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Note on the congruence of
Ankeny—Artin—Chowla type modulo p?

by

STANISLAV JAKUBEC (Bratislava)

The results of [2] on the congruence of Ankeny—Artin—Chowla type mod-
ulo p? for real subfields of Q((,) of a prime degree [ is simplified. This is done
on the basis of a congruence for the Gauss period (Theorem 1). The results
are applied for the quadratic field Q(y/p), p =5 (mod 8) (Corollary 1).

Notations

e B,. E, — Bernoulli and Euler numbers,
2n+1(1 _ 2n+1)Bn+1

*Cn= n+1 ’
or—1 1 i
e ()o = ———— — Fermat quotient,
1 - 1!
oW, = L) — Wilson quotient,

P
e A, =1+1+...+1 Ay=0

Introduction. In [2] the congruence of Ankeny-Artin—Chowla type
modulo p? for real subfields of the field Q((,) of prime degree [ is proved.
The following notation and theorem are taken from [2].

Let a be a fixed primitive root modulo p, let x be the Dirichlet character
of order n, n|p—1, x(z) = ¢ Let g be such that g = aP~1/" (mod p)
and ¢" =1 (mod p?). Denote by p a prime divisor of Q(¢,) such that p|p
and 1/g = (, (mod pP).

Define the rational numbers Ag(n), A1(n),..., An—_1(n) by

Ap(n) = —1/n,
T(x')" = n"Ai(n)"(=p)" (mod p***),  Ai(n)

where 7(x) is the Gauss sum.
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378 S. Jakubec

Put m = (p—1)/2, and
G,(X) = Ag(m) X7 + Ay(m) X771 + ...+ Aj(m),

1 . 1 . , 1

Fj(X) = XI 4 X1 4 X2

7(X) (p—1)! (p+1)! (p+3)! (p+2j—1)!

Define
Eop
E: = —2n forn=1,2,3,...,

(2n)!

where FE5, are the Euler numbers, i.e. By = 1,Ey = —1,FEy = 5,FE5 =

—61, Eg = 1385, E1o = —50521, Eyp = 2702765, E14 = —199360981, .. .
Consider the formal expressions G;(E*) and F;(E*), where
(E*)* = E;.
Let 8o, B1,-..,0—1 be the integral basis of the field K formed by the
Gauss periods. Let d be the unit
0=x0B0 + 2101+ ... +x1-181-1.
Associate with the unit § the polynomial f(X) as follows:
fX) =X dy X2 4 do X3 4 4 d
where A _
2o+ 219" + 2297 + ...+ ml_lgl(lfl)
To+ 1+ ...+ 211
fori=1,...,1—1. Put S; = Sj(d1,...,d;—1) = sum of jth powers of the
roots of f(X) for j =1,...,20 — 1. Hence

Sy =—dy, Sy=d?—2dy, S3=—d>+3didy—3ds, ...

d; = —14;(])

Define the numbers 17, ...,T5_1 as follows:
1 , ,
o i(p—1)/1=1(9i(p—1)/1 _ .
L= G-’ ¢ DBi-us
i Gitp—1y/ 21y (E)
fori=1,...,1—1, and
1-— or—1 1
T, = 2Q2> where QZ =
p
T 1
I+i = — T
ettt

% 2p—1+i(p—1)/l—1(2p—1+i(p—1)/l o 1)B(p—1+i(p—1)/l)

+ (2 titg— )Fi(pl)/(Ql)(E )

fore=1,...,1—1.
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Define
ai =co+erg’ +eag” + ..+ gl
fori=1,...,2l —1.
Let Xy,..., X971 € Q and let
g(X) =X v X Yy
be a polynomial such that
X, = sum of the jth powers of the roots of g(X).
Define the mapping @ : Q?~! — Q' as follows:
D( Xy, Xog1) = (1= pY3, Y1 = pYiqu, .., Y1 — pYor ).

THEOREM 1 OF [2]. Let | and p be primes with p = 1 (mod ) and let
K c Q¢ + Cp_l) with [K : Q] = . Suppose that 2 is not an lth power
modulo p. Let § be a unit of K such that [Uk : (0)] = f, (f,p) = 1. Let
775 = 6%g(0) ...t 72(0)2 and oy = co + 19" + cag® + ...+ cj_ogT
fori=1,...,2l — 1. The following congruence holds:

To+x1 4. +x_1\"
(3) 5( 0= = l 1> D(a1Sy, ..., a-15-1)

= (24 2p)T P~ V/COG(fTy, ..., fTh_1) (mod p?),

where € = +1.
This theorem is applied to the real quadratic field.

The quadratic case: K = Q(\/p), p =5 (mod 8) and T+ U,/p > 1 is
the fundamental unit. By [2] we have

U U? U3
Sl == 2141(2)?7 SQ == —ﬁ, Sg = —2A1(2) T3 .
For the numbers T, T5, T3 we have
1 —1)/2—1/6(p—1)/2 p—1 *
T, = _mg(p )/ (2(10 )/2 _ 1) B(p_1y/2 — TG(p—l)/4(E ),
Ty = 5(1—Q2),
1 3(p—1)/2—1/93(p—1)/2
Ty = _Wg (r—1)/ (2 (r—1)/2 _ 1)Bs(p—1)/2

+ = Fp-n/a(E).

It is easy to see that

X? - X 1 1 1
172, -X; —p(—Xf’ + 5 X1 X5 — X3>>.

D(X1, X9, X3) = (1—29 5 3
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Hence

eT"®(hS1, hSy, hSs) = (2 + 2p)P~V/AG(Ty, Ty, T5) (mod p?).
The greatest difficulty in applying Theorem 1 of [2] to fields of concrete
degrees [ = 2,3, ... is caused by the fact that the numbers A;(n), G;(E*) and
F;(E™*) are defined in a very complicated way. This constraint appears also
in the case of a quadratic field, because of the unclear values G(,_1)/4(E")
and F(,_1)/4(E*) involved.

The aim of this paper is to eliminate the above mentioned constraints.
This will be done on the basis of a congruence for the Gauss period (Theorem
1). The results will be applied to the real quadratic field Q(\/p), p = 5
(mod 8). In this case we get a simple congruence modulo p? (Corollary 1)
involving: the fundamental unit 7'+ U /p, the class number h, the Bernoulli
numbers B(,_1)/2, Bgp—1)/2 and the Fermat quotient Q)s.

1. Congruence for the Gauss period. Let p =1 (mod n) be prime
and let K be a subfield of the field Q((,) of the degree n over Q. Let a be a
primitive root modulo p. We consider the automorphism o of the field Q(¢,)
such that o((,) = (5.

Further we denote:

ﬁOZTrQ(Cp)/K(Cp)a ﬁi:Ui(ﬂo) for ¢ = 1,...,71—].;
k=(p—-1)/n; a* =g (mod p).
In [3] the following theorem is proved:

THEOREM 1 OF [3]. There is a number m € K with 7 |p such that

(i) Ngjo(m) = (=1)"p,
(ii) o(7) = gm (mod 7" +1),

1 .
_ i n+1
(111) ﬁO =k ZE:O Wﬂ- (mod ™ )
In [4], it is proved that for any ¢ there exists m € K such that

om = gr (mod 7"t1), where ¢" =1 (mod p').
Hence
tn
(1) By = Zami (mod 7" *1), 0 < a; <p.
i=0
Because 7" = —p (mod 7"*1), the congruence (1) can be rewritten as

n—1
Bo = Z afwi (mod ﬂ't”+1),
i=0

where a} = a; — pajin +p2az‘+2n + ...
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Hence for any divisor n of p—1, n # 1, there are numbers aj, aj,...,a)_;
such that

n—1
i) By = afn’ (mod 75" *1) for any exponent S.
i Yy
i=0

LEMMA 1. Let p be a prime and let n be a divisor of p — 1, n # 1.
There exists a prime divisor p of the field Q(¢,,) with p|p such that for any
exponent S the following holds:

k
—— (mod p) fori=1,...,n—1,

(i) (ki)!

(ii) 7(x?) = naj7® (mod p*).
Proof. Take S and 7 such that

S

*
%

or = gr (mod 75TV g™ =1 (mod pT1).
Then
n—1
Bo = Z a;m" (mod 7r(5+1)n+1)7
i=0
hence
1 .
— (B0~ (ag +afm+... +ai 7))
=a +ajm+...+a,_ ;7" " (mod p(S+Dnt1-dy,

Now take the trace Trg g of the right and left sides. For 0 < i < n we

have
Trig(An") =0 (mod p(STOn+Ly,

It follows that

% <ﬂo + gliaﬁo + 91%0250 + ...+ g(nll)ian_1/60>

= na} (mod x(STHnF1=1)
Because ¢" = 1 (mod p°*1), there exists a prime divisor p of the field Q(,)
with p | p such that
1/g =¢, (mod p°T1).

Hence

1 1 1 .
,80 + ?Uﬂo + ﬁgzﬁo 4+ ...+ WUTL 150 = T(X ) (HlOd pS-l—l)'

Because 7 a p, we have 7(x*) = nal7® (mod p”). =
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The following theorem gives a congruence for the Gauss period modulo
72Tl For simplicity, the coefficients are denoted by a; (instead of aj).

THEOREM 1. Let p be an odd prime and let w be the above defined element
of the field Q((p,). Then

G = ;11 +am+asm+ ...+ ap,gﬂ'p_z (mod 7T2(p_1)+1),

where
1 1
() 0= 4oy (W~ Aic) (mod 1) fori =1L, (0 3)/2
(ii) aiap—1—; = (=1)""1(1 4+ 2p) (mod p?).
REMARK. On the basis of this theorem a congruence modulo 72®—1+1
for any Gauss period 3, § € K, can be given. This follows from the fact

that 5 = Trg(c,)/x (Gp)-
Proof (of Theorem 1). Clearly

Trgc,)/0(ép) = —1= (p—1)ag (mod =

hence ag = p_fll (mod 72(P—1D+1),

The congruence (ii) is proved as follows. By Lemma 1,

T(Xz) = (p - 1)&17'('1 (mod 7-‘-2(19*1)4’1)7
2(10*1)+1>.

2(p—1)+1)7

(X’ 1) = (p— Dap_1_im 7" (mod 7
Hence
(X)) = (1)'p = (p = 1)?aiap-1-i(~p) (mod 7*@~VH),
and we have (ii).
Now we prove (i). Since {7 = 02((,) we have

A4+p+p* +aym+apm® + ... + ap_gﬂ'p_z)2
=14p+p>+a12P7+ a2 + ..+ a/p,22p(7”_2)7r1”_2 (mod 712(p_1)+1).
Let us write the numbers a; in the form
ai:Z,—llexip fori=1,...,(p—3)/2.
Squaring the left-hand side we get
(1+p+p)?+am+com® +... 4 cpomP ™2
where

e =2(1+p+p*)(1+az1p),

1
er =2+ +0) g+ 2o ) + (14
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1 1
03:2(1+p—|—p2)<3'+:c3p> +2(1+x1p)(2|+x2p>,

The coefficient of 77! (after squaring the left-hand side) is

p—2
Z aiap—1—; =14 2p (mod p*),

i=1
which follows from the congruence (ii).
It is easy to see that it is sufficient to consider the coefficients of 7P,
aPtl P2 modulo p.
The coefficient of 7P is

”Zz pzz 11 1 ”22 D 1
1=2 =2 =2

Let d,1x be the coefficient of 7P** for k > 0. Then

k+1
-1 1 p+k
=_— . _(9optk _ E m
Ay = P k!(2 2i:0< i >> (mod p).

Since 7P~! = —p (mod 72®P~+1) we have
1+ 20+ 3p° + o1 + com? + ... + cp_onP ™2
—p(14+2p—2(Qa — )T+ dp1m + ...+ dpyp_3m™?)

1
= 1+p+p2+2p(1+x1p)7r+22p<2' +CIJ2p>7T2

+...+ 2(p_2)p< + xp_2>7rp_2 (mod 72(P~D+1y,

1
(p—2)!

It follows that

1 1
(Cz —pdp+1 —22p<2, +$2p>>772+ <Cs —pdp+2 —23p<3, +933p)>7f3+---

=0 (mod 72(P~D+1),

Hence the coefficients of 72, 73, ... must be divisible by p. After reducing by
p we get
2p( 1 3p(1
€~ plpy1 =2 (5 +2op) 5 3= Py =2 (5+a8) 5
p p
=0 (mod 7P~ 111,
hence

c2 = pdyy1 = 2% (51 + wop)
p

=0 (mod p),



384 S. Jakubec

c3 — pdpio — 23”(% + :c;;p)

=0 (mod p),
. ( )
etc.
Substituting for cs and reducing we have
22 122D 2
E.T—Fj—i_le—'—@_?)m_d’)“ =0 (modp).
Continuing, we find that x1,z2,...,7_3)/2 satisfy the system of linear
equations modulo p with matrix
1 1-2 0
3 o 1-22 0 0
5 o £ 1=-23 0 :
1 1 1 1 —9(p—3)/2
G372 (=572 sooow L1220

and right-hand side consisting of the numbers 7 satisfying

1 - o(k+1)(p—1) _1q 2

(k+ 1) P CE

27‘k = dp+k +

where
k+1
-1 1 p+Ek
= _ . |[optk _
dptr = >R (2 2 ;:0 ( ; >> (mod p).

For 1 <4 the following congruence holds:

() = (Y (crp(Er g o iy )) o)

From this we get

k+1 p+k: o 1
. :2 +7

Z. 1 k+1

=0

k

+p<Ak+ <kﬁ1>(Ak—A1)+ (k_Q)(Ak—A2)+...

() o

After rearrangements we have

= b ()4) i

i=1
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Put
T A

G—1)! (i—1)!
For each n=1,...,(p — 3)/2 we obtain

;“*(n_lm(ﬁﬁ)+<nig>z<9§?‘3>
(e <fi_11>)+“‘2")<3‘1:7)

=6+ () () =S (e e

=T

fori=1,...,(p—3)/2.

Ty =

Hence the numbers 1, x2, ..., z(,—3)/2, where
T B Aiq
-1 (@GE-1)
are the solution of the system of equations considered. It remains to deter-

mine x1. Consider the coefficient as,

1
ag = 5-%332])_

fori=1,...,(p—3)/2,

€T; =

1
o1 + p(xy —1).

By Theorem 5 of [4],
G+

=2(1+p+p?) + <22' —2 -1 _p(i—l_l)Bp_l)m + ... (mod wi™*1),
where m = (p — 1)/2 and 7, = 72. It follows that
200 =14+2p(z1 —1)=1- 2pp —1=pp+ DBy (mod p?),
hence
T = L+pp ;)_ DBp-1 =W, (mod p). =

2. Applications. Define N = (p — 1) + z'p%l, n= ipl;l — 1.

THEOREM 2. For the number T; the following congruences hold:

. _ N CN 1= C En+1
(@) THZ:Qn!( +AC+Z<>TL—Z n—|—1>

(mod p),
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.. _Cn  pp—1)(Enps =\ G 2
W) L= n+1‘Wan—§; i ;) (mod p7)

n—1

fori=1,...,1—1.

Proof. To determine T4, it is necessary to determine the sum
% 1 Egj 1 E2j72
F(E") = :

1
-0 @) Tl @-2 Ty onr
where j = (n+1)/2.

We have

£\ b ) E2j

PEED) = 071 @)
1 Esj_o Eyj_4
T <<p+ N2 -2 prDe+2)p+3)2)— )
1
+ ...+

- mod p?).
FTIe T Grm=n) )
Expressing the product (p + 1)(p +2)...(p +4) modulo p? we get

. p Ey;j
PEIE) =500 )
n 1 ( Esj_o n Esj_4
(p—DI\(p+1)(25 —2)! 311+ pAs)(25 —4)!
+ ...+ !

- mod p?).
i ) )
From 1/(1 + pk) =1 — pk (mod p?) we get

o Es;
PRE) = gy
. 1

(p— 125 —1)!

25 —1 27 —1
X <<j1 )Egj_2+(]3 )EQJ'_4+...+1>

p 2j — 1 2j — 1
(1) (M)
+...—|—A2j_1) (modp2)

According to formula (51.1.2) of [1],

n

S e, - L

k! - n + 1(_2)71“(2“+1 = Bni1,
k=1 ’
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we have

27 —1 27 —1 1 ) .
(‘71 )Ezj—2+ ( ‘73 >E2j—4+.-.+1= 27223(2%*1)323‘ = —Csj_1.

Now summing up we get
25 —1 27 —1
< .71 >E2j—2A1+ ( ‘73 >E2j—4A3+"'+A2j—1'

Since

OoilA
L TRk = e (C + Inx — Ei(Fa)),

k=1

= (£D)E :
Z z" = —C —Inz + Ei(£x),
o R

it follows that

o) A _woo 1
Z bk = —e ,;kk'x’“

=1

Moreover,
2 Ey, , E4 w
hence the generating function for the sum we looked for is
> ", wh 2 o~ Cr ot
—_— — where = — .
2 1 I 9ok

ex—i—lkzlkk. e +1 k:()k' 2

Hence

L Cr e 1
>
k=0 k=1

and it follows that

. . n—1
27 —1 27 —1 n\ C;
<]1 >E2j—2A1+<J3 >E2j—4A3+---+A2j—1: E <z’>n—i’

1=0

where n = 2j — 1. Therefore
_Cn p — n Cz En+1 2
F(E )= —— 4+ &2 — d p?).
PE(E7) n!(p—l)!+n!<§ i/n—i n+1 (mod p)

Hence
Pliyi=—

p p—14i(p—1)/1—1/op—1+i(p—1)/1
S, (2

p—1 p-1 —Ch p (= (n) Ci  Enn
+< > Ty )<n!(p—1)!+n!<; i)n—i n+l

fori=1,...,1—1.

—1)Bp-1+ip-1)/1)
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Rearranging this congruence we get the congruence (i). The congruence
(ii) is obtained using Theorem 1 by substituting 2 + 2p, 2as, 2ay, ... for
Aop(m), A1(m), ..., in the formula for G;(E*), j =i(p—1)/(2]). m

COROLLARY 1. Let p be a prime, p=5 (mod 8). Let T+ U,/p > 1 be a
fundamental unit and h be the class number. Then:

1

—(2P=9/*(Cn_y —3C,) £ 2Uh)
p

_ 2 Q
=20"V/4B, 1y (—UQh + 307 - ;) + h(h—1)U? (mod p),
where the sign £ is chosen in such a way that the left-hand side is a p-

integer, and N =3(p—1)/2, n=(p—1)/2 — 1.

Proof. We get this congruence using Theorem 2, by substitution into
the congruence for a quadratic field from [2] and by rearranging modulo p?.
Note that the sums Z?:_ol (")-£ and the numbers E,,.1/(n+1), W, cancel
each other by these rearrangements. m

REMARK. The congruence in Corollary 1 can be rewritten in the form

1/ a1
; (2(” D (3Bs(p1>/2 - 3B<p1)/2) + 2Uh)
2
=20=V/B 4 (—Uzh + §U2 +2— %) + h(h —1)U? (mod p).

EXAMPLE. (i) If p = 20 then h = 1, U = 1/2, Cyy = 82 (mod 841),
C13 =662 (mod 841), Q2 =2 (mod 29).

(ii) If p = 229 then h = 3, U = 1/2, Cy41 = 32702 (mod 52441), C15 =
27206 (mod 52441), Q2 = 68 (mod 229).
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