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Distribution of values of Hecke characters of infinite order
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We show that the number of primes of a number field K of norm at
most x, at which the local component of an idele class character of infinite
order is principal, is bounded by O(x exp(−c√log x)) as x → ∞, for some
absolute constant c > 0 depending only on K.

0. Introduction. The prime number theorem of Hadamard and de la
Vallée Poussin states that the number π(x) of rational primes less than x,
grows as

π(x) = lix+O(x exp(−c
√

log x)),
for some suitable constant c > 0. Our main result is to show that for idele
class characters of infinite order, we can obtain a similar explicit “error
term”, concerning the distribution of the values of the character. More pre-
cisely, let K be a number field and let JK (resp. AK) denote the group of
ideles (resp. adeles) of K. Let CK = JK/K

∗, be the idele class group of K.
Let θ be a character of infinite order on CK . For a finite place v of K, denote
by Kv the completion of K with respect to v, Nv the norm of v, and θv
the v-component of θ. Let Mf denote the set of finite places of K. We show
that for some constant c > 0 depending only on K, and x large enough, the
following bound holds:

#{v ∈Mf | Nv < x, θv = 1} = O(x exp(−c
√

log x)),

where the implied constant depends only on K. Under the assumption of
the Riemann Hypothesis for L(s, θk), k ≥ 1, we obtain the following Lang–
Trotter type upper bound:

#{v ∈Mf | Nv < x, θv = 1} = O(x1/2(log x)2).

We remark that Lang–Trotter type upper bounds of the form O(x1/2+ε) are
not available for modular forms, even under the assumption of the Riemann
Hypothesis [VKM].
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Hecke [He] showed the equidistribution of the values of θ, provided θ
is not equivalent to a Dirichlet character. In particular, he showed that
#{v | Nv < x, θv = 1} = o(x/log x). Our result is a refinement of Hecke’s
theorem, with an explicit bound for the error term, which is similar to the
error term occurring in the prime number theorem.

The proof can be considered as an application of the principle of Lang-
lands–Rankin–Selberg, which asserts that the size of the Fourier coefficients
of an automorphic representation can be controlled, provided it is possible to
control the analytic behavior of the L-functions attached to the symmetric
powers of the representation. In our case, the necessary analytic properties
were established by Hecke. The proof of the prime number theorem, with
the explicit error term as above, uses the explicit formula, together with a
knowledge of the zeros of the Riemann zeta function. However, on applying
the explicit formula method to the L-function L(s, θ) of θ, we obtain an
estimate for

∑
Nv<x θv(πv). In order to obtain the theorem, the idea is to

apply the explicit formula method to the functions L(s, θk), for all positive
integers k, and estimate sums of the form

∑
Nv<x θv(πv)

k. We then invoke a
result of Erdős–Turán on the discrepancy of a sequence, which can be con-
sidered as a quantitative analogue of the theorems on uniform distribution,
to conclude the proof of our theorem.

The idea for the theorem arose from [MR], where we considered pairs
of irreducible, unitary, cuspidal automorphic representations π1 and π2 on
GL2(AK). Under the assumption that the functions L(s, Symm(π1) ×
Symn(π2)) are entire, possess a functional equation of the appropriate kind,
and satisfy the Generalised Riemann Hypothesis, we established the follow-
ing:

#{p ≤ x | π1,v = π2,v} = O(x5/6+ε).
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V. Kumar Murty for their useful suggestions and discussions. In particular,
I thank V. Kumar Murty and the referee for pointing out that the estimate
in Proposition 4 can be improved to obtain Lang–Trotter type estimates.
Kumar Murty informed me that he had obtained this result independently.
I am also indebted to my colleagues at McGill University and CICMA for
their pleasant hospitality and support during my stay there, in which period
this work was done.

1. Analytic theory of L(s, θ). Let K be a number field of degree d
over Q. For a finite prime v, let Ov denote the ring of v-adic integers in Kv,
and Uv denote the group of v-adic units. Let pv be the maximal ideal of Ov,
and πv be a local uniformising parameter at v. The groups U (m)

v = (1+pmv ),
for m a positive integer, form a decreasing filtration on Uv. We set U (0)

v = Uv.
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The exponent fv = fv(θ) of the conductor of θ at v is defined to be the least
m such that θv is trivial on 1 + pmv . θ is unramified at v if fv(θ) = 0.
Since there are no small subgroups in C∗, θ is unramified for all but finitely
many places v of K. Let fθ =

∏
v pfv . Let Nv = |Ov/pv| be the norm of v or

equivalently of the prime ideal pv. We extend the norm map multiplicatively
to the group of all fractional ideals of K. The conductor N = N(θ) is defined
as N(θ) = NK/Q(fθ).

Let S∞ denote the set of archimedean primes of K. Let r1 be the number
of real places of K and 2r2 be the number of complex places of K. Denote
by S the union of S∞ and the set of ramified primes of θ. Let | · | denote
the norm character from the ideles JK of K to R+. Define two idele class
characters θ1 and θ2 to be in the same equivalence class if θ1 = | · |sθ2 for
some s ∈ C. It is known that any equivalence class of idele class characters
contains a unitary character.

Assume now that θ is unitary. The L-function L(s, θ) is defined by means
of an Euler product in the half plane of convergence. For s ∈ C with Re(s)> 1
define

L(s, θ) =
∏

v 6∈S
(1− θ(πv)Nv−s)−1.

The product converges absolutely for Re(s) > 1 and defines an analytic
function there.

It was shown by Hecke using the transformation formula for theta func-
tions, and reproven by Tate using Fourier analysis on the adeles, that L(s, θ)
can be analytically continued to the entire complex plane, and that by
adding suitable Γ factors at the archimedean primes, one can complete the
L-function, so that it satisfies a functional equation of the appropriate kind
[La]. For v ∈ S∞, write

θv(a) =
(

a

|a|v

)mv(θ)

|a|invφv(θ)
v ,

where nv = 1 if v is real and nv = 2 if v is complex. If v is real, then
mv(θ) = 0 or 1. Define for v archimedean,

sv = sv(θ) = nv(s+ iφv(θ)) + |mv(θ)|.
Let DK denote the discriminant of K over Q and let A′(θ) = N(θ)DK . Let

Λ(s, θ) = 2−sr2π−sn/2A′(θ)s/2
∏

v∈S∞
Γ (sv/2)L(s, θ).

Then the functional equation satisfied by L(s, θ) is of the form

W (θ)Λ(s, θ) = Λ(1− s, θ),
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where W (θ), the root number of θ, satisfies |W (θ)| = 1 and θ is the contra-
gredient of θ [La]. Let

(1) A = A(θ) = 2−r2π−n/2A′(θ)1/2.

It follows from the proof of the functional equation that L(s, θ) is en-
tire, unless θ is in the class of the principal character, in which case if θ is
normalised, i.e., if

∑
v∈S∞ nvφv(θ) = 0, then L(s, θ) has a simple pole at

s = 1. Let δθ = 1 if θ is the principal character, and 0 otherwise. It is known
that for a normalised character θ, [s(s− 1)]δθΛ(s, θ) is an entire function of
order 1. Hence if θ is not in the equivalence class of the principal character,
there is a Hadamard product decomposition of the form

Λ(s) = aebs
∏
%

(1− s/%)es/%,

where % runs over the zeros of Λ(s).
We note the variation of the form of the functional equation when we

replace θ by θk, for a positive integer k. It is easy to see that for any finite
prime v, fv(θk) ≤ fv(θ). Hence N(θk) ≤ N(θ). It is a fortunate fact that
unlike GL(2), the conductors do not grow in the case of GL(1). Moreover,
mv(θk) = kmv(θ) if v is a complex place, and mv(θk) ≡ kmv(θ) (mod 2) if
v is a real place, and finally φv(θk) = kφv(θ).

We recall that a Dirichlet character is an idele class character of finite
order. Thus Dirichlet characters are trivial on the connected components of
the completions at the archimedean places. They correspond via class field
theory to characters of the Galois group Gal(K/K) of an algebraic closure
K of K. Hence the set of unramified primes for which the local component of
a Dirichlet character is the principal character is precisely the set of primes
of K which split completely in some cyclic extension of K.

We also need to have some knowledge about the zeros of L(s, θ). Let
N(t) denote the number of zeros % = β + iγ, 0 < β < 1, |γ − |t|| ≤ 1 of
L(s, θ), the density function of the zeros of L(s, θ) in the critical strip. From
the functional equation and the existence of the Hadamard factorisation it
can be deduced along the lines of the argument given in [VKM, Lemma 4]
that

(2) N(t)� logA+ d+
∑

v∈S∞
log(nv|t|+ |φv(θ)|+ |mv(θ)|+ 4),

where d is the degree of K over Q, and where the constant is absolute. In
obtaining this estimate, the only difference in our situation is the form of
the Γ factors, where we need to estimate Γ ′(sv/2)/Γ (sv/2). Since we need
the estimate in the region 1 < Re(s) = σ ≤ 2, s = σ + it, the required
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estimate is ∣∣∣∣
Γ ′(sv)
Γ (sv)

∣∣∣∣� log(nv|t|+ |φv(θ)|+ |mv(θ)|+ 2).

We need to have zero free regions for L(s, θ). Since we will not need
this for the quadratic characters, there are no Siegel zeros to complicate
matters. Zero free regions for L(s, θ) can be constructed following exactly
the arguments given in [Dav] for the classical Riemann ζ-function and the
complex Dirichlet characters. Again the only difference arises with the es-
timation of the Γ factors, which can be estimated as before. By mimicking
the arguments given in [Dav], we obtain

Proposition 1. Let θ be a unitary idele class character on K not equiv-
alent to a quadratic Dirichlet character. There exists an absolute constant
c > 0, depending only on K , such that L(s, θ) has no zeros % = β + iγ in
the region

(3) β > 1− c/log(A(θ)(|t|+ P (θ) + 2)), |t| ≥ 0,

where

(4) P (θ) = sup
v∈S∞

(|φv(θ)|+ |mv(θ)|).

2. Explicit formula. The explicit formula method allows one to relate
sums of Dirichlet coefficients of suitable L-functions to the behavior of the
zeros and poles of the L-function. We recall the essential features of the
method. Our aim is to keep track of the constants involved. For further
details about the explicit formula method, we refer to [LO], [VKM], [MR].

The explicit formula method can be applied to a general class of L-
functions which have a description in terms of an Euler product in some half
plane of absolute convergence, an analytic continuation to the entire plane
satisfying a suitable functional equation, have a Hadamard factorisation
and satisfy the Deligne–Ramanujan estimates, i.e., the eigenvalues of L(s)
are of absolute value 1. For the L(s, θ) corresponding to a unitary idele
class character considered above, the desired analytic properties have been
established by Hecke. By L(s), we denote from now onwards an L-function
of the form L(s, θ) considered above. We will also assume that θ is not in the
equivalence class of the principal character, or equivalently that L(s, θ) is an
entire function. The numbers θv(πv) will be referred to as Hecke eigenvalues
or just eigenvalues of L(s). Then the logarithmic derivative of L(s) satisfies

−L
′

L
(s) =

∑
v,n

θv(πv)n log(Nv)(Nv)−ns,

where Nv is the norm of v.
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The first step in the explicit formula method is to use the discontinuous
integral to approximate the sum of the Hecke eigenvalues of L(s) by means
of a “logarithmic integral” for T ≥ 1 as follows:

∑

n≥1

∑

(Nv)n<x

θv(πv)n log(Nv) = − 1
2πi

c+iT\
c−iT

L′

L
(s)xs

ds

s
+R1(x, T,K,L),

for c = 1 + 1/ log x, where the remainder term satisfies

R1(x, T,K,L)� nx(log x)2/T.

Here by the Vinogradov notation a � b, we mean that |a| ≤ C|b| for some
positive absolute constant C, which need not be the same at each occurrence.

Next we shift the line of integration leftwards, and integrate over the
rectangle −U ≤ σ ≤ c and |t| ≤ T , where U = 1/4 + j, where j is a
large positive integer and T is chosen so that L(σ ± iT ) 6= 0 for any σ, and
2 ≤ T ≤ x. We have

− 1
2πi

c+iT\
c−iT

L′

L
(s)xs

ds

s
= S +R2(x, T, U, L,K).

S denotes the sum of the residues at poles of the integrand inside the rect-
angle and will be the “main” term. R2 is the “remainder” term, the integral
over the boundary of the rectangle. By using the functional equation and the
Hadamard factorisation, it is possible to show that R2 satisfies the following
estimate [VKM]:

R2 � x log x
T

log
{
Aed

∏

v∈S∞
(nvT + |φv(θ)|+ |mv|+ 5)

}

+
x−U

U
T log

{
Aed

∏

v∈S∞
(nv(T + U) + |φv(θ)|+ |mv|+ 5)

}
.

Note that since we have assumed that L(s, θ) is entire, the contributions to
the terms R and S from the pole on the line Re(s) = 1 are absent. The
contributions to S are as follows:

(a) Poles coming from the zeros of L(s) in 0 < σ < 1, which contributes
a sum

−
∑

|Im %|<T

x%

%
.

(b) Poles coming from the trivial zeros, which occur at the poles of the
Γ factors. From the functional equation, it follows that for x > 1, this is
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bounded by the sum

−
∑

v∈S∞

∑

m≥1

x−(2m+|mv|)/nv

(2m+ |mv|)/nv � n/x.

Thus we obtain an expression for sums of the eigenvalues of L of the form
∑

n≥1

∑

(Nv)n<x

θv(πv)n log(Nv) = SL(U, T ) +RL(U, T ),

where S is a sum over the residues and R is an error term. We now let U
go to ∞. From the description of S and the fact that Λ(s, θ) is an entire
function of order 1, it can be seen that S(U, T ) converges. Using the fact
that θ is unitary, we have

∑

(Nv)n<x, n≥2

θv(πv)n log(Nv)� dnKx
1/2.

Putting all these estimates together, we get, for a character θ not equivalent
to the principal character,
∑

Nv<x

θv(πv) log(Nv) =

−
∑

|γ|≤T

x%

%
+O

(
dx(log x)2

T
log
{
A
∏

v∈S∞
(nvT + |φv(θ)|+ |mv(θ)|+ 5)

})
.

By appealing to partial summation we obtain

Proposition 2. Let θ be a unitary idele class character on K which is
not equivalent to the principal character. Then for 2 ≤ T ≤ x,

(5)
∑

Nv<x

θv(πv) = − 1
log x

∑

|γ|≤T

x%

%
+R(x, L, T ),

where R(x, L, T ) satisfies

(6) R(x, L, T )� dx(log x)
T

log
{
A
∏

v∈S∞
(nvT + |φv(θ)|+ |mv(θ)|+ 5)

}
,

and where the implied constant depends only on K.

3. Main theorem. We recall the notion of discrepancy [KN]. The dis-
crepancy of a sequence of real numbers is meant to measure the deviation of
the sequence from an “ideal” distribution, for example the uniform distri-
bution. Let (xj)nj=1 be a finite sequence of real numbers. For 0 ≤ α < β ≤ 1,
let A([α, β) : n) be the counting function #{j ≤ n | xj ∈ [α, β) (mod 1)}.
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Define the discrepancy Dn = Dn(x1, . . . , xn) of the sequence as

Dn = sup
0≤α<β≤1

∣∣∣∣
A([α, β) : n)

n
− (β − α)

∣∣∣∣.

If ω = (xi)i≥1 is an infinite sequence of real numbers, the discrepancy Dn(ω)
is defined to be the discrepancy of the first n terms of the sequence ω, i.e.,
Dn(ω) := Dn(x1, . . . , xn). By a theorem of Weyl, ω is uniformly distributed
modulo 1 if and only if limn→∞Dn(ω) = 0.

For us the importance of the notion of discrepancy comes from a result of
Erdős–Turán, which gives an upper bound for the discrepancy of a sequence
in terms of exponential sums. The exponential sums which will occur in
our situation are of the form

∑
Nv<x θ(πv), which can then be estimated by

means of the explicit formula method. If it so happens that these exponen-
tial sums are “small”, then it means that there are cancellations occurring
in the sum, or that the terms in the exponential sum are “more evenly dis-
tributed”. Hence the number of terms with sufficiently small angle should
also be relatively small. This heuristic reasoning is made precise with the
following result, which can be thought of as giving a quantitative analogue
of the theorems on uniform distribution:

Proposition 3 (Erdős–Turán) [KN, p. 112]. For any finite sequence
(xj)nj=1 of real numbers and for any positive integer M , we have

(7) Dn ≤ 6
M + 1

+
4
π

M∑

h=1

(
1
h
− 1
M + 1

)∣∣∣∣
1
n

n∑

j=1

e2πihxj

∣∣∣∣.

For a complex number z of modulus 1, let arg(z) denote the angle of
z, i.e., e2πi arg(z) = z, and where we have chosen arg(z) such that −1/2 ≤
arg(z) < 1/2. Denote by π(x) the number of primes in K of norm not
exceeding x, i.e., π(x) := #{v | Nv ≤ x}. We now state our theorem, which
can be considered as an analogue of the prime number theorem, for Hecke
characters inequivalent to Dirichlet characters.

Theorem 1. Let K be a number field and θ be a unitary idele class char-
acter which is not equivalent to a Dirichlet character. Let S be the union of
the archimedean places of K and the places of ramification of θ. Let −1/2 ≤
α < β ≤ 1/2. Then there is an absolute constant c1 > 0, depending only on
K, such that for x > max(exp(((1−c/2) log(A(θ)P (θ)))2), exp(log(A(θ))2)),
we have

#{v ∈Mf − S | Nv ≤ x, arg(θv(πv)) ∈ [α, β)}
= (β − α)π(x) +O(x exp(−c1

√
log x)),

where the implied constant is effectively computable and depends only on K.
Here A(θ) and P (θ) are defined respectively by (1) and (4). In particular ,
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the set of primes v of K where the local component θv of θ is the principal
character , is of density zero.

P r o o f. Substituting xv = arg(θv(πv)) for v 6∈ S, in the discrepancy
formula (7), we obtain

(8) #{v 6∈ S | Nv ≤ x, arg(θv(πv)) ∈ [α, β)}
= (β − α)π(x)

+O

(
6π(x)
M + 1

+
4π(x)
π

M∑

k=1

(
1
k
− 1
M + 1

)∣∣∣∣
1

π(x)

∑

Nv≤x
e2πikxv

∣∣∣∣
)

= (β − α)π(x) +O

(
π(x)
M

+
M∑

k=1

1
k

∣∣∣
∑

Nv≤x
θv(πv)k

∣∣∣
)
.

From the explicit formula (5), applied to L(s, θk), we obtain for 2 ≤ Tk ≤ x,

(9)
∣∣∣
∑

Nv≤x
θv(πv)k

∣∣∣� 1
log x

∣∣∣∣
∑

|γ|≤Tk

x%

%

∣∣∣∣+ |R(x, Lk, Tk)|,

where % runs over the zeros of L(s, θk). Since θ2k is not equivalent to a
principal character, θk cannot be equivalent to a quadratic character. Thus
we can use the estimates for the zero free region (3) applied to L(s, θk), to
obtain

(10)
∣∣∣∣
∑

|γ|≤Tk

x%

%

∣∣∣∣� x exp
(
− c log x

log(A(θk)(Tk + P (θk) + 2))

) Tk∑

j=1

Nk(j)
j

,

where Nk(j) denotes the density function for the zeros of L(s, θk) in the
critical strip. The crucial fact is that Tk is at our choice, provided we avoid
the ordinates of the zeros of L(s, θk). Let

Tk =
1

A(θk)
exp(

√
log x)− (P (θk) + 2),(11)

M = exp
(
c

2

√
log x

)
.(12)

Since A(θk) ≤ A(θ), P (θk) ≤ kP (θ), we see that for k ≤M , we have Tk ≥ 2,
provided we assume that

exp(
√

log x)� A(θ)P (θ) exp
(
c

2

√
log x

)
.

This inequality is satisfied if we assume that

(13) x > exp(((1− c/2)log(A(θ)P (θ)))2).
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We have, by (2),

Nk(j)� logA(θk) + d+
∑

v∈S∞
log(nvj + |φv(θk)|+ |mv(θk)|+ 4)(14)

� logA(θk) + d+ log(j + P (θk) + 2).

Hence on substituting (11) for Tk, we have

(15)
Tk∑

j=1

Nk(j)
j
� (d+ logA(θk)) log Tk + log(Tk + P (θk) + 2)2 � log x,

provided we assume that x > exp(logA(θ))2. The implied constants in the
above inequalities depend only on K. Hence from (10), (11) and (15) we
obtain ∣∣∣∣

∑

|γ|≤Tk

x%

%

∣∣∣∣� x log x exp(−c
√

log x)
(

1 +
kP (θ)
log x

)
,

where % runs over the zeros of L(s, θk).
The remainder term (6) can also be similarly dealt with to obtain

Rk = R(x, Lk, Tk)� A(θ)x(log x)d/2+1

exp(
√

log x)−A(θ)(P (θk) + 2)
.

Hence by the explicit formula (9), we have for x� 0,
∣∣∣
∑

Nv≤x
θv(πv)k

∣∣∣� x exp(−c
√

log x)
(

1 +
kP (θ)
log x

)
+Rk.

Substituting this in the discrepancy formula (8) above, we get

#{v 6∈ S | xv ∈ [α, β)}

= (β − α)π(x) +
π(x)
M

+ x exp(−c
√

log x)
(

logM +
MP (θ)
log x

)
+

M∑

k=1

Rk
k
,

where the implied constant depends only on K. For any constants α > 1,
β > 0, α > Mβ, we have

M∑

k=1

1
k(α− kβ)

≤ 1
α

(logM + logα).

This enables us to estimate the remainder term. Substituting M =
exp((c/2)

√
log x) as in (12), we get

M∑

k=1

Rk
k
� A(θ)x (log x)(d+1)/2+1 exp(−

√
log x).
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Hence we obtain

#{v 6∈ S | xv ∈ [α, β)} = (β − α)π(x) +O(x exp(−c1
√

log x)),

for some c1 > 0, provided we assume that

x > max(exp(((1− c/2)log(A(θ)P (θ)))2), exp(logA(θ))2),

and that proves the theorem.

Corollary 1. Let K be a number field and θ be an idele class character
of infinite order. Let S be the union of the archimedean places of K and
the places of ramification of θ. Let a ∈ C∗. Then there exists an absolute
constant c−1 > 0, depending only on K , such that for

x > max(exp(((1− c/2) log(A(θ)P (θ)))2), exp(logA(θ))2),

we have

#{v ∈Mf − S | Nv ≤ x, θv(πv) = a} � x exp(−c−1

√
log x),

where the implied constant is effectively computable and depends only on K.

The corollary follows from the theorem together with the following lem-
ma:

Lemma 1. Let θ be a character of the form χ| · |σ+it, for some Dirichlet
character χ and some real number t 6= 0. Let a ∈ C. Then there exist at
most two rational primes p1, p2 with (p1p2, N) = 1 such that for some prime
vi | pi, θvi = a, i = 1, 2.

P r o o f. Suppose not. Let p3 6= p1, p2 be a rational prime satisfying the
conclusion of the lemma. Suppose χ is of order k. We have |πvi |kσ+kit = ak,
vi | pi, i = 1, 2, 3. From |πv1/πv2 |kσ+kit = 1, we obtain σ = 0. Using the ratios
of these equations, we deduce that (log |πv1/πv2 |)/(log |πv2/πv3 |) ∈ Q, which
implies that the primes p1, p2, p3 are multiplicatively dependent, which is not
possible.

In analogy with the conjectures of Lang and Trotter [LT], it is reasonable
to expect that the number of primes v, Nv < x, such that θv = 1, for θ
a character not equivalent to a Dirichlet character, should behave asymp-
totically as c

√
x/log x, for some suitable constant c ≥ 0. The method of

proof of the density theorem also proves the following refinement under the
Generalised Riemann Hypothesis.

Proposition 4. Suppose L(s, θk) satisfy the Generalised Riemann Hy-
pothesis (GRH ), i.e., there are no zeros % of L(s, θk) with Re(%) > 1/2.
Then for x� 0 depending on θ, we have

#{v ∈Mf − S | Nv ≤ x, arg(θv(πv)) ∈ [α, β)}
= (β − α)π(x) +O(x1/2(log x)2),
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where the implied constant is effectively computable and depends only on K.
In particular ,

#{v ∈Mf − S | Nv ≤ x, θv = 1} = O(x1/2(log x)2).

P r o o f. We give a brief outline of the proof. We let Tk = x − P (θk)
and M =

√
x in the course of the proof of the above theorem. Under the

assumption of GRH, we have from (5),

∑

Nv<x

θv(πv)k = − 1
log x

∑

|γ|≤T

x%

%
+R(x, L, Tk)� x1/2

log x

Tk∑

j=1

Nk(j)
j

� x1/2log x,

provided x� 0 depending on θ. Substituting this in the discrepancy formula
(8), we obtain

#{v ∈Mf − S | Nv ≤ x, arg(θv(πv)) ∈ [α, β)}

= (β − α)π(x) +O

(
x1/2(log x)

M∑

k=1

1
k

)

� (β − α)π(x) +O(x1/2(log x)2).
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