + y5 = z3. Suppose that (x, y, z) is a nontrivial
primitive solution to x5 + y5 = z3. If a prime p divides both factors x + y
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and x4− x3y+ x2y2− xy3 + y4 of the left hand side, it also divides 5x4 and
5y4, but gcd(x, y) = 1, so p = 5. Hence, by unique factorization, we find

(13) x+ y = mv3

where m ∈ {1, 5, 52} and v ∈ Z. Multiplying by x5 + y5 = z3 and dividing
by y6, we find a point (U, V ) = (x/y, vz/y2) on the genus 3 curve

Cm : (U + 1)(U5 + 1) = mV 3

(depending on m). This curve has an involution (U, V ) 7→ (1/U, V/U2), and
the quotient is the elliptic curve

Em : Y 2 = X3 + 2000m2.

The quotient map, which is determined up to sign by decreeing that (U, V ) =
(−1, 0) will map to the point at infinity, is

ψ : Cm → Em,(14)

(U, V ) 7→
(

20mV
(U + 1)2 ,

−100m(U2 + 1)
(U + 1)2

)
.

(The Weierstrass model for Em and the formula for the quotient map were
found with help from Mark van Hoeij’s Maple package IntBasis, but of
course they could easily be computed by hand as well.)

The elliptic curve E5 is curve 675E1 in [Cr], which has trivial Mordell–
Weil group. It follows that the only rational point on C5 is (U, V ) = (−1, 0).
Unfortunately, the elliptic curves E1 and E25 (which are curves 675A1 and
225A1, respectively, in [Cr]) have rank 1, so additional work will be required
to handle the cases m = 1 and m = 25.

As in Section 3, let ζ denote a primitive 5th root of unity, let O =
Z[ζ], let τ = −(ζ2 + ζ3) = (1 +

√
5)/2, and let K = Q(

√
5). Also let

β = −(5 +
√

5)/2, so that Q(ζ) = K(
√
β), and let σ be the nontrivial

automorphism in Gal(Q(ζ)/K). If a prime π of Q(ζ) divides both x + ζy
and x4 − ζx3y + ζ2x2y2 − ζ3xy3 + ζ4y4, then it also divides 5x4 and 5ζ4y4,
but gcd(x, y) = 1, so π can only be the prime 1− ζ above 5. Since the class
number of Q(ζ) is 1, we must have x+ ζy = ε(1− ζ)ku3 for some ε ∈ O×,
u ∈ Q(ζ)×, and k ∈ {0, 1, 2}. The unit group O× is isomorphic to Z×Z/10Z
with the free part generated by τ , so all roots of unity are cubes, and 1− ζ
is equivalent to 5 modulo cubes, and we obtain

(15) x+ ζy = 5iτ jw3

for some w ∈ Q(ζ)× and i, j ∈ {0, 1, 2}. By taking norms of (415) and
comparing with x5 + y5 = z3, we find that 54im must be a cube, where m is
as in (413). In particular, we need only consider the cases i = 0 (i.e., m = 1)
and i = 1 (i.e., m = 25).
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We now eliminate the possibility j = 2 by local considerations. Since
x, y ∈ Z, the element w must be integral away from the prime 1 − ζ. The
left hand side of (415) modulo 2 is either a cube (if x or y is even) or 1 + ζ
(if x and y are both odd), which is τ times a cube (modulo 2), so we see
that j = 0 or j = 1.

Multiplying (415) by x5 + y5 = z3 and dividing by (ζy)6, we find a
Q(ζ)-rational point S := (U, V ) =

(
x
ζy ,

wz
ζ2y2

)
on

Cη : (U + 1)(U5 + 1) = ηV 3,

with η = 5iτ j . This point maps down to a Q(ζ)-rational point P on the
elliptic curve

Eη : Y 2 = X3 + 2000η2.

Then P σ + P is a K-rational point on Eη, and P σ − P corresponds to a
K-rational point on the β-twist, Eβη . Our hope (which, as it turns out, will
not be fully realized) is that for each η, one of these elliptic curves will have
rank 0 over K.

First suppose i = j = 0, so η = 1. We know already that E1(K) has
positive rank (since even E1(Q) has positive rank), so we now compute the
Mordell–Weil rank of

Eβ1 : Y 2 = X3 + 2000β3

over K using 2-descent. This time, however, there are no K-rational 2-
torsion points, so we will follow the more general descent outlined in [Ca].
Let f(T ) = T 3 + 2000β3, and let L = K[T ]/(f(T )), which is a number field.
Let S be a set of places of K including the (inert) prime 2, the infinite places,
and the places of bad reduction for Eβ1 . Let (L×/L×2)S denote the subgroup
of L×/L×2 represented by elements l of L× such that the extension L(

√
l) of

L is unramified outside places of L above those in S. Also let Lπ = L⊗KKπ

for each completion Kπ of K. Then there is an injective homomorphism

Eβ1 (K)/2Eβ1 (K) ↪→ ker(L×/L×2 Norm−−−→K×/K×2)

whose image is also contained in the subgroup of elements of (L×/L×2)S
which map down in L×π /L

×2
π into the images of the corresponding local

injective homomorphisms

(16) Eβ1 (Kπ)/2Eβ1 (Kπ) ↪→ ker(L×π /L
×2
π

Norm−−−→K×π /K
×2
π )

for each π ∈ S. In fact, these conditions characterize a subgroup isomorphic
to the 2-Selmer group of Eβ1 over K.

In our case, L has class number 1, and S = {∞1,∞2, 2, 3,
√

5}, so the
group (L×/L×2)S has as basis a generator for the roots of unity in L, gen-
erators of the unit group of L modulo torsion, and generators of the primes
of L above the finite primes in S. (Of course, we are free to change these
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generators by squares.) The primes 2 and 3 of K totally ramify in L, while
the prime

√
5 is unramified and splits into two primes, π5 and π′5, of degrees

1 and 2, respectively. Hence we obtain the following basis for (L×/L×2)S :

(L×/L×2)S = 〈−1, u1, u2, u3, 2, 3,
√

5, π′5〉.
(Here u1, u2, and u3 are the three generators for the unit group modulo
torsion given by PARI.) By calculating the norms of these eight elements,
we find

(17) ker((L×/L×2)S
Norm−−−→K×/K×2) = 〈−u2,−u3,−u1π

′
5〉.

The 2-torsion subgroup of Eβ1 (K2) is trivial. Since multiplication-by-2 is an
injective endomorphism on the compact group Eβ1 (K2) which locally mul-
tiplies Haar measure by 2[K:Q], the F2-dimension of Eβ1 (K2)/2Eβ1 (K2) is 2.
Since f(1) and f(τ2) are units in K2 congruent to 1 and τ6 modulo 8,
they are squares in K2, and hence there are points Q and R in Eβ1 (K2)
with X-coordinates 1 and τ2, respectively. With help from PARI’s func-
tion zideallog, we check that the images of Q and R under (416) are
F2-independent, so Q and R are generators of Eβ1 (K2)/2Eβ1 (K2). The only
nontrivial element in the subgroup (417) which maps in L×2 /L

×2
2 into the

image of Eβ1 (K2)/2Eβ1 (K2) is u2u3. It turns out that the local information
from the places 3, ∞1, and ∞2 does not rule out u2u3 as a potential image
of a point in Eβ1 (K), but this is irrelevant, since the information at

√
5 will

rule it out, as we now explain.
The F2-dimension of Eβ1 (K√5)/2Eβ1 (K√5) equals that of the 2-torsion

subgroup defined over K√5 (since multiplication-by-2 is now locally Haar

measure preserving), and this is 1. There exists a point in Eβ1 (K√5) with

X-coordinate −10
√

5 and it generates Eβ1 (K√5)/2Eβ1 (K√5) since its image
in L×√

5
/L×2√

5
has an odd valuation in the component corresponding to the

degree 2 prime π′5. On the other hand, the unit u2u3 has trivial valuation in
this component, but is also not a square in L√5, so it does not map into the

image of (416) for π =
√

5. Thus the 2-Selmer group of Eβ1 over K is trivial.
Hence Eβ1 (K) is of rank 0. The reduction at the prime 4+

√
5 above 11 has 12

points, and the reduction at the prime 1+2
√

5 above 19 has 13 points, so in
fact Eβ1 (K) is trivial. Thus the point P ∈ E1(Q(ζ)) coming from our solution
to x5 + y5 = z3 must equal P σ, and the point S ∈ C1(Q(ζ)) must equal Sσ

or its image under the involution. Looking at the U -coordinates, we obtain

x

ζy
=

x

ζ−1y
or

x

ζy
=
(

x

ζ−1y

)−1

,

and these equations give rise only to trivial solutions. This completes the
proof for the case i = j = 0.
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Next suppose that i = 0 and j = 1, so η = τ . The elliptic curve Eβτ (K)
has positive rank. (In fact, the point (50 + 10

√
5, 250 + 50

√
5) has infinite

order, and the rank is exactly 1.) Luckily, though, Eτ (K) is of rank 0, as we
now prove. We will use the model

E′ : Y 2 = X3 + 16τ2

for Eτ (we have divided the constant term by the sixth power of
√

5), since
then we see that S need only include 2, 3, and the infinite places. Redefine
L as K[T ]/(T 3 + 16τ2), which is again a number field. The class number of
L is 1, and

(L×/L×2)S = 〈−1, u1, u2, u3, 2, 3〉
where u1, u2, u3 are generators for the unit group modulo torsion. Inter-
secting with the kernel of the norm reduces this to 〈u2, u3〉. Again
E′(K2)/2E′(K2) is generated by points with X-coordinates 1 and τ2, but
this time their images in L×2 /L

×2
2 together with those of u2 and u3 are

already independent, so the 2-Selmer group of E′ over K is trivial, and
E′(K) has rank 0. The reduction at

√
5 has 6 points, and the absolute

ramification index of
√

5 is less than 5 − 1, so #E′(K) divides 6. All
nonzero 2-torsion points of E′ are defined over extensions of K which are
ramified above 2, so #E′(K) divides 3. In fact, the order is exactly 3:
E′(K) = {O, (0, 4τ), (0,−4τ)}.

The point P on Eτ coming from the solution to x5 + y5 = z3 has Y -
coordinate

−100τ(x2 + ζ2y2)
(x+ ζy)2 .

The corresponding point P ′ on the model E′ has Y -coordinate

(−10 + 2
√

5)(r2 + ζ2)
(r + ζ)2 ,

where r = x/y ∈ Q. (We have simply divided by 53/2.) We know that
P ′+P ′σ is either the identity or a point with X-coordinate 0. If the sum is
the identity, then P ′ and P ′σ have opposite Y -coordinates:

(−10 + 2
√

5)(r2 + ζ2)
(r + ζ)2 = − (−10 + 2

√
5)(r2 + ζ−2)

(r + ζ−1)2 .

The solutions to this equation in r are −ζ2, −ζ3, −τ , and 1 − τ , none of
which are rational. By computing the sum of two generic points (x0, y0) and
(x1, y1) on E′, setting the numerator of the resulting X-coordinate equal
to 0, combining with the equations y2

i = x3
i + 16τ2, and eliminating x0 and

x1, we find a polynomial in y0 and y1 that vanishes whenever the sum of
the two points has X-coordinate 0 or ∞. It is

g(y0, y1) := y2
0y

2
1−(24+8

√
5)(y2

0 +y2
1)−(192+64

√
5)y0y1+(8064+3456

√
5).
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The equation

g

(
(−10 + 2

√
5)(r2 + ζ2)

(r + ζ)2 ,
(−10 + 2

√
5)(r2 + ζ−2)

(r + ζ−1)2

)
= 0

has no rational solutions r. (In fact, there are not even any solutions in
Q(ζ).) Thus we have completed the proof for the case i = 0, j = 1.

The only remaining cases are those where i = 1. For the subcase j = 0,
we find that Eη(K) is trivial. But for the last subcase where j = 1, both
Eη(K) and Eβη (K) have rank 1, so the methods we have been using so far
fail to resolve this last case (4). Nor do direct local considerations rule this
subcase out. Therefore we try a different approach, one which, as it turns
out, will rule out the entire case i = 1 at once.

Recall that i = 1 corresponds to m = 25, and that we could not imme-
diately list all rational points on the genus 3 curve

C25 : (U + 1)(U5 + 1) = 25V 3

by looking at its quotient

E25 : Y 2 = X3 + 2000 · 252

because E25(Q) had rank 1. On the other hand, the Jacobian J of C25 has
(at least) one other abelian variety as a factor, and we can hope to show
that this other piece has Mordell–Weil rank 0. Define A to be the cokernel
of the map E25 → J of Picard varieties induced by C25 → E25, so that A is
a 2-dimensional abelian variety over Q.

Since we do not have an explicit equation for a genus 2 curve whose
Jacobian is isogenous to A, we will prove that A(Q) has rank 0 by proving
that J(Q) has rank 1. In order to do this, we will need the 3-descent described
in [Sc]. First note that C25 is isomorphic to the nonsingular plane quartic

C : Y 3 = X4 + 50X3 + 1250X2 + 15625X + 78125

via the map

(U, V )→
(
− 25
U + 1

,
125V

(U + 1)2

)
.

To do the descent we will need to work over the field F = Q(ζ3), where
ζ3 denotes a primitive cube root of unity. By identifying ζ3 with the auto-
morphism (X,Y ) → (X, ζ3Y ) of C, we obtain an action of Z[ζ3] on J . Let
φ denote the endomorphism 1− ζ3 of J , which is defined over F . Let

f(T ) = T 4 + 50T 3 + 1250T 2 + 15625T + 78125

and let L = F [T ]/(f(T )), which is isomorphic to the 15th cyclotomic field.
Also let Lπ = L⊗FFπ for each completion Fπ of F . The set S = {√−3, 5,∞}

(4) We omit the computations of these ranks since they will not be needed.
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of places of F contains all places of bad reduction, all infinite places, and all
places above 3. (The last is needed since we are doing a 3-descent.) We define
(L×/L×3)S in the obvious way, as the subgroup of L×/L×3 represented by
elements l such that L( 3

√
l) is unramified over L at places lying above places

outside S. Then we have an injection

J(F )/φJ(F ) ↪→ ker(L×/L×3 Norm−−−→F×/F×3)

and the image is contained in both (L×/L×3)S and in the subgroup mapping
into the images of the local injections

J(Fπ)/φJ(Fπ) ↪→ ker(L×π /L
×3
π

Norm−−−→F×π /F
×3
π )

for each π ∈ S. These restrictions define a subgroup of (L×/L×3)S isomor-
phic to the φ-Selmer group of J over F . (See [Sc] for details.)

In our case, L has class number 1, and we have the following F3-basis
for (L×/L×3)S :

(L×/L×3)S = 〈ζ3, u1, u2, u3,
√−3, 5〉,

where u1, u2, u3 are generators for the unit group of L = Q(ζ15) modulo
torsion given by PARI. The subgroup H killed by the norm map from L to
F is

H := 〈u1, ζ3u2, ζ
2
3u3〉.

Let ∞ denote the (rational) point at infinity on C. The group J [φ] of
φ-torsion points is generated as an F3-vector space by the divisor classes
[W −∞] where W is an affine point on C with Y = 0, and the only relation
is that the sum of all four of these is zero. The action of Galois on these
is the same as the action of Galois on the primitive 5th roots of unity.
In particular, there are no nontrivial φ-torsion points defined over F√−3.
Since φ locally multiplies Haar measure on the compact group J(F√−3)
by 3dim J = 33, we see that the F3-dimension of J(F√−3)/φJ(F√−3) is 3.
Since f(3) ≡ f(8) ≡ −1 (mod 9), there exist points G3, G8 ∈ C(F√−3) with
X-coordinates 3 and 8, respectively. Also, f(4 +

√
2) ≡ 1 (mod 9), so there

exists a point G4+
√

2 on C defined over the quadratic unramified extension
of F√−3. Let G4−√2 denote the Galois conjugate of G4+

√
2. Then we obtain

the following three points in J(F√−3):

D1 = [G3 −∞],

D2 = [G8 −∞],

D3 = [G4+
√

2 +G4−√2 − 2∞].

These form an F3-basis, since their images in L×√−3
/L×3√−3

are independent.

The only elements of H that map down in L×√−3
/L×3√−3

into the image of
J(F√−3) are the powers of u1, which maps to the image of D1 +D2. Thus
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the F3-dimension of the φ-Selmer group of J over F is at most 1, and hence
the Z[ζ3]-rank of J(F ) is at most 1. On the other hand, the automorphism
ζ3 on C descends to E25, so the Z[ζ3]-action on J preserves the subgroup
E25, and the Z[ζ3]-rank of E(F ) must be positive, since the Z-rank of E(Q)
is. Thus the Z[ζ3]-rank of A(F ) is 0, and so is the Z-rank of A(Q).

Now that we know that A(Q) is torsion, we find its order by looking at
reductions. Since J is isogenous over Q to E25 ×A,

#J(Fp) = #E25(Fp) ·#A(Fp)
for any prime p of good reduction for J . The order of J(Fp) is expressible in
terms of C(Fp), C(Fp2), and C(Fp3), which we can compute by brute force,
trying all values x ∈ Fpi and counting the cube roots of f(x) in that field. In
fact, if p ≡ 2 (mod 3), every element of Fp or of Fp3 is a cube, so it suffices
to check whether NFp2/Fp(f(x)) is a cube in Fp for each x ∈ Fp2 . In this way,
we find that #J(F11) = 23 ·33 ·7 and #J(F17) = 23 ·32 ·79. Since j(E25) = 0,
we have #E25(Fp) = p + 1 for p ≡ 2 (mod 3). Hence #A(F11) = 2 · 32 · 7
and #A(F17) = 22 · 79, from which we deduce that #A(Q) divides 2.

If P is a rational point on C, then the point in J(Q) represented by
2(P −∞) maps to 0 in A(Q), so it is the image of some point Q ∈ E25(Q)
under E25 → J . By definition, this image of Q is the point on J represented
by the divisor class of R1 + R2 − 2∞, where R1 and R2 are the preimages
of Q under C → E25. Thus R1 + R2 − 2P is the divisor of a function f
on C. If P = R1 = R2, then P is fixed by the involution on C, and the
only such rational point is ∞, which corresponds to (U, V ) = (−1, 0) on the
model C25, and we are done, since this gives rise to only a trivial solution of
x5+y5 = z3. Otherwise, f defines a nonconstant map from C to P1 of degree
at most 2. This is a contradiction, because a nonsingular plane quartic curve
is neither hyperelliptic nor rational.
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