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1. Introduction and main results. Let E ⊂ Rd, d > 1, be a compact
convex body such that ~0 ∈ Int(E) and its boundary, ∂E, is a smooth compact
(d − 1)-submanifold with positive Gaussian curvature. We shall abbreviate
these conditions saying that E is a smooth convex body. The main problem in
lattice point theory consists in estimating the difference between the number
of lattice points in large homothetic smooth convex bodies and their volume.
Namely, defining for R ≥ 1,

N (R) = #{~n ∈ Zd : ~n ∈ RE}
with RE = {~x ∈ Rd : R−1~x ∈ E}, we want to estimate

E(R) = N (R)−Rd|E|
where |E| is the volume of E (note that Rd|E| = |RE|).

Estimates for E(R) are typically written (with Landau’s notation) as

E(R) = O(Rα) as R→∞.
Let αd be the minimal exponent for E, i.e.

αd = inf{α > 0 : E(R) = O(Rα)}.
An easy geometrical argument, first used by C. F. Gauss for the circle

problem (see [Ga]), proves αd ≤ d − 1. Employing Fourier analysis tech-
niques (essentially an appropriate application of the Poisson summation
formula combined with the stationary phase method) it is possible to prove
αd ≤ d(d − 1)/(d + 1). This result was first stated in 1950 by E. Hlawka
(see [Hl]). Improvements over this bound depend on the estimation of ex-
ponential sums. Using a method (sometimes known as the Discrete Hardy–
Littlewood Method) originally due to E. Bombieri and H. Iwaniec and devel-
oped by several authors, M. N. Huxley has proved α2 ≤ 46/73 (see [Hu]). In
higher dimensions the best known general results are due to E. Krätzel and
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W. G. Nowak [Kr-No] who, using a refinement of a two-dimensional method
invented by E. C. Titchmarsh [Ti], have proved αd ≤ d− 2 + 8/(5d+ 2) for
3 ≤ d ≤ 6 and αd ≤ d − 2 + 3/(2d) for d ≥ 7. On the other hand, if E is
the d-dimensional ball, these results are substantially improved for d > 2.
In fact, it is known that αd = d− 2 for d > 3 and, in the case d = 3, D. R.
Heath-Brown has recently proved α3 ≤ 21/16 (see [H-B]).

The previous results show that there is a substantial difference between
lattice point problems in general smooth convex bodies and in spheres. The
purpose of this paper is to show that it is possible to obtain intermediate
results, even from the simplest van der Corput’s estimate, if we assume the
existence of an axis of rotational symmetry. Namely, we shall consider the
set Rd of smooth convex bodies of revolution in Rd, i.e. smooth convex
bodies E ⊂ Rd such that (x1, . . . , xd−1, z) ∈ E ⇔ (r, 0, . . . , 0, z) ∈ E where
r2 =

∑
x2
i .

The boundary of E can be divided into its upper and lower halves, S1, S2,
where Si, i = 1, 2, is given by z = fi(r), 0 ≤ r ≤ r0. Under our assumptions
f ′′1 (r) > 0 > f ′′2 (r) for 0 < r < r0, f (2k+1)

i (0) = 0 and f
(k)
i (r0) =∞. We

write E ∈ R∗d if 1
rf
′′′
i (r) does not vanish for 0 ≤ r < r0 (note that this

function is well defined by continuity at r = 0).
Our main result is

Theorem 1.1. If E ∈ R∗3 then α3 ≤ 11/8.

Remark. Note that this result improves inR∗3 the bound α3 ≤ 25/17 de-
duced from [Kr-No]. Some extensions and improvements in particular cases
will be considered in Section 6.

Although our methods also apply to higher dimensional cases, if d = 4 the
techniques introduced in [Ch-Iw] and recently improved in [H-B], involving
exponential sums and character sums, can be used to get a better result. On
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the other hand, for d > 4 a sharp result can be obtained by more elementary
means, namely

Theorem 1.2. If E ∈ Rd with d > 4 then αd ≤ d− 2.

Remark. Note that this is the best possible upper bound valid for every
E ∈ Rd, because equality is reached, for instance, for the ball.

Notation. Throughout this paper we use Landau’s notation f = O(g)
with the usual meaning |f | ≤ Cg where C is a constant. We also employ
Vinogradov’s notations f � g and f � g meaning f = O(|g|) and g =
O(|f |). When both of these conditions hold we simply write f � g. As
usual, we abbreviate e2πix by e(x) and denote the Fourier transform of f ,T
f(~x)e(−~x · ~ξ) dx1 . . . dxn, by f̂(~ξ ).

Acknowledgements. The author would like to thank E. Valenti for the
encouragement given along this time.

2. A truncated Hardy–Voronöı formula. The purpose of this section
is to express E(R) in terms of a trigonometric sum when E is a smooth
convex body in R3. The resulting formula (see Proposition 2.1 below) can be
considered as a generalized three-dimensional version of the classical Hardy
and Voronöı’s truncated formulas for the circle and divisor problems (see
[Iv]).

Before stating the result we consider the following smooth functions in
R3 − {~0}:

g(~n) = sup{~x · ~n : ~x ∈ E}, κ(~n) = K(N−1(~n/‖~n‖))
where K denotes the Gaussian curvature and N : ∂E → S2 is the normal
map. We also consider η ∈ C∞0 ((−1, 1)) with η(0) = 1 and such that the
Fourier transform of η(‖~x‖) is positive (this latter condition can be easily
fulfilled by considering the convolution of a radial function with itself).

Proposition 2.1. Let E ⊂ R3 be a smooth convex body and g, κ, η
as before. Then given R > 2 and δ = R−c, 0 < c < 1, there exists R′ ∈
(R− 2, R+ 2) such that

E(R) = −R
′

π

∑

~n∈Z3−{~0}
η(δ‖~n‖)cos(2πR′g(~n))

‖~n‖2
√
κ(~n)

+O(R2+εδ)

for every ε > 0.

Remark. Note that choosing δ = R−1/2 it follows immediately that
α3 ≤ 3/2, which is the result of E. Hlawka mentioned in the introduction
for d = 3.
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P r o o f (of Proposition 2.1). Of course, we can assume that ε is arbi-
trarily small, in particular 0 < ε < 1. Let φδ be the Fourier transform of
η(δ‖ · ‖). As η ∈ C∞0 and η(0) = 1, for every k ≥ 1 we have\

‖~t ‖≤δ1−ε

φδ(~t ) d~t = 1 +O(δk) and
\

‖~t ‖≥δ1−ε

φδ(~t ) d~t = O(δk).

Then, if χR denotes the characteristic function of RE,

(φδ ∗ χR1)(~x) =
\
R3

φδ(~t )χR1(~x− ~t ) d~t ≤ χR(~x) +O(δk)

where R1 = R− 2δ1−ε. In the same way,

(φδ ∗ χR2)(~x) ≥ χR(~x) +O(δk)

where R2 = R+ 2δ1−ε.
Hence, for some R′ such that |R′ −R| < 2δ1−ε,

∑

~n∈Z3

(φδ ∗ χR′)(~n) = N (R) +O(R3δk).

The Poisson summation formula applied to the first term and the definition
of E(R) give

(2.1) E(R) = φ̂δ(~0)χ̂R′(~0)−R3|E|+
∑

~n∈Z3−{~0}
φ̂δ(~n)χ̂R′(~n) +O(R3δk).

By our choice of φδ, χR and η,

φ̂δ(~0) = 1, χ̂R′(~0) = (R′)3|E|, φ̂δ(~n) = η(δ‖~n‖),
and by the main result of [He] (similar results are contained in [Hl])

χ̂R′(~n) =
R

2πi‖~n‖2
(
e(Rg(~n)− 1/4)√

κ(~n)
− e(−Rg(−~n) + 1/4)√

κ(−~n)

)
+O

(
R

‖~n‖3
)
.

Finally, substituting in (2.1) and taking k large enough gives the result.

3. Lattice error term and exponential sums. If t 7→ (A(t), B(t)),
0 ≤ t ≤ T , A ≥ 0, is a parametrization of the generatrix of E ∈ R3, then
∂E can be parametrized as

(A(t) cosu,A(t) sinu,B(t)), 0 ≤ u < 2π, 0 ≤ t ≤ T,
and the function g defined in the previous section is

(3.1) g(n1, n2, n3) = sup
0≤u<2π
0≤t≤T

{A(t)(n1 cosu+ n2 sinu) +B(t)n3}.

By rotational symmetry we have

g(n1, n2, n3) = g(
√
n2

1 + n2
2, 0, n3).
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We denote this latter function by h(n2
1 + n2

2, n3), i.e.

h(n,m) = g(
√
n, 0,m).

According to (3.1), h(n,m) is implicitly defined for n > 0 and m 6= 0 as
{
h(n,m) =

√
nA(t) +mB(t),

0 =
√
nA′(t) +mB′(t).

With the notation of Section 1, the generatrix of E is composed of the arcs
t 7→ (t, f1(t)) and t 7→ (t, f2(t)), 0 ≤ t ≤ r0. Hence

(3.2)

{
h(n,m) = t

√
n+mfi(t),

0 =
√
n+mf ′i(t)

where i = 1 if m > 0 and i = 2 if m < 0 (note that f ′2 ≥ 0 ≥ f ′1).
The purpose of this section is to relate the size of the lattice error term,

E(R), and the exponential sum defined for N,M,L ≥ 1, x ∈ R, by

TNML(x) =
1
L

∑

l≤L

∣∣∣
∑

n�N

∑

m�M

′
e(x(h(n,m+ l)− h(n,m)))

∣∣∣,

where the prime indicates that if I1 and I2 are the (positive and negative)
intervals in Z defined by the condition m � M , then the summation is
restricted to the values of m such that m and m + l belong to the same
interval Ii.

Proposition 3.1. If R, δ and R′ are as in Proposition 2.1, then for every
ε > 0 and any L ≥ 1 (perhaps depending on N,M and R),

E(R)� R2+εδ +R1+ε sup
N,M2<δ−2

M1/2N1/2

N +M2 (|TNML|1/2 +M1/2N1/2L−1/2)

where TNML = TNML(R′).

P r o o f. As the Gaussian curvature K of ∂E is positive and it coincides
with the determinant of the Weingarten map dN : Tp(∂E) → Tp(∂E) (see
p. 104 of [Sp]), the normal map N : ∂E → S2 is a diffeomorphism and
K ◦ N−1 : S2 → R is a C∞ function. Hence, for a suitably chosen η, we
can apply partial summation in Proposition 2.1 (compare with Lemma 4 of
[Kr-No]) to prove

E(R)� R2+εδ +R1+ε sup
N,M2<δ−2

1
N +M2

∑

n�N

∑

m�M
r(n)e(R′h(m,n))

where r(n) denotes the number of representations of n as a sum of two
squares (note that the contribution of the terms with n = 0 or m = 0 is
negligible).
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The result will be a consequence of the previous bound if we prove

(3.3)
∣∣∣
∑

n�N

∑

m∈Ii
r(n)e(R′h(m,n))

∣∣∣
2
�MN1+ε(|TNML|+MNL−1).

This inequality is nothing but a version of the Weyl–van der Corput inequal-
ity (compare with Theorem 2.21 of [Kr] and Lemma β′ of [Ti]). To prove it,
note first that

L
∑

n�N

∑

m∈Ii
r(n)e(R′h(n,m)) =

∑
m

∑

n�N
r(n)

∑

l≤L
φm+l

where φm+l = e(R′h(n,m+l)) if m+l belongs to Ii and φm+l = 0 otherwise.
Applying Cauchy’s inequality twice, we get

L2
∣∣∣
∑

n�N

∑

m∈Ii
r(n)e(R′h(n,m))

∣∣∣
2
�M

∑
m

( ∑

n�N
r(n)

∣∣∣
∑

l≤L
φm+l

∣∣∣
)2

�M
∑
m

N1+ε
∑

n�N

∣∣∣
∑

l≤L
φm+l

∣∣∣
2
.

Expanding the square in the latter expression, we have

L2
∣∣∣
∑

n�N

∑

m∈Ii
r(n)e(R′h(n,m))

∣∣∣
2

�MN1+ε
∑
m

∑

n�N

∑

l1≤L

∑

l2≤L
φm+l1φm+l2 .

Changing the variable m to m − l2, extracting the diagonal contribution
coming from l1 = l2 and writing l = l1− l2, we conclude that the right hand
side is majorized by

MN1+εL
∑

l≤L

∣∣∣
∑

m∈Ii

∑

n�N
φm+le(−R′h(n,m))

∣∣∣+M2N2+εL,

which proves (3.3).

4. Estimation of the exponential sum. In this section we proceed
to estimate TNML. Our arguments depend on the study of the functions F1

and F2 appearing in the next lemma. Note that the convexity of −f1 and
f2 allows us to prove that −f ′1, f ′2 : (0, r0)→ R+ are one-to-one. Let φ1 and
φ2 be their inverse functions.

Lemma 4.1. For n > 0 and m 6= 0,

∂

∂m
h(n,m) =

{
F1(n/m2) for m > 0,
F2(n/m2) for m < 0,

where Fi(u) = fi(φi(
√
u)), i = 1, 2.



Lattice points 271

P r o o f. By (3.2),

h(n,m) =
√
nφi

(√
n

|m|
)

+mfi

(
φi

(√
n

|m|
))

where i = 1 if m > 0 and i = 2 if m < 0. Hence
∂

∂m
h(n,m)

=
n

m|m|φ
′
i

(√
n

|m|
)

+ fi

(
φi

(√
n

|m|
))

+
√
n

|m|φ
′
i

(√
n

|m|
)
f ′i

(
φi

(√
n

|m|
))

.

As f ′1(φ1(u)) = −u and f ′2(φ2(u)) = u, the first and last terms cancel out.

A fundamental point is to take control of the second derivative of Fi in
order to apply van der Corput estimates.

Lemma 4.2. There exist positive constants C1 and C2 such that

C1 < (1 + u)5/2|F ′′i (u)| < C2 for every u > 0.

P r o o f. We only consider i = 2, the case i = 1 is completely similar.
From Lemma 4.1 (recall that φ2 is the inverse function of f ′2),

F ′2(u) = f ′2(φ2(
√
u))

φ′2(
√
u)

2
√
u

=
1

2f ′′2 (φ2(
√
u))

,

hence

F ′′2 (u) = − f ′′′2 (φ2(
√
u))

4
√
u(f ′′2 (φ2(

√
u)))3 .

By our hypothesis, E ∈ R∗3, f ′′′2 does not vanish, thus it is enough to prove
that

L1 = lim
u→0+

F ′′2 (u) and L2 = lim
u→∞

u5/2F ′′2 (u)

are finite and non-zero.
As E is a smooth convex body, the curvature k(t) of t 7→ (t, f2(t)),

0 ≤ t ≤ r0, is positive. Using the formula (see p. 11 of [Sp])

(4.1) f ′′2 (t) = k(t)(1 + |f ′2(t)|2)3/2

and φ2(x) = x/k(0) + O(x2), since the Taylor expansion f2(t) = a +
k(0)t2/2 + . . . (see p. 41 of [Sp]), we obtain

L1 = − lim
u→0+

f ′′′2 (
√
u/k(0))

4
√
u(k(0))3 = − 1

4(k(0))4 lim
r→0+

f ′′′2 (r)
r

,

which is non-zero by our hypothesis (f ′′′2 (r)/r does not vanish for 0 ≤ r
< r0).

Note that φ2(x)→ r0 as x→∞ (because f ′2(r−0 ) =∞). Thus changing√
u to f ′2(t) we have



272 F. Chamizo

L2 = − lim
t→r−0

(f ′2(t))4f ′′′2 (t)
4(f ′′2 (t))3 = −1

4
lim
t→r−0

(f ′2(t))6

(f ′′2 (t))2 · lim
t→r−0

f ′′′2 (t)
f ′′2 (t)(f ′2(t))2 .

The first limit is (k(r0))−2 by (4.1), and we can apply l’Hôpital rule to the
second one to obtain

L2 = − 3
4(k(r0))2 lim

t→r−0

f ′′2 (t)
(f ′2(t))3 ,

which gives, by (4.1), L2 = −3/(4k(r0)).

Lemma 4.3. If N,M,L ≥ 1 then

TNML �
{
R1/2L1/2N−1/4M3/2 +R−1/2L−1/2N5/4M1/2 for N ≥M2,
R1/2L1/2NM−1 +R−1/2L−1/2M3 for N ≤M2.

P r o o f. By the mean value theorem and Lemma 4.1,

∂2

∂n2 (h(n,m+ l)− h(n,m)) = l
∂3

∂n2∂m
h(n, m̃) =

l

m̃4F
′′
i

(
n

m̃2

)

for some m̃ ∈ [m,m+ l] and i ∈ {1, 2}. By Lemma 4.2,

∂2

∂n2 (h(n,m+ l)− h(n,m)) � lM−4(1 +NM−2)−5/2.

Hence, by van der Corput’s well known estimate (see, for instance, Theo-
rem 2.2 of [Gr-Ko]), we have

∑

n�N
e(R′(h(n,m+ l)− h(n,m)))

� N(RlN−5/2M)1/2 + (RlN−5/2M)−1/2

for N ≥M2, and∑

n�N
e(R′(h(n,m+ l)− h(n,m)))� N(RlM−4)1/2 + (RlM−4)−1/2

for N ≤ M2. Substituting these bounds in the definition of TNML we con-
clude the proof.

5. Proof of Theorems 1.1 and 1.2. In this section we combine Propo-
sition 3.1 and Lemma 4.3 to prove Theorem 1.1. We also give a proof of
Theorem 1.2 using easier arguments.

Proof of Theorem 1.1. Let S1 and S2 be the arguments of the supremum
in Proposition 3.1 when M2 < N and when N ≤ M2, respectively. By
Lemma 4.3 we have

S1 � R1/4L1/4M5/4N−5/8 +R−1/4L−1/4M3/4N1/8 + L−1/2M

and
S2 � R1/4L1/4M−2N +R−1/4L−1/4N1/2 + L−1/2M−1N.
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If R−1/3M−1/3N5/6 ≥ 1 we choose L = R−1/3M−1/3N5/6 in S1, obtaining

S1 � R1/6M7/6N−5/12 +R−1/6M5/6N−1/12.

On the other hand, if R−1/3M−1/3N5/6 < 1 it is easy to prove that M <
R1/4, N < R1/2 (use the fact that N > M2) and S1 � R1/4 after the choice
L = 1. Hence we have

S1 � R1/6M7/6N−5/12 +R−1/6M5/6N−1/12 +R1/4 for N ≥M2.

In the same way, if we choose L = R−1/3M4/3 or L = 1 in S2, depending
on whether R−1/3M4/3 ≥ 1 or R−1/3M4/3 < 1, respectively, we obtain

S2 � R1/6M−5/3N +R−1/6M−1/3N1/2 +R1/4 for N < M2.

Substituting in Proposition 3.1 we get

E(R)� (R2δ +R7/6δ−1/3 +R5/6δ−2/3 +R5/4)Rε.

Finally, choosing δ = R−5/8 yields the result.

Proof of Theorem 1.2. Consider a parametrization of the generatrix of
E of the form t 7→ (ψ(t), t), a ≤ t ≤ b. With the previous notation we have
ψ(fi(t)) = t for 0 ≤ t ≤ r0 and a = f2(0), b = f1(0).

It is plain (consider horizontal sections of E) that

N (R) =
∑

aR≤n≤bR
#{~m ∈ Zd−1 : ‖~m‖ ≤ Rψ(n/R)}.

As mentioned in the introduction, αd = d−3 holds for the (d−1)-dimensional
ball when d > 4, hence for every ε > 0,

(5.1) N (R) = cd−1

∑

aR≤n≤bR
(Rψ(n/R))d−1 +O(Rd−2+ε)

where cd−1 is the volume of the unit (d− 1)-ball.
The convexity of E implies, for r → 0, fi(r) = fi(0) + (−1)iKir

2 +O(r4)
with Ki > 0; thus the vanishing order of ψ at the endpoints is exactly
1/2. Consequently, (ψd−1)′′(a+) and (ψd−1)′′(b−) are finite and ψd−1 has
a bounded second derivative in [a, b]. After these considerations, a double
partial integration in the Poisson summation formula gives

∑

aR≤n≤bR
(ψ(n/R))d−1 =

bR\
aR

(ψ(t/R))d−1 dt

−
bR\
aR

∞∑
n=1

cos(2πnt)
2π2n2 · d

2

dt2
(ψ(t/R))d−1 dt

= R

b\
a

(ψ(t))d−1 dt+O(R−1).
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Substituting in (5.1) we have

N (R) = Rd
b\
a

cd−1(ψ(t))d−1 dt+O(Rd−2+ε).

The integral equals |E|, therefore αd ≤ d− 2.

6. Other results. There are linear transformations leavingR∗3 invariant.
For instance, consider

Eλµ = {(x, y, z) ∈ R3 : (x, y, λ(z − µ)) ∈ E}, λ 6= 0, µ ∈ R;

if E ∈ R∗3 and ~0 ∈ Int(Eλµ), then Eλµ ∈ R∗3. It is also obvious that the
dilations preserve R∗3.

The purpose of this section is to show that there are some other linear
transformations not leaving R∗3 invariant but producing off-centered bodies
with elliptic sections to which our methods can be applied. Namely, consider
the translation

T (x, y, z) = (x− τ1, y − τ2, z), τ1, τ2 ∈ R,
and the action of a non-singular matrix, A = (aij) ∈ M2×2(R), over the
two first variables:

G(x, y, z) = (a11x+ a12y, a21x+ a22y, z).

Theorem 6.1. Let T and G be as before. If E ∈ R∗3, ~0 ∈ Int(TGE) and
A ·At ∈M2×2(Q), then the bound α3 ≤ 11/8 also holds for TGE.

Remark. Of course, TGE is only an abbreviation for {TG(x, y, z) :
(x, y, z) ∈ E}. Note (see the proof) that the condition ~0 ∈ Int(TGE) is su-
perfluous and it is only imposed to preserve the original geometrical meaning
of the problem.

P r o o f (of Theorem 6.1). After a dilation of E we can assume that A ·At
has integral coefficients, i.e.

Q(n1, n2) = ‖(n1, n2)A‖2

is an integral binary quadratic form.
For TGE, the terms under summation in Proposition 2.1 are

|A|η(δ‖~n‖)cos(2πR′(g(T t~n)− τ1n1 − τ2n2))

‖T t~n‖2
√
κ(T t~n)

where T t is defined as T with A replaced by At, and the functions g and κ
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(and h later) correspond to E. This can be checked by direct calculations (1)
but it is much easier to follow the steps of the proof of Proposition 2.1
noting that the Fourier transform of the characteristic function of R′TGE,
χR′(G−1T−1~x), is

|A|e(−R′(τ1ξ1 + τ2ξ2))χ̂R′(T t~ξ ).

As g(x, y, z) = g(
√
x2 + y2, z) = h(x2 + y2, z), we have

g(a11n1 + a21n2, a12n1 + a22n2,m) = h(n,m)

where n = Q(n1, n2). Therefore the bound of Proposition 3.1 (and hence
the final result α3 ≤ 11/8) holds not only for E but for TGE if we are able
to prove (3.3) with r(n) replaced by

r̃(n) =
∑

Q(n1,n2)=n

e(−R′(τ1n1 + τ2n2)).

But this change does not affect the arguments used there because the bound
r(n)� nε (the only property of r(n) employed in the proof) is also satisfied
by r̃(n).

The centered sphere belongs to R∗3 (note that if f(x) = (1− x2)1/2 then
f ′′′(x)/x = 3(1 − x2)−5/2 6= 0), hence E : α(x2 + y2) + β(z − γ)2 ≤ 1 also
belongs to R∗3 if ~0 ∈ Int(E). Applying the previous theorem to E shows at
once

Corollary 6.2. Let E be an ellipsoid in R3 of the form

a11x
2 + a12xy + a22y

2 + a33z
2 + a1x+ a2y + a3z ≤ 1.

If a22/a11, a12/a11 ∈ Q, then the bound α3 ≤ 11/8 holds for E.

As far as we know, this result has not been stated before, but in this
particular case it can be improved using more sophisticated methods of
exponential sums. In fact, exponent pairs theory and the Discrete Hardy–
Littlewood Method (see [Gr-Ko] and [Hu]) could be used to improve Theo-
rem 1.1 (via a sharper estimation of TNML) in the cases where some com-
plicated functions involving higher derivatives of fi do not vanish; but, as
we mentioned in the introduction, our main here interest is to show how
the symmetries of a body can be exploited to get general bounds from the
simplest van der Corput’s estimate. In order to illustrate the situation, we

(1) Doing these calculations requires to know the behaviour of κ when E is replaced
by LE with L ∈M3×3(R). The needed formula is

κLE(~n) · ‖~n‖4|L|2 = κE(Lt~n) · ‖Lt~n‖4.
Although this answers a natural question (how Gaussian curvature changes under general
linear transformations) we have not found this formula in geometry textbooks. We are
indebted to J. Gonzalo for supplying us with a proof.
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shall finish this section stating a result showing that the exponential sums
estimates of J.-R. Chen [Ch] and I. M. Vinogradov [Vi] (in the sharper and
simplified form given in Lemma 3.1 of [Ch-Iw]) can be used to get the best
known result for a certain class of ellipsoids.

Theorem 6.3 (cf. [Ch] and [Vi]). Let E be an ellipsoid of the form

a11x
2 + a22y

2 + a33z
2 + a12xy + a13xz + a23yz + a1x+ a2y + a3z ≤ 1.

If aij/a11 ∈ Q, 1 ≤ i ≤ j ≤ 3, then the bound α3 ≤ 4/3 holds for E.

P r o o f. Obviously we can write E (or an ellipsoid homothetic to E) as

‖~x− ~τ‖∗ ≤ 1 where ~τ ∈ R3, ~xt = (x, y, z) and ‖~x‖∗ = ~xtA~x

where A is a rational positive definite matrix.
A calculation proves (use the formula for the curvature of an ellipsoid or

the previous footnote)

g(~n) =
√
Q(~n)− ~τ · ~n and ‖~n‖2

√
κ(~n) = Q(~n)

where Q(~n) = ~nt(A−1)t~n. Note that Q(~n) = aL2
1 +bL2

2 +cL2
3, where a, b, c ∈

Q and Li = Li(~n), i = 1, 2, 3, are linear forms with rational coefficients,
and after a dilation of E we can assume that a, b, c and these coefficients are
actually integers.

On the other hand, it is easy to check that in Proposition 3.1, η(δ‖~n‖)
can be replaced by η̃(δ‖~n‖∗) with analogous properties (see the first steps
of the proof and note that ‖ · ‖ and ‖ · ‖∗ are equivalent norms), hence

(6.1) E(R)� R2+εδ +R1+ε sup
N<δ−2

N−1VN

where

VN =
∑

n�N
r∗(n)e(R′

√
n) and r∗(n) =

∑

aL2
1+bL2

2+cL2
3=n

e(−R′~τ · ~n).

By Lemma 3.1 of [Ch-Iw] (with minor modifications)

VN � N5/4+ε +Nε min(R3/8N15/16 +R1/8N17/16,

R7/24N49/48 +R5/24N53/48).

Substituting in (6.1) and choosing δ = R−2/3 we obtain α3 ≤ 4/3.
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