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A supersingular congruence for modular forms

by

Andrew Baker (Glasgow)

Introduction. In [6], Gross and Landweber proved the following super-
singular congruence in the ring of holomorphic modular forms for SL2(Z)
with q-coefficients in the ring of p-local integers Z(p) for a prime p > 3:

(0.1) u2 ≡
(−1
p

)
∆(p2−1)/12 mod (p, u1).

The regular sequence p, u1, u2 is defined using the canonical formal group
law F associated to the universal Weierstraß cubic whose p-series has the
form

[p]F (X) = pX + . . .+ u1X
p + . . .+ u2X

p2
+ (higher order terms)(0.2)

≡ u1X
p + . . .+ u2X

p2
+ (higher order terms) mod (p)

≡ u2X
p2

+ (higher order terms) mod (p, u1).

In fact, u1 is essentially the Eisenstein function Ep−1, in the sense that
u1 ≡ Ep−1 mod (p).

The main result of this paper is the following supersingular congruence
for Ep+1 which is closely related to (0.1):

(0.3) (Ep+1)p−1 ≡ −
(−1
p

)
∆(p2−1)/12 mod (p,Ep−1).

These congruences are equivalent to equations that hold in the field of
definition of a supersingular elliptic curve over a finite field of characteristic
greater than 3, and our proof is couched in terms of this interpretation.

It turns out that our result is related to one conjectured by de Shalit
[12] and described by Kaneko and Zagier in [4]. In fact, our original attempt
at proving Theorem 1.4 involved a reduction to equation (6.1). This unsuc-
cessful strategy was aborted when Don Zagier pointed out the equivalence
of the two results!
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Our original motivation in studying this question, and more generally iso-
genies of supersingular elliptic curves, lies in elliptic cohomology. Inspired
by results of Robert [8] and of Gross and Landweber, we have determined
the precise relationship between the category of isogenies and the stable op-
eration algebra of supersingular elliptic cohomology. The details will appear
in [1] which is currently in preparation. Like the present work, this makes
use of Tate’s theory, particularly that of the p-primary Tate module (never
formally published by him but described in [17], see also the Woods Hole
Notes [7]).

I would like to thank K. Buzzard, F. Clarke, I. Connell, J. Cremona,
R. Odoni, R. Rankin, J. Tate and D. Zagier for help and encouragement
on the subject matter of this paper and especially G. Robert for a never
forgotten conversation of many years ago.

1. Recollections on modular forms and elliptic curves over finite
fields. Background material for this section can be found in the articles of
Serre [10, 11], Katz [5] and Tate [14]; see also the books by Husemoller and
Silverman [3, 13].

Throughout, let p > 3 be a prime and let S(Z(p))∗ (respectively M(Z(p))∗)
denote the graded ring of modular forms for SL2(Z), holomorphic (respec-
tively meromorphic) at ∞ and with q-coefficients in the ring of p-local inte-
gers Z(p).

We will make use of the following modular forms which are determined
by their q-expansions:

P = E2 = 1− 24
∑

1≤r
σ1(r)qr,

Q = E4 = 1 + 240
∑

1≤r
σ3(r)qr,

R = E6 = 1− 504
∑

1≤r
σ5(r)qr,

∆ =
Q3 −R2

1728
, j =

Q3

∆
,

A = Ep−1 = 1− 2(p− 1)
Bp−1

∑

1≤r
σp−2(r)qr,

B = Ep+1 = 1− 2(p+ 1)
Bp+1

∑

1≤r
σp(r)qr.

Here, Q and R are modular forms of weights 4 and 6, while P is “almost”
modular of weight 2.
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Theorem 1.1. As graded rings,

S(Z(p))∗ = Z(p)[Q,R], M(Z(p))∗ = Z(p)[Q,R,∆
−1].

Also,
S(Z(p))0 = Z(p), M(Z(p))0 = Z(p)[j].

There is a derivation ∂ on M(Z(p))∗ which restricts to S(Z(p))∗ and sat-
isfies

∂P = −Q− P 2, ∂Q = −4R, ∂R = −6Q2,

∂∆ = 0, ∂j = −12
Q2R

∆
.

Theorem 1.2. For the prime p > 3,

1. In the ring S(Fp)∗ = S(Z(p))∗/(p), ∆ is not a factor of A.
2. In the ring S(Fp)∗ each irreducible factor of A has multiplicity one,

hence the same is true in the ring M(Fp)∗ = M(Z(p))∗/(p).
3. In each of the rings S(Fp)∗ and M(Fp)∗, every irreducible factor of A

has one of the forms

Q, R, Q3 − α∆, Q6 + β∆Q3 + γ∆2,

where α, β, γ ∈ Fp with α 6= 0 and X2 + βX + γ ∈ Fp[X] irreducible.

We also note the following calculational result.

Proposition 1.3. For a prime p > 3, in the ring M(Fp)∗ we have the
identities modulo p:

B ≡ ∂A, ∂B ≡ −QA.
Now let Fq be the finite field of order q = pd where we continue to assume

that p > 3. An elliptic curve E over Fq is determined by its Weierstraß form,

E : y2 = 4x3 − ax− b.
The non-singularity of E is equivalent to the existence of a classifying ring
homomorphism θE : M(Fp) → Fq for which θE(Q) = 12a and θE(R) =
−216b. The curve is supersingular if θE(A) = 0, or equivalently θE factors
through a homomorphism M(Fp)∗/(A)→ Fq (which we will also denote by
θE). For x ∈ M(Z(p))∗ or M(Fp)∗/(A) we will often write x(E) = θE(x).

Given u ∈ Fq, the curve

Eu : y2 = 4x3 − au2x− bu3

is the u-twist of E . It is isomorphic (as an abelian variety over Fq) to E if
and only if u is a square in Fq and in that case, an isomorphism is provided
by the completion of the affine map ϕv : (x, y) 7→ (v2x, v3y) where v2 = u.

Associated to the Weierstraß form is the canonical invariant differential

ωE =
dx

y
.
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Notice that when u = v2,

ϕ∗vωEu = v−1ωE .

Also, if F ∈ M(Z(p))k, then

F (Eu) = vkF (E).

Using the above notation we restate our main result as the following:

Theorem 1.4. For the prime p > 3, in each of the rings S(Z(p))∗ and
M(Z(p))∗ we have the congruence

Bp−1 ≡ −
(−1
p

)
∆(p2−1)/12 mod (p,A).

Equivalently , for a supersingular elliptic curve E over a finite field Fpd ,

B(E)p−1 = −
(−1
p

)
∆(E)(p2−1)/12.

2. Some supersingular isogeny invariants. Recall that for two el-
liptic curves E1, E2 defined over a field k, an isogeny ϕ : E1 → E2 over k is a
non-zero morphism of abelian varieties. Using the dual isogeny ϕ̂ : E2 → E1,
it is easily seen that the existence of an isogeny E1 → E2 is equivalent to
the existence of an isogeny E2 → E1. Hence the notion of isogeny defines an
equivalence relation on elliptic curves.

The next important result due to Tate [15] (see also [3], Chapter 3,
Theorem 8.4) allows us to determine isogeny classes of supersingular curves.

Theorem 2.1. Two elliptic curves E1, E2 defined over a finite field Fq
are isogenous over Fq if and only if

|E1(Fq)| = |E2(Fq)|.
In particular, a supersingular curve defined over the prime field Fp has

|E(Fp)| = 1 + p, hence all such curves are isogenous over Fp. For a more
detailed analysis of the possible isogeny classes, see [16, 9].

For supersingular elliptic curves over finite fields, it turns out that there
are some interesting isogeny invariants. In [6], Gross and Landweber in effect
showed for two such curves E1, E2 defined and separably isogenous over Fp2 ,

(−1
p

)
∆(E1)(p2−1)/12 =

(−1
p

)
∆(E2)(p2−1)/12.

This follows from the facts that these two quantities are actually in Fp and
by (0.2) can be identified with the coefficients of the leading terms T p

2
in

the [p]-series of the isomorphic canonical formal group laws associated to
the local parameter −2x/y.
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In order to identify another isogeny invariant, we will need Théorème B/
Lemme 7 of Robert [8].

Lemma 2.2. Let ϕ : E1 → E2 be a separable isogeny between supersingular
elliptic curves. Then if ϕ∗ωE2 = λωE1 ,

B(E2) = λ−(p+1) degϕB(E1).

Corollary 2.3.

B(E2)p−1 = λ−(p2−1)B(E1)p−1.

In particular , if E1, E2 and ϕ are all defined over Fp2 , then

B(E2)p−1 = B(E1)p−1.

Using this corollary, together with the fact that for a supersingular curve
E over a finite field Fpd , j(E) ∈ Fp2 and there is supersingular curve E ′
defined over Fp2 and an isomorphism E ∼= E ′ defined over Fpd , we can reduce
the proof of our main theorem to the case of curves defined over Fp2 .

3. Constructing supersingular curves over the prime field. For
completeness, in this section we outline details of a construction which seems
to be well known but whose full details are not so readily found in the
literature. A nice account of some aspects of this can be found in Cox [2].

Let K = Q(
√−p) and OK be its ring of integers which is its unique

maximal order.

Theorem 3.1. For any prime p > 11, there are supersingular elliptic
curves E defined over Fp and with j(E) 6≡ 0, 1728 mod (p) and having OK ⊆
End E.

NowOK is a lattice in C, hence we can define the torus C/OK which has a
projective embedding as a Weierstraß cubic EK . Since OK is an OK-module,
EK admits complex multiplication by OK .

Proposition 3.2. 1. The j-invariant j(OK) = EK is an algebraic in-
teger.

2. The extension field L = K(j(OK)) is the Hilbert class field of K.
3. The elliptic curve EK is defined over L.

A property of the Hilbert class field is that it is unramified at every
principal prime ideal in OK . In particular, if p is a prime in OL lying above
the prime (

√−p) in OK , then the residue field is

OL/p ∼= Fp.

Hence,

(3.1) j(OK) mod p ∈ Fp.
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Since the curve EK can be defined over L, we can assume that it has the
Weierstraß form

EK : y2 = 4x3 − ax− b
where a, b ∈ OL. Unfortunately, this might have discriminant ∆ lying in
some prime ideal p over (

√−p). To overcome this problem we pass to p-adic
completions K(

√−p) ⊆ Lp which are complete local fields with maximal
discrete valuation rings OK,(√−p) ⊆ OL,p. We may pass to some finite ex-
tension L′/Lp in which p is totally ramified and the principal prime ideal
p′ = (π) /OL′ satisfies

∆ = λπ12k

for some integer k ≥ 0 and unit λ ∈ OL′ . The curve

E ′ : y2 = 4x3 − π−4kax− π−6kb

is now defined over OL′ ⊆ L′ and isomorphic to EK over L′. Moreover, its
discriminant is λ, which reduces to a non-zero element of OL′/(π), hence
the reduced curve Ẽ ′ is non-singular and so elliptic. We also have

j(Ẽ ′) = j(E ′) mod (π) = j(OK) mod (π)

with the latter lying in Fp. Hence, Ẽ is isomorphic over Fp to an elliptic
curve E defined over Fp.

The endomorphism ring of E is at least as big as OK . Notice that it
cannot contain the complex numbers i or ω since it would then have a
commutative endomorphism ring of rank greater than 2. Thus we must have
j(OK) 6≡ 0, 1728 mod (p), and using a straightforward change of variables,
can actually assume that E has the form

E : y2 = 4x3 − 27j(OK)
j(OK)− 1728

x− 27j(OK)
j(OK)− 1728

.

In fact, End E is non-commutative since E is supersingular. To see this,
notice that from general considerations of [15, 16, 17] the action of

√−p
agrees with that of the Frobenius map. Applying Fr to the Tate module
Tl E for any prime l 6= p, we easily see that

Tr Fr =
√−p−√−p = 0.

But this implies that

|E(Fp)| = p+ 1− Tr Fr = p+ 1,

or equivalently that E is supersingular by standard results of [3, 13].

4. The case of supersingular curves over the prime field. In [6],
Gross and Landweber proved that for a supersingular elliptic curve E defined
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over Fp2 the following identity holds whenever j(E) 6≡ 0, 1728 mod (p):

(4.1) ∆(E)(p2−1)/12 =
{

1 if Fr2 = [(−1/p)p]E (Case A),
−1 if Fr2 = [−(−1/p)]E (Case B).

Here Fr2 : E → E(p2) = E is the relative Frobenius map and the stated
possibilities are the only ones that can occur. They also observe that if
Case A holds, then

E [4] ⊆ E(Fp2).
Since |E [4]| = 16, this means that |E(Fp2)| ≡ 0 mod (16). In Case B, a
modification of their discussion shows that none of the elements of order 4
can be in Fp2 . On the other hand, in all cases,

E [2] ⊆ E(Fp2).

Let us now consider the case of such a curve actually defined over the
prime Fp. Then it is well known that the number of points over Fp is
|E(Fp)| = 1 + p. Using the form of the zeta function over Fp given by the
Weil Conjectures, we easily find that

|E(Fp2)| = 1 + 2p+ p2 = (1 + p)2 ≡
{

4 mod (8) if p ≡ 1 mod (4),
0 mod (8) if p ≡ 3 mod (4).

Hence, for such a curve, we have

Case A holds⇔ p ≡ 3 mod (4),

Case B holds⇔ p ≡ 1 mod (4).

Since B(E) ∈ Fp,
B(E)p−1 = 1.

In Case A, we have (−1/p) = −1, and so by (4.1),

−
(−1
p

)
∆(E)(p2−1)/12 = 1 = B(E)p−1.

In Case B, (−1/p) = 1, and by (4.1),

−
(−1
p

)
∆(E)(p2−1)/12 = 1 = B(E)p−1.

Hence we have proved the following:

Theorem 4.1. For a supersingular elliptic curve E defined over Fp and
satisfying j(E) 6≡ 0, 1728 mod (p),

B(E)p−1 = −
(−1
p

)
∆(E)(p2−1)/12.

5. The case of supersingular curves over the field of order p2.
Having dealt with supersingular curves over the prime field, we now turn
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to those defined over Fp2 . For p > 11, choose a supersingular elliptic curve
E0 defined over Fp with j(E) 6≡ 0, 1728 mod (p)—this is always possible
courtesy of Theorem 3.1.

Let E be a supersingular elliptic curve defined over Fp2 and with j(E) 6≡
0, 1728 mod (p). By [16],

|E(Fp2)| = 1± 2p+ p2 = (1± p)2.

By the Weil Conjectures, any curve defined over Fp has |E(Fp2)| =
(1 + p)2. By Theorem 2.1, if |E(Fp2)| = (1 + p)2, there is an isogeny E0 → E
defined over Fp2 . There is a unique factorization of the form ϕ = sϕ ◦ Frk,
where

Frk : E0 → E(pk)
0 = E0

is the k-fold iterated Frobenius map, and sϕ : E0 → E is separable. Hence
we might as well assume that ϕ itself is separable.

Now applying Corollary 2.3 we may deduce that

B(E)p−1 = B(E0)p−1 = 1.

Notice that if p ≡ 1 mod (4) then Case B of Section 4 applies to E , while if
p ≡ 3 mod (4) then Case A applies. Thus we find that

B(E)p−1 = 1 = −
(−1
p

)
∆(p2−1)/12.

If |E(Fp2)| = (1−p)2, we may twist by any non-square u in Fp2 to obtain
a curve

Eu : y2 = 4x3 − au2x− bu3

which can easily be seen to have |Eu(Fp2)| = (1+p)2. If v ∈ Fp4 with v2 = u,
(x, y) 7→ (v2x, v3) defines an isomorphism ϕv : E ∼= Eu over Fp4 , and we have
ϕ∗vωEu = ωE . By the above result for Eu together with Corollary 2.3, and
the fact that ∆(Eu) = u6∆(Eu), we now see that

B(E)p−1 = −B(Eu)p−1 =
(−1
p

)
∆(Eu)(p2−1)/12 = −

(−1
p

)
∆(E)(p2−1)/12.

Similar arguments allow our identity to be proved directly for supersin-
gular curves with j(E) ≡ 0, 1728 mod (p). Hence for primes p 6≡ 1 mod (12)
we can avoid the use of Theorem 3.1, but when p ≡ 1 mod (12), we do
require this result.

6. Relations with other work. In [4], Kaneko and Zagier discuss the
supersingular polynomial

ssp(X) =
∏

E
(X − j(E)),



Supersingular congruence 99

where the product is taken over all isomorphism classes of supersingular
curves over Fp. Thus in the ring M(Fp)∗ we have

A =
QδRε ssp(j)∆mp

jδ(j − 1728)ε
,

where we write p = 12mp+4δ+6ε+1 with δ, ε ∈ {0, 1}. Using Proposition 1.3
we obtain a formula for B in terms of the derivation ∂.

If α 6≡ 0, 1728 mod (p) is a root of ssp(X), then there is a supersingular
elliptic curve

E : y2 = 4x3 − 27α
α− 1728

x− 27α
α− 1728

with j(E) = α. Then for some λ ∈ Fp,

B(E) = λ
αε+1 ss′p(α)∆mp

(α− 1728)δ+ε
.

Combining this with Theorem 1.4 gives

(6.1) ss′p(α)p−1 = (−1)ε−1α2(δ−1)(p−1)/3(α− 1728)(ε−1)(p−1)/2

which is the conjectured result [4], equation (40). Thus we have also proved
the equivalent conjectural equation (39) of de Shalit.
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