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octic number fields with class number one
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1. Introduction. It is known that there exist only finitely many nor-
mal CM-fields with class number one ([14]). K. Uchida [22] proved that for
each finite group G which is the direct product of a 2-group with a finite
group of odd order, there exist only finitely many imaginary G-extension
of Q (in C) with class number one. The purpose of this paper is to de-
termine the imaginary normal octic number fields with class number one
which are not CM-fields. There exist exactly 67 such fields with class num-
ber one. All of them are dihedral extensions of Q, 20 fields are Hilbert
class fields of imaginary quadratic number fields with class number four, the
other 47 fields are ramified cyclic quartic extensions of imaginary quadratic
number fields with class number one or two. We note that the normal oc-
tic CM-fields with class number one have been already determined (the
abelian ones by K. Uchida [21] and the nonabelian ones by S. Louboutin
and R. Okazaki [12]).

A nonabelian group of order eight is isomorphic to the quaternion group,
or D4, the dihedral group of order eight. If a quaternionic field is imaginary,
then it is a CM-field. For then complex conjugation must be the unique
element of order two of the Galois group, and therefore the biquadratic
subfield is its fixed field and totally real. Thus, if an imaginary normal octic
number field is not a CM-field, then it is dihedral. In the following, we call
a dihedral octic number field a D4-extension of Q.

In the rest of this paper, we use the following notations.K always denotes
a D4-extension of Q, M its biquadratic bicyclic subfield. We denote by F
the unique quadratic subfield of K such that K/F is cyclic (quartic). We
denote by M1,M

′
1 and M2,M

′
2 the pairs of isomorphic nonnormal quartic

subfields of K, and by F1 and F2 the quadratic subfields of M1 and M2,
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respectively. Thus, we have the following lattice of subfields of K:
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We also use the following conventions. As usual, for an algebraic number
field k of finite degree, h(k),Cl(k) and d(k) denote the class number, class
group, and discriminant of k, respectively.

Assume that K is imaginary but not a CM-field. Then M is also imagi-
nary and therefore so is F . In fact, if F were real, then complex conjugation
would be an element of order two of Gal(K/F ) and therefore M would be
real, which is a contradiction. Assume moreover that K has class number
one. Then M has class number one or two, and F has class number one, two,
or four. All such quartic fields and quadratic fields have already been deter-
mined [1, 2, 3, 13, 18, 21]. (See also [25].) We can easily see that if an odd
prime number is ramified in K, then it is ramified in M (§2, Lemma 1(i)).
Hence we can easily get the possibilities for such K. For each possible D4-
extension K of Q, if the oddness of h(K) is verified, then we obtain its
class number h(K) by calculating the class numbers h(M1) and h(M2) and
using class number relation for D4-extensions of Q: h(K) = h(M1)h(M2)
(Proposition 3). We note that most of necessary arguments work also for
fields with odd class number. Therefore for most cases to be considered we
characterize K with odd class number and then determine K with class
number one.

The organization of this paper is as follows: In Section 2, we discuss
imaginary D4-extensions of Q with odd class number. In particular, we
give a proof of the finiteness of imaginary D4-extensions of Q with odd
class number less than any given bound. In Sections 3, 4, and 5, we deter-
mine the imaginary D4-extensions K of Q with class number one which are
not CM-fields. In Section 3, we treat the case h(F ) = 4 (more precisely,
Cl(F ) ∼= C4, the cyclic group of order four). In Section 4, we treat the case
h(F ) = 2. The case h(F ) = 1 is divided into two subcases: F = Q(

√−1)
and F 6= Q(

√−1). In the former case, K is the normal closure of a pure
quartic number field and this case is treated in Section 5. The latter case
F 6= Q(

√−1) is treated in Section 6. In Section 7 we summarize our
results.
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2. Imaginary D4-extensions of Q with odd class number. First
we give a proof of the finiteness of imaginary D4-extensions of Q with odd
class number less than any given bound, which is essentially the same as
Uchida’s proof in [21] in a more general situation (1). The first assertion of
the following lemma is the key to the finiteness theorem.

Lemma 1. Let K be an imaginary D4-extension of Q with odd class
number.

(i) If p is an odd prime number ramified in K, then p is ramified in the
biquadratic bicyclic subfield M of K.

(ii) The genus field Mgen of M equals M . Hence by genus theory two
of the discriminants of the three quadratic subfields of M are prime dis-
criminants, and except for the case M = Q(ζ8) = Q(

√−1,
√

2), exactly two
discriminants are prime and the other one is the product of these two.

P r o o f. (i) Let p be an odd prime number ramified in K. Suppose to the
contrary that p is unramified in M . Put p∗ = (−1)(p−1)/2p ≡ 1 (mod 4).
Then the quadratic extensions M(

√
p∗)/M and K(

√
p∗)/K are clearly un-

ramified outside p, but since p is unramified in M , the extension M(
√
p∗)/M

is ramified at all the prime ideals of M lying above p. We also note that all
the prime ideals of M lying above p are ramified in the quadratic extension
K. Since the extension K(

√
p∗)/M are biquadratic bicyclic, the prime ideals

of M lying above the odd prime p are not totally ramified in K(
√
p∗)/M .

Therefore K(
√
p∗)/K is unramified also at p, that is, K(

√
p∗)/K is unram-

ified. Hence the class number of K is divisible by 2. This is a contradiction.
Thus p is ramified in M .

(ii) Since the extension KMgen/K is unramified abelian and its degree is
a nonnegative power of 2, this extension must be trivial by the assumption,
that is, Mgen must be contained in K. Since Mgen is abelian, Mgen = M .

By (i) we immediately obtain the following finiteness theorem.

Theorem 1. For any natural number N , there exist only finitely many
imaginary D4-extensions of Q (in C) with odd class number ≤ N .

P r o o f. Let K be an imaginary D4-extension of Q with odd class num-
ber h(K) ≤ N . The finiteness of (normal) CM-fields is well known. So we
assume that K is not a CM-field. Then its biquadratic bicyclic subfield M
is imaginary, and obviously h(M) ≤ 2N (see Proposition 1(i) below). We
know that there exist only finitely many such M [20, Theorem 2]. Therefore
there exist only finitely many prime numbers which are ramified in some

(1) Uchida refers only to fields with class number one, however, his argument works
also for fields with odd class numbers. His proof is written in Japanese.
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imaginary D4-extensions of Q with odd class number ≤ N by Lemma 1(i).
Hence possible K with h(K) ≤ N are finite.

Next, we consider relations among class numbers of subfields of K. First
we review class number relations for D4-extensions of Q.

Lemma 2 ([4, 5]). We have the following relation among the class num-
bers of subfields of a D4-extension K of Q:

h(K) = 2−v[EK : EM1EM2EF ]h(M1)h(M2)h(F ).

Here E∗ denotes the group of units in ∗ and v is 4, 3, or 2 according as K is
totally real , CM , or otherwise. Moreover , the unit index [EK : EM1EM2EF ]
is a nonnegative power of 2.

By this relation, we obtain h(K) (up to a power of 2) from h(M1), h(M2),
and h(F ).

Secondly we describe divisibilities of class numbers:

Proposition 1. Let K be a D4-extension of Q.

(i) We have h(F ) | 2h(M) and h(M) | 2h(K). In particular , if h(K)
is odd , then (h(2)(F ), h(2)(M)) = (4, 2), (2, 1), or (1, 1), where h(2)(F )
(resp. h(2)(M)) is the 2-class number , that is, the 2-part of the class number
of F (resp. M), and the Hilbert 2-class field of F is K, M , or F , according as
h(2)(F ) = 4, 2, or 1. In particular , if h(K) = 1, then (h(F ), h(M)) = (4, 2),
(2, 1), or (1, 1), and the Hilbert class field of F is K, M , or F , according as
h(F ) = 4, 2, or 1.

(ii) We have h(F1) | h(M1) and h(F2) | h(M2).
(iii) For i = 1 and 2, we have h(Mi) | h(K) unless M/Fi is unramified

at all finite primes and Mi is totally real or totally imaginary.

This can be easily proved by using the following two lemmas.

Lemma 3. Let L/k be a finite extension of algebraic number fields.

(i) We have h(k) | [L : k]h(L).
(ii) ([10]) If there exists a prime P (finite or infinite) of k which is

totally ramified in L/k, then h(k) |h(L). If , moreover , L/k is cyclic of p-
power degree, where p is any prime number , and there is no prime which is
ramified in L/k other than P , then p |h(L) implies p |h(k), or equivalently
p -h(k) implies p -h(L).

N o t e 1. (i) is easily proved, as is (ii). For the first assertion of (ii), it
is assumed in [10] that L/k is normal, but this assumption is not necessary.

Lemma 4 ([11, Theorem A(c)]). We have the following relation among
discriminants of subfields of a D4-extension K of Q:

d(K)/d(M) = d(M1)2/d(F1)2 = d(M2)2/d(F2)2.
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From this we obtain

NM/Qd(K/M) = d(K)/d(M)2 = d(Mi)2/(d(Fi)2d(M)),

and

NMi/Qd(K/Mi) = d(K)/d(Mi)2 = d(M)/d(Fi)2 = NFi/Qd(M/Fi),

where dK/M (resp. d(K/Mi)) is the relative discriminant of K/M (resp.
K/Mi).

Proof of Proposition 1. (i) The first assertion immediately follows by
Lemma 3(i). Assume h(K) is odd. Then h(2)(F ) = 1, 2, or 4 by h(F ) | 4h(K).
Obviously if h(2)(F ) = 4, then h(2)(M) = 2. If h(2)(F ) = 2, then K/M is
ramified at some prime and therefore h(M) is odd by Lemma 3(ii). Also
when h(2)(F ) = 1, K/M is ramified at some prime, for K/F is cyclic and
M/F is ramified at some prime. Therefore also in this case h(M) is odd by
Lemma 3(ii).

(ii) By genus theory any quadratic extension unramified at all finite
primes of a quadratic number field is biquadratic bicyclic. Therefore both
M1/F1 and M2/F2 are ramified at some finite prime. Hence the assertion
follows by Lemma 3(ii).

(iii) Consider the ramification in K/Mi. By the equality NMi/Qd(K/Mi)
= NFi/Qd(M/Fi) of Lemma 4, K/Mi is unramified at all finite primes if and
only if M/Fi is unramified at all finite primes. Therefore, unless M/Fi is un-
ramified at all finite primes and Mi is totally real or totally imaginary, K/Mi

is ramified at some prime. Hence the assertion follows by Lemma 3(ii).

Of course, in Proposition 1(i), when h(2)(F ) = 4, the 2-class group
Cl(2)(F ) of F is cyclic. We easily obtain the converse.

Proposition 2. The Hilbert 2-class field of a quadratic number field
whose 2-class group is the cyclic group of order four is a D4-extension of Q
with odd class number.

It is well known that such a field is a D4-extension Q, and the oddness
of the class number immediately follows by applying the following.

Lemma 5 (see [19, Theorem I]). Let k be an algebraic number field of
finite degree and p any prime number. If the p-class group, i.e., the p-part
of the class group of k is cyclic, then the p-class group of the Hilbert p-class
field of k is trivial.

Proposition 3. Let K be an imaginary D4-extension with odd class
number which is not a CM-field. Then all the class numbers h(M1), h(M2),
h(F1), and h(F2) are odd and h(K) = h(M1)h(M2)hodd(F ), where hodd(F )
denotes the odd part of h(F ). In particular , if h(K) = 1, then all of them
are 1.
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P r o o f. If h(K), h(M1), and h(M2) are all odd, then by Lemma 4 we
have h(K) = h(M1)h(M2)hodd(F ). Therefore by Proposition 1 it suffices
to show that both K/M1 and K/M2 are ramified at some prime. We may
assume that F1 is imaginary and F2 is real. Then since M2 is neither totally
real nor totally imaginary, K/M2 is ramified at two infinite primes.

Suppose that K/M1 is unramified. Then M/F1 is unramified and there-
fore h(F1) ≡ 2 (mod 4) and M is its Hilbert 2-class field. (Note that
since M1/F1 is ramified, h(F1) is not divisible by four.) Hence by Lemma
1(ii) we have d(F1) = d(F )d(F2). Since K is cyclic over F , the equation
X2 − d(F1)Y 2 − d(F2)Z2 = 0 has a nontrivial primitive solution in Z (cf.
[23, Corollary 1.7(B)]). This implies that d(F ) is a quadratic residue modulo
d(F2). Thus, by Rédei–Reichardt theory unless d(F ) = −4 and d(F2) ≡ 5
(mod 8), the 4-rank of Cl(F1) does not vanish, which contradicts h(F1) ≡ 2
(mod 4). Hence d(F ) = −4 and d(F2) := p ≡ 5 (mod 8). Then F = Q(

√−1)
and M = Q(

√−1,
√
p). Therefore M/F is ramified at the prime divisors of

p, and so is K/M since K/F is cyclic. Since p ≡ 5 (mod 8), there exists
a unique cyclic quartic extension L of Q of conductor p, and its quadratic
subextension is Q(

√
p). Obviously the compositum KL is a quadratic exten-

sion of K, and KL/K is unramified outside p. Also the unramifiedness of the
prime divisors of p in KL/K follows by Abhyankar’s lemma [8, Lemma 9].
Hence h(K) is even and this is a contradiction. Thus, K/M1 is ramified at
some finite prime.

Thus, for our purpose, the knowledge of nonnormal quartic number fields
with odd class number is useful. A detailed study of such fields is given in
[6, Chapter III].

Finally, note that if K is an imaginary D4-extension with odd class
number which is not a CM-field, we may assume that F1 is imaginary and
F2 are real, and that this implies that M1 and M ′1 are totally imaginary
and M2 and M ′2 are neither totally real nor totally imaginary. (We know
that the normal closure of a nonnormal quartic CM-field is a CM-field ([11,
Theorem A(d)]).)

3. Hilbert class fields of the imaginary quadratic number fields
with cyclic class group of order four. Now we turn to the determination
of K with h(K) = 1. We treat here the case Cl(F ) ∼= C4. S. Arno [1] has
confirmed that the known list of the imaginary quadratic number fields with
class number four is complete. There exist exactly 30 imaginary quadratic
number fields with cyclic class group of order four, and their Hilbert class
fields are D4-extensions of Q with odd class number by Proposition 2. Let K
be the Hilbert class field of an imaginary quadratic number field with cyclic
class group of order four. Then h(K) = h(M1)h(M2) by Proposition 3.
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By Lemma 1(ii), we have d(F ) = d(F1)d(F2). We know how to construct
the Hilbert class field K of an imaginary quadratic number field F with
cyclic class group of order four (see for example, [24]). We tabulate the
factorization d(F ) = d(F1)d(F2), algebraic integers θi generating Mi of the
form

√
a+ b

√
d(Fi) (a, b ∈ Q) for i = 1, 2, and h1 = h(M1), h2 = h(M2),

H = h(K) (Table 1 below).
From this table, we see that there exist exactly 20 imaginary D4-exten-

sions of Q with class number one which are Hilbert class fields of imaginary
quadratic number fields with cyclic class group of order four. Of course,
we can exclude the other 10 Hilbert class fields with class numbers larger
than one by the condition h(M) = 1 without calculations of h(M1) and
h(M2). However, it is worthwhile to give the table of the class numbers
and generators of the Hilbert class fields of imaginary quadratic number
fields with cyclic class group of order four. We note that the class num-
bers of the other 10 Hilbert class fields are all prime and if we denote by
p the class number, we can easily verify that the Galois group of L/F is
isomorphic to the generalized quaternion group of order 4p, where L is
the second Hilbert class field of F , that is, the Hilbert class field of K
(cf. [26]).

Table 1

d(F ) = d(F1)d(F2) θ1 θ2 h1 h2 H

−39 = (−3) · 13
√
−1 + 2

√−3
√

(−1 +
√

13)/2 1 1 1

−55 = (−11) · 5
√

(3 +
√−11)/2

√
3 + 2

√
5 1 1 1

−56 = (−7) · 8
√

(−1 +
√−7)/2

√
−1 + 2

√
2 1 1 1

−68 = (−4) · 17
√

1 + 4
√−1

√
(1 +

√
17)/2 1 1 1

−136 = (−8) · 17
√

3 + 2
√−2

√
(3 +

√
17)/2 1 1 1

−155 = (−31) · 5
√

(−7 +
√−31)/2

√
−7 + 4

√
5 3 1 3

−184 = (−23) · 8
√

(−3 +
√−23)/2

√
−3 + 4

√
2 3 1 3

−203 = (−7) · 29
√
−1 + 2

√−7
√

(−1 +
√

29)/2 1 1 1

−219 = (−3) · 73
√

(−17 +
√−3)/2

√
−17 + 2

√
73 1 1 1

−259 = (−7) · 37
√

3 + 2
√−7

√
(3 +

√
37)/2 1 1 1

−291 = (−3) · 97
√
−7 + 4

√−3
√

(−7 +
√

97)/2 1 1 1

−292 = (−4) · 73
√

3 + 8
√−1

√
(3 +

√
73)/2 1 1 1

−323 = (−19) · 17
√

(7 +
√−19)/2

√
7 + 2

√
17 1 1 1
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Table 1 (cont.)

d(F ) = d(F1)d(F2) θ1 θ2 h1 h2 H

−328 = (−8) · 41
√
−3 + 4

√−2
√

(−3 +
√

41)/2 1 1 1

−355 = (−71) · 5
√

(−3 +
√−71)/2

√
−3 + 4

√
5 7 1 7

−388 = (−4) · 97
√

9 + 4
√−1

√
(9 +

√
97)/2 1 1 1

−568 = (−71) · 8
√

(−1 +
√−71)/2

√
−1 + 6

√
2 7 1 7

−667 = (−23) · 29
√
−13 + 2

√−23
√

(−13 + 3
√

29)/2 3 1 3

−723 = (−3) · 241
√
−7 + 8

√−3
√

(−7 +
√

241)/2 1 1 1

−763 = (−7) · 109
√
−9 + 2

√−7
√

(−9 +
√

109)/2 1 1 1

−772 = (−4) · 193
√

7 + 12
√−1

√
(7 +

√
193)/2 1 1 1

−955 = (−191) · 5
√
−9 + 2

√−191
√

(−9 + 13
√

5)/2 13 1 13

−1003 = (−59) · 17
√

(3 +
√−59)/2

√
3 + 2

√
17 3 1 3

−1027 = (−79) · 13
√

3 + 2
√−79

√
(3 + 5

√
13)/2 5 1 5

−1227 = (−3) · 409
√
−19 + 4

√−3
√

(−19 +
√

409)/2 1 1 1

−1243 = (−11) · 113
√

(−21 +
√−11)/2

√
−21 + 2

√
113 1 1 1

−1387 = (−19) · 73
√

(11 + 3
√−19)/2

√
11 + 2

√
73 1 1 1

−1411 = (−83) · 17
√

(23 +
√−83)/2

√
23 + 6

√
17 3 1 3

−1507 = (−11) · 137
√
−23 + 8

√−11
√

(−23 + 3
√

137)/2 1 1 1

−1555 = (−311) · 5
√

(−3 +
√−311)/2

√
−3 + 8

√
5 19 1 19

4. D4-extensions of Q which are cyclic over imaginary quadratic
number fields with class number two. We first characterize imaginary
D4-extensions Kof Q such that h(K) is odd and h(F ) ≡ 2 (mod 4).

Proposition 4. If h(K) is odd and h(F ) ≡ 2 (mod 4), then there ex-
ists a prime number p ≡ 5 (mod 8) such that F = Q(

√−p) and K =
Q(
√
p,
√
α), where α is a generator of a prime divisor of p in Q(

√−1).
More precisely , in this case p splits in Q(

√−1) as p = ππ, where π is the
complex conjugate of π, and we can take α = π or

√−1π. Conversely , for
any prime number p ≡ 5 (mod 8), if α is any generator of a prime divisor
of p in Q(

√−1), then the field Q(
√
p,
√
α) is an imaginary D4-extension

of Q with odd class number which is not a CM-field , and this field is cyclic
over Q(

√−p).
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P r o o f. Assume that h(K) is odd and h(F ) ≡ 2 (mod 4). Since the 4-
rank of Cl(F ) is zero, by Rédei–Reichardt theory ([17]) we have the following
four cases: (a) d(F ) = (−q) · p, (−q/p) 6= 1; (b) d(F ) = (−q) · 8, q ≡ 3
(mod 8); (c) d(F ) = (−8) · p, p ≡ 5 (mod 8); (d) d(F ) = (−4) · p, p ≡ 5
(mod 8). Here, p and q are prime numbers with p ≡ −q ≡ 1 (mod 4). Since
h(K) is odd, M must be the Hilbert 2-class field of F , and F must have a
cyclic quartic extension containing it. Hence the equation X2 − d(F1)Y 2 −
d(F2)Z2 = 0 must have a nontrivial solution in Z and only (d) is the case.
Thus, F = Q(

√−p), p ≡ 5 (mod 8). Then we may assume F1 = Q(
√−1).

Since 2 is ramified in F1 as (2) = (1 +
√−1)2, by Lemma 1(i), M1 is of the

form F1(
√
α), where α is a generator of a prime divisor of p in F1. Hence

K = Q(
√
p,
√
α).

Now let p be a prime number ≡ 5 (mod 8) and α any generator of
a prime divisor of p in Q(

√−1). Then by Rédei–Reichardt theory ([17])
h(Q(

√−p)) ≡ 2 (mod 4) and it is easily seen that the field Q(
√
p,
√
α) is

an imaginary D4-extension of Q which is not a CM-field and cyclic over
Q(
√−p), and that its biquadratic bicyclic subfield is Q(

√−1,
√
p). Since

Q(
√−1,

√
p) is the Hilbert 2-class field of Q(

√−p), its class number is odd
by Lemma 5. We easily see also that there exists only one prime divisor
of (2) in Q(

√−1,
√
p) and that only this prime is ramified in Q(

√
p,
√
α).

Therefore this field has odd class number by Lemma 3(ii).

Now we determine K with h(K) = 1 and h(F ) = 2. The imaginary
quadratic number fields with class number two are F = Q(

√
d), −d =

15, 20, 24, 35, 40, 51, 52, 88, 91, 115, 123, 148, 187, 232, 235, 267, 403, and 427.
Hence by the proposition above the possible F are Q(

√−5),Q(
√−13), and

Q(
√−37). For these fields, p = 5, 13, and 37, respectively, and we can take

π = 1 + 2
√−1, 3 + 2

√−1, and 1 + 6
√−1, respectively. For all the possibili-

ties, by computer calculations we obtain h(M1) = h(M2) = 1 and therefore
h(K) = h(M1)h(M2) = 1 by Proposition 3. Thus, there exist exactly 6 D4-
extensions of Q with class number one which are cyclic over an imaginary
quadratic number field with class number two.

5. Normal closures of pure quartic number fields. A D4-extension
of Q which is a cyclic quartic extension of the Gaussian field Q(

√−1) is the
normal closure of a pure quartic number field (see below). The parity of
the class number of the normal closure of a pure quartic number field has
already been determined by C. J. Parry [15]. Our formulation is as fol-
lows:

Proposition 5. If F = Q(
√−1), then K is the normal closure

Q(
√−1, 4

√
m) of a real pure quartic number field Q( 4

√
m), where m is a

fourth power free positive integer , not a perfect square. If , moreover , h(K)
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is odd , then m = 2, p, or 4q, where p and q are prime numbers with p ≡ 3
(mod 8) and q ≡ 3 (mod 4). Conversely , if m = 2, p, or 4q with p and q
as above, then the field Q(

√−1, 4
√
m) is an imaginary D4-extension of Q

with odd class number which is not a CM-field , and this field is cyclic over
Q(
√−1).

P r o o f. Assume that F = Q(
√−1). Then by Kummer theory, K is of the

form F ( 4
√
m), where m is a fourth power free integer in F . The normality

of K implies 4
√
m ∈ K and therefore we can write

4
√
m = α+ β 4

√
m+ γ

4
√
m2 + δ

4
√
m3 (α, β, γ, δ ∈ F ).

Since we may assume 4
√
m 4
√
m = 4

√
NF/Qm ∈ M , this implies α = γ = 0.

Hence m = m(β+ δ
4
√
m2)4 ∈ F . This implies β = 0, or δ = 0. If β = 0, then

4
√
m = δ

4
√
m3, which yields that K is abelian. Thus, we obtain m = β4m.

Since m is fourth power free, we have β4 = 1 and therefore m ∈ Q. Since
Q((1 + i) 4

√
m) = Q( 4

√−4m) is contained in Q(
√−1, 4

√
m), we may take m

as a positive integer.
For the other assertions, we explain here only that if h(Q(

√−1, 4
√
m)) is

odd, then m = 2, p, or 4p, where p is a prime number with p ≡ 3 (mod 4).
For this we need not to consider units (cf. [15]).

Assume K = Q(
√−1, 4

√
m) and h(K) is odd. We may assume that F1 is

imaginary and F2 is real. Then by Lemma 1(ii) d(F2) = 8, l, or (−4) · (−p),
where p and l are prime numbers with −p ≡ l ≡ 1 (mod 4). If d(F2) = l ≡ 1
(mod 4), then as shown in the proof of Proposition 3, h(K) would be even.
Hence d(F2) = 8 or d(F2) = 4p. Therefore by Lemma 1(i) except for the
infinite prime only 2 is ramified in K if d(F2) = 8, and only 2 and p are
ramified in K if d(F2) = 4p. The prime numbers ramified in Q( 4

√
m) are the

prime factors of 2m. In fact, the prime factors of d(Q( 4
√
m)) are those of 2m

(see, for example, [9, Corollary 1]). Therefore since F2 = Q(
√
m), we have

m = 2 if d(F2) = 8, and m = p or 4p if d(F2) = 4p.

By Proposition 5 we can easily obtain all K = Q(
√−1, 4

√
m) with

class number one. We know that the class number of Q(
√−1, 4

√
2) is one

([16]). Therefore we need to consider only fields of the forms Q(
√−1, 4

√
p) =

Q(
√−1, 4

√−4p), p ≡ 3 (mod 8), and Q(
√−1, 4

√
4q) = Q(

√−1, 4
√−q), q ≡ 3

(mod 4). If such a K has class number one, its imaginary quadratic sub-
field Q(

√−p) or Q(
√−q) must have class number one, and therefore p =

3, 11, 19, 43, 67, 163 and q = 3, 7, 11, 19, 43, 67, 163. These values give the pos-
sibilities of fields with class number one. For these fields, we have h(K) =
h(Q( 4

√
p))h(Q( 4

√−4p)) and h(K)=h(Q( 4
√

4q))h(Q( 4
√−q)) by Proposition 3.

By computer calculations, we get the following tables. (Some of the values
are already given in [16].)
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Table 2

p 3 11 19 43 67 163

h(Q( 4
√
p)) 1 1 1 3 3 1

h(Q( 4
√−4p)) 1 1 1 3 3 1

h(Q(
√−1, 4

√
p)) 1 1 1 9 9 1

Table 3

q 3 7 11 19 43 67 163

h(Q( 4
√

4q)) 1 1 1 1 1 1 1

h(Q( 4
√−q)) 1 1 1 1 1 1 1

h(Q(
√−1, 4

√−q)) 1 1 1 1 1 1 1

From these tables, we obtain 12 D4-extensions of Q with class number
one which are normal closures of pure quartic number fields. Note that
Q(
√−1, 4

√
2) = Q(

√−1, 4
√−2), whereas Q(

√−1, 4
√
p) 6= Q(

√−1, 4
√−p) for

an odd prime p.

6. D4-extensions of Q which are cyclic over imaginary quadratic
number fields with class number one not equal to the Gaussian
field. We treat here the case h(F ) = 1 and F 6= Q(

√−1). That is, F =
Q(
√
d), −d = 3, 7, 8, 11, 19, 43, 67, or 163.

As in the previous sections, we first consider general D4-extensions of Q
with odd class number that are cyclic over imaginary quadratic number fields
with odd class number. Assume that K is imaginary but not a CM-field.
Then we may assume that F1 is imaginary. Assume, moreover, that h(K)
and h(F ) are odd. If M = Q(ζ8), then by using Lemma 1(i) we have K =
Q(
√−2,

√
1 +
√−1 ). This field was treated by J. Cougnard in detail [7] and

h(K) = 1. Thus, in the following, we assume that d(F ) and d(F1) are rela-
tively prime and d(F2) = d(F )d(F1) (Lemma 1(ii)). Since K is cyclic over F ,
the equation X2−d(F1)Y 2−d(F2)Z2 = 0 has a nontrivial primitive solution
in Z. This implies that d(F1) is a quadratic residue modulo |d(F1)|. There-
fore, if we denote by p the unique (rational) prime divisor of d(F ) (p = 2 if
d(F ) = −8, and p = −d(F ) otherwise), p splits in F1 ((d(F1)/p) = 1). This
implies F1 6= Q(

√−1), because p ≡ 3 (mod 4) if d(F ) 6= −8. We consider
also the ramification in K/M . For this we consider the one in M1/F1, be-
cause we have NM/Qd(K/M) = d(M1)2/(d(F1)2d(M)) by Lemma 4. Since
d(M1) = d(F1)2NF1/Qd(M1/F1), d(M) = d(F )d(F1)d(F2) in general, and
d(F2)=d(F )d(F1) now, we have NM/Qd(K/M)=(NF1/Qd(M1/F1))2/d(F )2.
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In the present case, NF1/Qd(M1/F1) =2 NF1/Q(α) = pp1 =2 d(F1)d(F ),
where “=2” means “equals up to a power of 2”. Thus, we have NM/Qd(K/M)
=2 d(F1)2. This implies that only the prime divisors of 2 and p1 can be
ramified in K/M . We also note that there is only one prime divisor of M
above p1. In fact, (d(F1)/p) = 1 implies (d(F )/p1) = −1, that is, the ratio-
nal prime p1 remains prime in F , and obviously this is ramified in M/F .
Therefore, in particular, if d(F1) = −8, then the oddness of h(K) follows by
Lemma 3(ii).

From now on we assume h(K) = 1. Then h(F1) = 1 by Proposition 3.
That is, F1 = Q(

√
d1),−d1 = 3, 7, 8, 11, 19, 43, 67, or 163. Therefore M1 is of

the form F1(
√
α), where α is a squarefree integer of F1 whose absolute norm

is d(F2) up to the square of a rational integer. More precisely, α = π
√−p1,

where π is a generator of a prime divisor of p in F1, and p1 is the unique
(rational) prime divisor of d(F1). (p1 = 2 if d(F1) = −8, and p1 = −d(F1)
otherwise. Note that p1 is ramified in F1 as (p1) = (

√−p1)2.) Thus, if
we let p = ππ′ be the factorization of p in F1, then M1 is isomorphic to
Q(
√
π
√−p1) or Q(

√
−π√−p1). Since F1 6= Q(

√−1), these two fields are
not conjugate. Note that this is valid also when F1 = Q(

√−3). We also have
h(M) = 1 by Proposition 1(i). The imaginary biquadratic bicyclic number
fields with class number one have been determined by Uchida [21], and E.
Brown and C. J. Parry [2], independently. Also the list of these fields restricts
the possibilities for K.

Now we turn to determination of K with h(K) = 1. We first treat the
case F1 = Q(

√−2). Then by the conditions h(M) = 1 and (−8/p) = 1, we
have d(F ) = −3,−11,−19,−43, or −67. By the argument above, we have
h(K) = h(M1)h(M2) by Proposition 3. For p = −d = 3, 11, 19, 43, and 67,
we can take π = 1 +

√−2, 3 +
√−2, 1 + 3

√−2, 5 + 3
√−2, and 7 + 3

√−2,
respectively. By computer calculations we obtain h(M1) = h(M2) = 1 in
both cases M1 = Q(

√
π
√−2) and M1 = Q(

√
−π√−2) for all possibilities.

Thus, we obtain 10 fields with class number one.
Next, we treat the cases d(F1) = −p1 with p1 ≡ 3 (mod 4). We first

treat the case F = Q(
√−2) and then F = Q(

√−p) with p ≡ 3 (mod 4).
Assume F = Q(

√−2). Then from the condition (d(F1)/2) = 1, we
have d(F1) = −7. The class number of Q(

√−2,
√−7) is one. We can take

π = (1 +
√−7)/2. By computer calculations, h(Q(

√
π
√−2)) = 2 but

h(Q(
√
−π√−2)) = 1. Let M1 = Q(

√
−π√−2). Then d(M1) = 2744 =

23 · 73 and we have NM/Qd(K/M) = 72. Hence only the unique prime
divisor of 7 is ramified in K/M . Therefore K has odd class number by
Lemma 3(ii) and h(K)=h(M1)h(M2) by Proposition 3. By computer calcu-
lations, h(M2)=1 and therefore the field Q(

√−2,
√

(7−√−7)/2) has class
number one.
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Assume F = Q(
√−p), p = 3, 7, 11, 19, 43, 67, or 163 (and F1 6= Q(

√−2)).
Then one of Q(

√
π
√−p1) and Q(

√
−π√−p1) has odd class number, and

the other has even class number ([6, Exercise (23.10)]). We take π such
that Q(

√
−π√−p1) has odd class number, and put M1 = Q(

√
−π√−p1).

Then M1/F1 is ramified only at π and
√−p1 and therefore d(M1/F1) =

NF1/Q(−π√−p1)=pp1 =d(F )d(F1). From this we have NM/Qd(K/M)=p2
1.

Hence only the unique prime divisor of p1 is ramified in K/M . Therefore
K has odd class number by Lemma 3(ii) and we have h(K) = h(M1)h(M2)
by Proposition 3. For all possibilities except p = 163 and d(F1) = −67,
by computer calculations we have h(M1) = h(M2) = 1. (For p = 163
and d(F1) = −67, we have h(M1) = h(M2) = 3.) Thus, we obtain 17
fields with class number one. We give a table of d(F1) and π such that
h(Q(

√
−π√−p1)) = 1 for each p below.

Table 4

p d(F1) π −π√−p1

3 −11 (1 +
√−11)/2 (11−√−11)/2

7 −3 2 +
√−3 3− 2

√−3

−19 (3 +
√−19)/2 (19− 3

√−19)/2

11 −7 2 +
√−7 7− 2

√−7

−19 (5 +
√−19)/2 (19− 5

√−19)/2

19 −3 4−√−3 −3− 4
√−3

−67 (3 +
√−67)/2 (67− 3

√−67)/2

43 −3 (13 +
√−3)/2 (3− 13

√−3)/2

−7 6 +
√−7 7− 6

√−7

−163 (3 +
√−163)/2 (163− 3

√−163)/2

67 −3 8−√−3 −3− 8
√−3

−11 (13 + 3
√−11)/2 (−33− 13

√−11)/2

−43 (15 +
√−43)/2 (43− 15

√−43)/2

163 −3 4 + 7
√−3 21− 4

√−3

−7 10− 3
√−7 −21− 10

√−11

−11 8 + 3
√−11 33− 8

√−11

−19 12−√−19 −19− 12
√−19

7. Conclusion. Now we summarize our results.

Theorem 2. There exist exactly 67 imaginary normal octic number
fields with class number one which are not CM-fields. All of them are di-
hedral extensions of Q. 20 fields of them are Hilbert class fields of imag-
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inary quadratic number fields with class number four : Q(
√
d(F1), θ2) with

H = 1 in Table 1. 6 of them are the ramified cyclic quartic extensions
of imaginary quadratic number fields with class number two, containing
their Hilbert class fields: Q(

√−p,√π) and Q(
√−p,

√√−1π) with (p, π) =
(5, 1 + 2

√−1), (13, 3 + 2
√−1), (37, 1 + 6

√−1). 12 of them are the nor-
mal closures of pure quartic number fields: Q(

√−1, 4
√

2), and Q(
√−1, 4

√
p),

p = 3, 11, 19, 163, and Q(
√−1, 4

√−q), q = 3, 7, 11, 19, 43, 67, 163. The other
29 are ramified cyclic quartic extensions of imaginary quadratic number
fields with class number one not equal to Q(

√−1): Q(
√−2,

√
1 +
√−1),

Q(
√−2,

√
(7−√−7)/2),Q(

√−p,
√
±π√−2) with (p, π) = (3, 1 +

√−2),
(11, 3 +

√−2), (19, 1 + 3
√−2), (43, 5 + 3

√−2), (67, 7 + 3
√−2), and Q(

√−p,√
−π√−p1) for p, π, p1 given in Table 4.

We have used KANT for class number calculations.
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