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1. Introduction. Let K denote the quotient field of some Dedekind ring
oK and N/K a finite Galois extension with Galois group Γ . Considering
the action of the group algebra KΓ on the additive structure of N , the
Normal Basis Theorem tells us that N ' KΓ , i.e. there exist t ∈ N with
N = KΓt =

⊕
γ∈Γ Kγ(t).

A more delicate problem is the study of the Galois module structure
of oN , the integral closure of oK in N . oN is a module over the so-called
associated order

(1) AN/K := {α ∈ KΓ | αoN ⊂ oN},
and one is interested in an explicit description of AN/K and the structure of
oN over it, especially whether or not oN ' AN/K . For more references and
details we refer the reader to [11], the second part of [16] or [8].

If N/K is at most tamely ramified, a theorem of Noether shows that
AN/K = oKΓ , and if furthermore K is a local field (i.e. complete with
respect to a discrete valuation and with finite residue class field) and oK its
valuation ring then oN ' AN/K .

If N is a finite abelian extension of Q and oN its ring of algebraic integers,
then oN ' AN/K holds in the cases K = Q ([12], [13]) and K = Q(ζ) with
ζ a root of unity ([6], [2], [5]), but there are examples for K, even with
N/K unramified, where oN 6' AN/K (see [3]). Up to now it has not even
been known whether for abelian fields N , oN is always a locally free AN/K-
module, i.e. whether oN,p ' AN/K,p for each prime p ∈ spec(oK). If AN/K
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is a Hopf order and Γ is abelian, it was proved in [7] that oN is locally
free over AN/K . Unfortunately, AN/K is not a Hopf order in general. The
present paper gives an affirmative answer to this question for absolutely
abelian number fields.

Theorem 1. Let Qp ⊂ K ⊂ N be finite field extensions with N/Qp
abelian. Then

oN ' AN/K .
Let N0 be the inertia field of N/K and put Γ0 = Gal(N/N0) ≤ Γ . If p ≥ 3
we have, more explicitly ,

oN ' AN/K ' oKΓ ⊗
oKΓ0

M0,

where M0 ⊂ KΓ0 is the maximal oK-order of KΓ0.

Following the proof of this theorem, also for p = 2 an explicit descrip-
tion of AN/K can be obtained, starting with the result of Proposition 3(a).
In the same way, one can obtain an explicit generator TN/K ∈ oN with
AN/KTN/K = oN , as long as Proposition 1(b) is not needed for “going
down”.

If N is abelian only over K, but not over Qp, oN ' AN/K does not hold
in general (see Corollary 1 of [1] or Theorem 5.1 of [4]).

From Theorem 1 we immediately deduce the following

Corollary. If Q ⊂ K ⊂ N are algebraic number fields with N/Q finite
and abelian, then oN is locally free over AN/K .

2. Galois module structure for abelian extensions of local fields.
Some results in Section 2 of [5] describe how the Galois module structures
of different field extensions are related in some special cases. For local fields
we will obtain stronger results. Throughout this section, K will be a local
field and N/K a finite abelian extension with Galois group Γ .

Proposition 1. Let N/K be a finite abelian extension with N = NK,
where N/K is totally ramified and K/K is unramified. Put Γ = Gal(N/K)
= Gal(N/K) and ∆ = Gal(N/N) = Gal(K/K). Then we have

(a) AN/K = AN/K ⊗
oK

oK and AN/K = AN/K ∩KΓ .

(b) oN ' AN/K as AN/K-modules if and only if oN ' AN/K as AN/K-
modules. If this holds and T ∈ oN with oN = AN/KT , then one also has
oN = AN/KT .

Note that Proposition 1(a) also holds for global fields if we only assume
that N and K are arithmetically disjoint over K.
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P r o o f (of Proposition 1). Since N and K are arithmetically disjoint
over K (i.e. oN = oN ⊗

oK
oK), Lemma 5 of [5] applies, showing some parts of

the above statements.
(a) From definition (1) we immediately obtain AN/K ∩ KΓ ⊂ AN/K .

On the other hand, we have AN/K ⊂ AN/K ⊗
oK

oK = AN/K , thus proving

AN/K = AN/K ∩KΓ .
(b) This is a specialization of Exercise 6.3 on p. 139 of [9]. Suppose

that oN ' AN/K , i.e. oN ⊗
oK

oK ' AN/K ⊗
oK

oK . Considering this as an

isomorphism of AN/K -modules and using the fact that oK is free over oK

of rank d = |∆|, we obtain o
(d)
N ' A(d)

N/K as AN/K-modules. Using now the
theorem of Krull–Schmidt–Azumaya yields oN ' AN/K .

The following lemma together with Lemma 6 of [5] enables us to obtain
the Galois module structure for any abelian extension of a local field K as
soon as we know this structure for all totally ramified, abelian extensions
of K.

Lemma 1. Let K/K be the unramified extension of K with [K : K] =
[N : K]. Then there exists a totally ramified abelian extension N ′/K such
that for N = N ′K we have: N/K is abelian, N ⊂ N and N/N is unrami-
fied.

If there exists some intermediate field K ⊂ K ′ ⊂ N such that K ′/K is
totally ramified, it suffices to take for K the unramified extension of K of
degree [K : K] = [N : K ′].

Lemma 1 can also be proved by using class field theory and analysing
the norm groups, but we offer a more elementary proof.

P r o o f (of Lemma 1.) We put N = NK and will show that this field has
all the required properties. Since both N and K are abelian over K, so is
N/K. Obviously, N/N is unramified. It only remains to show the existence
of a field N ′ as stated in the lemma. Consider the exact sequence

1→ Gal(N/K) ↪→ Gal(N/K) π→ Gal(K/K)→ 1.

Let σ ∈ Gal(K/K) be a generator of this cyclic group and take any τ ∈
Gal(N/K) with π(τ) = σ. Since τd, where d = [K : K] = [N : K], is the
identity on both N and K, we have τd = idN . Therefore ϕ : Gal(K/K) →
Gal(N/K), defined by ϕ(σ) = τ , is a splitting homomorphism for the above
sequence. Thus we have Gal(N/K) = Gal(N/K)⊕G′ with some subgroup
G′ ≤ Gal(N/K). If we take N ′ = NG′ , the field fixed by G′, the remaining
claims immediately follow.
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Since it will be of general interest, we also include the following result,
which can be used to deduce Theorem 1 for p ≥ 3 from Proposition 3 or
from the global result of [2] or [5]. Alas, it does not apply to non-maximal
orders and gives no information about Galois generators. I would like to
thank M. J. Taylor for many useful discussions leading to this result.

Proposition 2. Let N0 be an intermediate field K ⊂ N0 ⊂ N , which
is unramified over K; put Γ0 = Gal(N/N0) and A′ = AN/N0 ∩KΓ0. Then:

(a) AN/N0 is the maximal oN0-order in N0Γ0 if and only if A′ is the
maximal oK-order in KΓ0.

(b) If AN/N0 is maximal then oN is free over A′ and over A′ ⊗
oKΓ0

oKΓ ;

in particular ,

oN ' AN/K = A′ ⊗
oKΓ0

oKΓ.

(c) Assume that Γ ≥ Γ0 ≥ Γ1 are the inertia group and the first ramifi-
cation group, resp., and put N1 = NΓ1 , the maximal at most tamely ramified
extension of K inside N . If AN/N1 is the maximal oN1-order of N1Γ1, then
AN/N0 is also maximal and

oN ' AN/K = A′′ ⊗
oKΓ1

oKΓ with A′′ = AN/N1 ∩KΓ1.

P r o o f. (a) Since Γ0 is abelian, the maximal orders are the integral
closures of oK in the group algebras KΓ0, resp. N0Γ0. So A′ is maximal
whenever AN/N0 is maximal.

Now suppose that A′ is maximal. Obviously, we have AN/N0 ⊃ A′ ⊗
oK

oN0 .

Since N0/K is unramified, A′ ⊗
oK

oN0 is maximal by Corollary 26.27 of [9].

(b) Suppose that AN/N0 is maximal in N0Γ0; thus by (a), A′ is the maxi-
mal order of KΓ0 and both orders are hereditary (see Theorem 18.1 of [15]).
Therefore oN is projective over each of these orders, and by Theorem 18.10
of [15], even free over them. So oN ⊗

ZΓ0

ZΓ is free over A′ ⊗
ZΓ0

ZΓ .

Now we use an idea from the proof of Proposition 2.1 of [17]. Consider
the exact sequence

oN ⊗
ZΓ0

ZΓ π→ oN → 0,

where π is defined by π(y⊗ γ) = yγ . Since N0/K is unramified, there exists
some t ∈ oN0 with trN0/K t = 1, where tr denotes the trace. Using such a t,
define i : oN → oN ⊗

ZΓ0

ZΓ by

i(x) =
∑

γ∈Γ/Γ0

txγ ⊗ γ−1,
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where γ runs through a set of representatives for Γ/Γ0. One easily checks
that i and π are Γ -equivariant, thus A′ ⊗

ZΓ0

ZΓ -module homomorphisms.

Now π ◦ i = idoN shows that the exact sequence above splits and oN is a
projective module over A′ ⊗

ZΓ0

ZΓ . Using A.4 on p. 230 of [10], we conclude

that oN is free over A′ ⊗
ZΓ0

ZΓ , which yields all our assertions.

(c) Γ0 is abelian, thus we have Γ0 = Γt×Γ1 with |Γt| = e | (q−1) and Γ1

the p-Sylow group of Γ0, where q is the cardinality and p the characteristic
of the residue class field of N0. Put N2 = NΓt .

Since AN/N1 is maximal, AN/N1 ∩N0Γ1 is maximal in N0Γ1, thus equals
AN2/N0 . Since N1/N0 is tame, AN1/N0 = oN0Γt by Noether’s theorem, and
this is the maximal order, because the roots of unity of order e are contained
in N0.

ThusAN1/N0 ⊗
oN0

AN2/N0 ⊂ N0[Γt×Γ1] is the maximal order, and it equals

AN/N0 because its elements obviously map oN into itself. So we obtain

A′ = AN/N0 ∩KΓ0 = (oN0Γt ⊗
oN0

AN2/N0) ∩KΓ0

= oKΓt ⊗
oK

(AN2/N0 ∩KΓ1) = oKΓ0 ⊗
oKΓ1

A′′,

which together with part (b) completes the proof.

3. The result for fields contained in Qp(ζpn). Let us agree on the
following notations: for any p ∈ P and k ∈ N let ζpk ∈ Qp be a root of unity

of order pk, put Q(k)
p = Qp(ζpk) and Q(k)±

p = Qp(ζpk ± ζ−1
pk

). For any field

L ⊃ Qp we put Lk = L ∩Q(k)
p and L(k) = LQ(k)

p .

For a finite abelian group G, let Ĝ = {χ | χ : G→ Q×p } be its dual group

of characters χ with values in Q×p and

εχ,G =
1
|G|

∑

γ∈G
χ(γ−1)γ ∈ QpG

the absolutely irreducible idempotents. Put Qp(χ) = Qp({χ(γ) | γ ∈ G}),
the field obtained by adjoining the values of χ. For any field L ⊃ Qp let
Lχ = L ∩Qp(χ). Then

Eχ,LG =
∑

σ∈Gal(Qp(χ)/Lχ)

εχσ,G

are the primitive idempotents of the group algebra

LG =
⊕

χ∈Γ̂L

LGEχ,LG,
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where Γ̂L ⊂ Γ̂ denotes a set of representatives for the classes of characters
which are conjugated over L.

Throughout this section, we will fix the following situation: let Qp ⊂ K ⊂
N ⊂ Q(n)

p and K ⊂ Q(m)
p , where m,n are chosen minimal with 1 ≤ m ≤ n

(2 ≤ m ≤ n if p = 2, resp.). Put Γ = Gal(N/K) and let ζ ∈ Q(n)
p denote a

root of unity of order pn. For any t ∈ N, let

Rt ⊂ Gal(Qp/Qp)
denote a set of automorphisms representing Gal(Kt/Qp). Then we have the
following result:

Proposition 3. (a) AN/K is the maximal oK-order of KΓ except for

the case N = Q(n)
2 and K = Q(m)±

2 , where AN/K = oKΓ
[

2
t εω,Γ

] ⊗
oKΓ1

M1.

Here ω denotes the quadratic character belonging to Q(m)
2 /K, t ∈ oK is a

prime dividing 2, Γ1 = Gal(Q(n)
2 /Q(m)

2 ) and M1 is the maximal order of
KΓ1.

(b) oN is a free AN/K-module. Explicitly we have oN = AN/KTN/K with

TN/K =
n−m∑

j=0

∑

σ∈Rn−m−j
trQ(n−j)

p /Nn−j
σ(ζp

j

)

except for the case N = Q(n)±
2 and K = Q(m)+

2 , where

TN/K = 1 +
n−m−1∑

j=0

∑

σ∈Rn−m−j
trQ(n−j)

2 /Nn−j
σ(ζ2j ).

First we consider a special situation:

Lemma 2. Suppose that N = Q(n)
p and K = Q(m)

p and put Γ1 =
Gal(N/K). Let ψ be a generator of the character group Γ̂1, let 1 ≤ r ≤ pn−m
and put ν = vp(r).

(a) For any x ∈ Z with ν 6= vp(x) ≤ n−m we have

εψr,Γ1ζ
x = 0.

(b) There exists τr ∈ Rn−m−ν such that for all σ ∈ Rn−m−ν ,

Eψr,KΓ1σ(ζp
ν

) =
{
τr(ζp

ν

) if σ = τr,
0 if σ 6= τr.

(c) If 1 ≤ r′ ≤ pn−m with vp(r′) = ν such that Eψr,KΓ1 6= Eψr′ ,KΓ1
then

τr 6= τr′ .

P r o o f. If m = n, we have K = N , ν = 0, Γ1 = R0 = {id} and the
lemma reduces to trivialities. So assume that m < n.
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(a) Let M1 = Q(n−ν)
p be the subfield of N which is fixed by 〈ψr〉⊥ =

{γ ∈ Γ1 | ψr(γ) = 1} and M2 = Qp(ζx) = Q(n−vp(x))
p ; so K ⊂Mi ⊂ N .

If vp(x) < ν then M1 $M2 and εψr,Γ1 contains the trace from N to M1

as a factor, which annihilates ζx (here the lower bounds for m are vital!).
If vp(x) > ν then M2 $ M1 and the restriction of εψr,Γ1 to M2 is 0 by

Lemma 1(b) of [5].
(b) Let x ∈ Z with vp(x) = ν. The automorphism σ1+pm : ζ 7→ ζ1+pm

generates Γ1, and without restriction we may assume that ψ(σ1+pm) = ζp
m

.

First we consider the case ν ≥ n−2m. We have Kn−m−ν = Q(n−m−ν)
p ⊂

K, Rn−m−ν corresponds to Gal(Q(n−m−ν)
p /Qp) and for any k ∈ N,

x(1 + pm)k ≡ x(1 + kpm) mod pn.

So we obtain

Eψr,KΓ1ζ
x = εψr,Γ1ζ

x =
1

pn−m
∑

0≤k<pn−m
ζ−rp

mkζx(1+pm)k

=
1

pn−m
ζx

∑

0≤k<pn−m
ζ(x−r)pmk =

{
ζx if x ≡ r mod pn−m,
0 else.

If σ runs through Rn−m−ν , we have σ(ζp
ν

) = ζp
νt with t running through

Z/(pn−m−ν)×. Thus the above calculation yields Lemma 2(b) in this case.
Now we consider the case 0 ≤ ν < n − 2m, which yields Kn−m−ν = K

and Rn−m−ν corresponding to Gal(K/Qp). For any k ∈ N with vp(k) ≥
n− 2m− ν one has

(2) x(1 + pm)k ≡
{
x(1 + kpm) mod pn if p ≥ 3,
x(1 + kpm + kp2m−1) mod pn if p = 2.

Put G = Gal(Q(n−m−ν)
p /K). For j ∈ Z we have
∑

σ∈G

σ(ζj) =
{

0 if ζj 6∈ K,
pn−2m−νζj if ζj ∈ K.

Now we can calculate

Eψr,KΓ1ζ
x =

∑

σ∈G

ε(ψr)σ,Γ1ζ
x

=
1

pn−m
∑

0≤k<pn−m
ζx(1+pm)k

∑

σ∈G

σ(ζ−rp
mk)

=
1

pn−m
∑

0≤k<pn−m
vp(k)≥n−2m−ν

ζx(1+pm)kpn−2m−νζ−rp
mk

=
1

pm+ν

∑

0≤j<pm+ν

ζx(1+pm)jp
n−2m−ν

ζ−rjp
n−m−ν

.
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Using (2), we obtain for p ≥ 3,

Eψr,KΓ1ζ
x =

1
pm+ν ζ

x
∑

0≤j<pm+ν

ζ(x−r)jpn−m−ν

=
{
ζx if x ≡ r mod pm+ν ,
0 else.

For p = 2 we arrive at

Eψr,KΓ1ζ
x =

1
2m+ν

∑

0≤j<2m+ν

ζx(1+j2n−m−ν+j2n−ν−1)ζ−rj2
n−m−ν

=
1

2m+ν ζ
x

∑

0≤j<2m+ν

(−ζ(x−r)2n−m−ν )j

=
{
ζx if x ≡ r mod 2m+ν ,
0 else.

The proof now concludes as in the first case.
(c) There is some % ∈ Rn−m−ν which does not induce the identity on

Kn−m−ν , such that Eψr′ ,KΓ1
= E(ψr)%,KΓ1 . Applying % to the result of part

(b) we see that τr′ 6= τr.

Now we consider the situation where K is an arbitrary subfield of N =
Q(n)
p and Γ = Gal(N/K) can be written as Γ = ∆ × Γ1 with Γ1 =

Gal(Q(n)
p /Q(m)

p ) and |∆| = e, where e | (p − 1) for p ≥ 3 and e ≤ 2 for
p = 2. Choosing generators, we write the character groups as Γ̂ = ∆̂× Γ̂1 =
〈ω〉 × 〈ψ〉.

Lemma 3. Let χ = ωsψr ∈ Γ̂ with 1 ≤ r ≤ pn−m, 1 ≤ s ≤ e and put
ν = vp(r).

(a) For any x ∈ Z with ν 6= vp(x) ≤ n−m we have

εχ,Γ ζ
x = 0.

(b) There exists τr ∈ Rn−m−ν such that for all σ ∈ Rn−m−ν and for all
s with 1 ≤ s ≤ e we have

Eχ,KΓσ(ζp
ν

) =
{
εωs,∆τr(ζp

ν

) if σ = τr,
0 if σ 6= τr.

(c) If 1 ≤ r′ ≤ pn−m with vp(r′) = ν such that ψr and ψr
′

are not
conjugated over K then τr 6= τr′ .

P r o o f. (a) With εχ,Γ = εωs,∆εψr,Γ1 , this follows from Lemma 2(a).
(b) We have Eχ,KΓ = εωs,∆Eψr,KΓ1 = εωs,∆

∑
δ∈∆ E(ψr)δ,Q(m)

p Γ1
. Since

εωs,∆ ∈ Qp∆, we obtain for any ξ ∈ N ,
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Eχ,KΓ ξ =
∑

δ∈∆
E(ψr)δ,Q(m)

p Γ1

(
1
e

∑

δ′∈∆
ω−s(δ′)δ′(ξ)

)
.

There is a one-to-one-correspondence between Rn−m−ν × ∆ and the set
Rn−m−ν which we considered in Lemma 2(b). Thus there exist uniquely
determined θr ∈ ∆ and τr ∈ Rn−m−ν such that for all σ ∈ Rn−m−ν ×∆ we
have

E
ψr,Q(m)

p Γ1
σ(ζp

ν

) =
{
θrτr(ζp

ν

) if σ = θrτr,
0 if σ 6= θrτr.

Now an easy calculation yields the claim of part (b).
(c) The same argument as for Lemma 2(c) applies.

After these preliminary results we now prove Proposition 3.

Proof of Proposition 3

Case I: p ≥ 3. Since Q(n)
p /N is tamely ramified, we can apply Lemmas

4(b) and 6 of [5] to deduce the results for N/K from those for Q(n)
p /K. Thus

it suffices to consider N = Q(n)
p , the situation dealt with in Lemma 3, and

we take over the notations used there. LetM be the maximal order of KΓ ,
which decomposes as

M =
⊕

χ∈Γ̂K

Mχ =
⊕

1≤s≤e
0≤ν≤n−m

⊕

σ∈Rn−m−ν
M(ωsψpν )σ .

It suffices to show that

MTN/K = oN with TN/K =
n−m∑

j=0

∑

σ∈Rn−m−j
σ(ζp

j

).

If ν ≤ n− 2m we use Lemma 3(a) in [5] to obtain for any τ ∈ Rn−m−ν ,

M(ωsψpν )τ = oKΓEωsψr,KΓ
for some 1 ≤ r ≤ pn−m with vp(r) = ν. Using Lemma 3, we get

e⊕
s=1

MωsψrTN/K =
e⊕
s=1

oKΓEωsψr,KΓ
( ∑

σ∈Rn−m−ν
σ(ζp

ν

)
)

=
e⊕
s=1

oKΓεωs,∆τr(ζp
ν

) = oKΓτr(ζp
ν

)

and therefore
e⊕
s=1

⊕

τ∈Rn−m−ν
M(ωsψpν )τTN/K =

⊕

σ∈Rn−m−ν
oKΓσ(ζp

ν

),
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which contains all roots of unity of order pn−ν , since ΓRn−m−ν =
Gal(Q(n)

p /Qp).
If n− 2m < ν < n−m we have for any 1 ≤ r ≤ pn−m with vp(r) = ν,

Eωsψr,KΓTN/K =
(
εωs,∆

∑

%∈∆
ε(ψr)%,Γ1

)
TN/K = εωs,∆ε(ψr)%0 ,Γ1τr(ζ

pν )

for some %0 ∈ ∆. Using Lemma 3(a) in [5] yields

MωsψrTN/K = oKεωs,∆o(m)τr(ζp
ν

),

therefore we obtain
e⊕
s=1

MωsψrTN/K =
e⊕
s=1

oKεωs,∆o(m)τr(ζp
ν

) = o(m)∆τr(ζp
ν

)

and
⊕

τ∈Rn−m−ν

e⊕
s=1

M(ωsψpν )τTN/K =
⊕

σ∈Rn−m−ν
o(m)∆σ(ζp

ν

).

Since ∆Rn−m−ν = Gal(Q(n−m−ν)
p /Qp) one can check that the last sum

contains all roots of unity of order pn−ν .
If ν = n−m, a simple argument yields

e⊕
s=1

MωsTN/K = o(m).

Thus we achieved

MTN/K =
n−2m⊕
ν=0

⊕

σ∈Rn−m−ν
oKΓσ(ζp

ν

)

⊕
n−m⊕

max{n−2m+1,0}

⊕

σ∈Rn−m−ν
o(m)∆σ(ζp

ν

)

= oN .

Case II: p = 2. 1. A simpler version (without tame characters ωs) of
the proof of Case I applies for the situation N = Q(n)

2 , K = Q(m)
2 with

2 ≤ m ≤ n (in this case Proposition 3 also follows from the global results of
[2] or [5]).

2. Now we consider the case N = Q(n)±
2 and K = Q(m)+

2 with 2 ≤ m < n

(this includes the case K = Q(2)+
2 = Q2). Let ∆ = Gal(Q(n)

2 /N) = 〈τ〉 and
Γ1 = Gal(Q(n)

2 /Q(m)
2 ) ' Γ . Using Lemma 4(a) of [5] and the result for Case
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1 above we see that AN/K is the maximal order, thus

AN/K =M =
n−m⊕
ν=0

⊕

σ∈Rn−m−ν
M(ψ2ν )σ ,

where 〈ψ〉 = Γ̂ ' Γ̂1. For 1 ≤ r ≤ 2n−m we put ν = v2(r) and ην =
ζ2ν + τ(ζ2ν ) = trQ(n−ν)

2 /Nn−ν
(ζ2ν ).

If ν ≤ n− 2m we use Lemma 2 to obtain

Eψr,KΓTN/K = (E
ψr,Q(m)

2 Γ1
+ E(ψr)τ ,Q(m)

2 Γ1
)

∑

σ∈Rn−m−ν
σ(ζ2ν + τ(ζ2ν ))

= τr(ην)

and ⊕

σ∈Rn−m−ν
M(ψ2ν )σTN/K =

⊕

σ∈Rn−m−ν
oKΓσ(ην),

which contains all conjugates of ην .
If n − 2m < ν ≤ n −m − 2 we have Eψr,KΓ = εψr,Γ1 + ε(ψr)τ ,Γ1 , and

again using Lemma 3(a) of [5], we can calculate

MψrTN/K =Mψrτr(ην) = (1 + τ)o(m)τr(ζ2ν ).

Again, one can verify that
⊕

σ∈Rn−m−ν
M(ψ2ν )σTN/K =

⊕

σ∈Rn−m−ν
(1 + τ)o(m)σ(ζ2ν )

contains all conjugates of ην .
If ν = n −m − 1, i.e. r = 2n−m−1, we have MψrTN/K = oKεψr,Γ ην =

oKην ; and if ν = n − m, then ψr is the trivial character and we have
MψrTN/K = oKε11 = oK (remember that we deal with the case where
TN/K has an exceptional form).

Combining all these results, we see that MTN/K contains oK and all
conjugates of ην for 0 ≤ ν < n−m, thus MTN/K = oN .

3. The last case to consider is N = Q(n)
2 and K = Q(m)±

2 with 2 ≤ m ≤ n
(and 3 ≤ m if K = Q(m)−

2 ). Let Γ1 = Gal(Q(n)
2 /Q(m)

2 ). Then for m < n the
exact sequence 1 → Γ1 → Γ → ∆ → 1 splits if K = Q(m)+

2 , and does not
split if K = Q(m)−

2 .

Put ∆ = 〈τ〉 = Gal(Q(n)
2 /Q(n)+

2 ) in the first case and ∆ = {1, τ} ⊂ Γ ,
a set of representatives for Gal(Q(m)

2 /K), in the latter, and denote the
quadratic character belonging to Q(m)

2 /K by ω. Let 〈ψ〉 = Γ̂1. Then the
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maximal order M1 of KΓ1 decomposes as

M1 =
n−m⊕
ν=0

⊕

σ∈Rn−m−ν
M′(ψ2ν )σ ,

where M′(ψ2ν )σ is the maximal order of the component KΓ1E(ψ2ν )σ,KΓ1
.

For any 1 ≤ r ≤ 2n−m with 0 ≤ ν = v2(r) ≤ n−m− 2 we obtain from
Lemma 1(b),

Eψr,KΓ1TN/K = (E
ψr,Q(m)

2 Γ1
+ E(ψr)τ ,Q(m)

2 Γ1
)

∑

σ∈Rn−m−ν
σ(ζ2ν ) = τr(ζ2ν ).

If 0 ≤ ν ≤ n− 2m we obtain(
oKΓ

[
2
t
εω,Γ

]
⊗

oKΓ1

⊕

σ∈Rn−m−ν
M′(ψ2ν )σ

)
TN/K

=
( ⊕

σ∈Rn−m−ν
oK∆oKΓ1E(ψ2ν )σ,KΓ1

)
TN/K =

⊕

σ∈Rn−m−ν
oK∆Γ1σ(ζ2ν ).

Since ∆Γ1Rn−m−ν = Gal(Q(n)
2 /Q2), the last sum contains all conjugates

of ζ2ν .
If n − 2m < ν ≤ n − m − 2 one can calculate that M′ψrTN/K =

o(m)τr(ζ2ν ). Therefore
(

oKΓ

[
2
t
εω,Γ

]
⊗

oKΓ1

⊕

σ∈Rn−m−ν
M′(ψ2ν )σ

)
TN/K =

⊕

σ∈Rn−m−ν
o(m)∆σ(ζ2ν ),

containing again all conjugates of ζ2ν .
If ν = n−m− 1, we have Eψr,KΓ1 = εψr , thus
(

oKΓ

[
2
t
εω,Γ

]
⊗

oKΓ1

M′ψr
)
TN/K = oK∆ζ

2n−m−1
= o(m)ζ2n−m−1

.

If ν = n−m, we obtain(
oKΓ

[
2
t
εω,Γ

]
⊗

oKΓ1

oKε1,Γ1

)
TN/K = oK∆

[
2
t
εω,Γ

]
ζ2n−m = o(m)

by Proposition 3 of [14].
Combining all these results, we again arrive at AN/KTN/K = oN .

4. Proof of Theorem 1. For f ∈ N, n ∈ N0, let Q(f,n)
p denote the field

obtained by adjoining all roots of unity of orders pn and pf − 1 to Qp. Then
Q(f,n)
p /Qp is the composite of the totally ramified extension Q(1,n)

p and the
unramified extension Q(f,0)

p of degree f over Qp. Moreover,
⋃
f≥1,n≥0Q

(f,n)
p

is the maximal abelian extension of Qp.
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Now let N be any finite abelian extension of Qp, K some subfield of
N , and N0 the inertia field of N/K. By Lemma 1 we can find a suitable
f ∈ N such that N = NQ(f,0)

p is the composite of K = KQ(f,0)
p which

is unramified over K, and some field N ′ which is totally ramified over K.
Let n ∈ N be minimal with N ⊂ Q(f,n)

p and put Ñ = N ∩ Q(1,n)
p and

K̃ = K ∩ Q(1,n)
p . By Proposition 3(b), o

Ñ
= A

Ñ/K̃
T
Ñ/K̃

. Composition

with Q(f,0)
p yields oN = AN/KTÑ/K̃ by Proposition 1(b). Since K/K is

unramified, oK ' AK/K , which equals the integral group ring. Applying
now the other implication of Proposition 1(b) and Lemmas 5(b) and 6 of
[5], we obtain oN ′ ' AN ′/K , oN ' AN/K and oN ' AN/K .

Being aware that for p ≥ 3, A
Ñ/K̃

is maximal, we conclude that the
associated order is the maximal one for any totally ramified extension; in
particular, AN/N0 is maximal. Using now Proposition 2(b) we obtain

oN ' AN/K ' oKΓ ⊗
oKΓ0

(AN/N0 ∩KΓ0) = oKΓ ⊗
oKΓ0

M0.
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[12] H.-W. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen
Zahlkörpers, J. Reine Angew. Math. 201 (1959), 119–149.

[13] G. Lett l, The ring of integers of an abelian number field , ibid. 404 (1990), 162–170.



248 G. Lettl

[14] G. Lett l, Note on the Galois module structure of quadratic extensions, Colloq.
Math. 67 (1994), 15–19.

[15] I. Re iner, Maximal Orders, London Math. Soc. Monographs 5, Academic Press,
1975.

[16] K. W. Roggenkamp and M. J. Taylor, Group rings and class groups, DMV-Sem.
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