Zero density estimates of L-functions associated with cusp forms

by

Yuichi Kamiya (Nagoya)

1. Introduction. Let k be a positive even integer, and $f(z) = \sum_{n=1}^{\infty} a(n)e^{2\pi iz}$ a holomorphic cusp form of weight k with respect to $\Gamma = SL_2(\mathbb{Z})$. We denote by $S_k(\Gamma)$ the space of those functions. Let q be a positive integer, and χ a Dirichlet character mod q. Let $s = \sigma + it$ be a complex variable. We define the L-function by

$$L_f(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)a(n)}{n^s}$$

for $\sigma > (k+1)/2$. Denote by χ^* the primitive character mod q_1 inducing χ. It is known that the function $L_f(s, \chi^*)$ has an analytic continuation to the whole complex plane and satisfies the functional equation (see [5])

$$\left(\frac{2\pi}{q_1}\right)^{-s} \Gamma(s)L_f(s, \chi^*) = i^k \left(\frac{W(\chi^*)}{|W(\chi^*)|}\right)^2 \left(\frac{2\pi}{q_1}\right)^{s-k} \Gamma(k-s)L_f(k-s, \overline{\chi^*}),$$

where $W(\chi^*)$ is Gaussian sum and $\Gamma(s)$ is the gamma function. Moreover, if the cusp form f is the normalized eigenform, that is, the eigenfunction of all Hecke operators with $a(1) = 1$, then $a(n)$'s are real numbers and $L_f(s, \chi)$ has the Euler product expansion

$$L_f(s, \chi) = \prod_p (1 - \chi(p)a(p)p^{-s} + \chi(p)^2 p^{k-1-2s})^{-1}$$

for $\sigma > (k+1)/2$, where the product runs over all prime numbers. Therefore, $L_f(s, \chi)$ has the representation

$$L_f(s, \chi) = L_f(s, \chi^*) \prod_{p|q} (1 - \chi^*(p)a(p)p^{-s} + \chi^*(p)^2 p^{k-1-2s}),$$

and (1) gives the analytic continuation of $L_f(s, \chi)$ to the whole complex plane for every χ. We can also see that $L_f(s, \chi)$ has no zeros for $\sigma > (k+1)/2$.

1991 Mathematics Subject Classification: 11M26, 11N75.
has simple zeros at non-positive integers, and has no zeros for \(\sigma < (k - 1)/2 \) except non-positive integers. We call zeros at non-positive integers trivial, and those lying in \((k - 1)/2 \leq \sigma \leq (k + 1)/2\) non-trivial. Since \(a(n) \)'s are real, we have the relation \(L_f(s, \overline{\chi}) = L_f(s, \chi) \) for any \(s \). If \(\chi \) is a primitive character, from this relation and the functional equation, non-trivial zeros of \(L_f(s, \chi) \) are distributed symmetrically with respect to the line \(\sigma = k/2 \). In case \(\chi \) is an imprimitive character, non-trivial zeros of \(L_f(s, \chi) \) are those of \(L_f(s, \chi^*) \) and infinite zeros on \(\sigma = (k - 1)/2 \) which are coming from the finite products in (1).

For the purpose of counting the number of non-trivial zeros, we define

\[
N_f(T, \chi) = \# \{ \eta = \beta + i\gamma \mid L_f(\eta, \chi) = 0, (k - 1)/2 \leq \beta \leq (k + 1)/2, -T \leq \gamma \leq T \},
\]

for \(\sigma_0 \geq k/2 \). We can show the following results by modifying the proof for the case of Dirichlet \(L \)-functions in an obvious way (see [1]). We have

\[
N_f(T + 1, \chi) - N_f(T - 1, \chi) \leq C \log(q(T + 1)),
\]

for any \(T \geq 1 \) and some positive constant \(C \). We also have

\[
N_f(T, \chi) = \frac{2T}{\pi} \log \frac{qT}{2\pi} + O(T \log(q + 1)), \quad T \to \infty,
\]

uniformly in \(q \). In particular, for a primitive character \(\chi \),

\[
N_f(T, \chi) = \frac{2T}{\pi} \log \frac{qT}{2\pi} - \frac{2T}{\pi} + O(\log(qT)), \quad T \to \infty,
\]

uniformly in \(q \).

The purpose of this paper is to show the following theorem.

Theorem 1. Let \(f \in S_k(\Gamma) \) be the normalized eigenform and \(\chi \) a Dirichlet character mod \(q \). If \(q \ll T \), then

\[
\sum_{\chi} N_f(\sigma_0, T, \chi) \ll (qT)^{k+1-2\sigma_0/2} (\log(qT))^{69}, \quad T \to \infty,
\]

uniformly in \(\sigma_0 \) and \(q \) for \(k/2 + 1/\log(qT) \leq \sigma_0 \leq k/2 + 1/3 \), and

\[
\sum_{\chi} N_f(\sigma_0, T, \chi) \ll (qT)^{3(k+1-2\sigma_0)/2} (\log(qT))^{100}, \quad T \to \infty,
\]

uniformly in \(\sigma_0 \) and \(q \) for \(k/2 + 1/3 \leq \sigma_0 \leq (k + 1)/2 \), where \(\sum_{\chi} \) means a sum running over all Dirichlet characters mod \(q \).

Specialising \(q = 1 \) in Theorem 1, we have

\[
N_f(\sigma_0, T, \chi_0) \ll T^{k+1-2\sigma_0/2} (\log T)^{69}, \quad T \to \infty,
\]
uniformly for \(k/2 + 1/\log T \leq \sigma_0 \leq k/2 + 1/3 \),

\[N_f(\sigma_0, T, \chi_0) \ll T^{3(k+1-2\sigma_0)/2}(\log T)^{100}, \quad T \to \infty, \]

uniformly for \(k/2 + 1/3 \leq \sigma_0 \leq (k+1)/2 \), where \(\chi_0 \) is the trivial character.

As regards the estimate of \(N_f(\sigma_0, T, \chi_0) \), Ivić has shown in [4] that

\[N_f(\sigma_0, T, \chi_0) \ll T^{k+1-2\sigma_0 + \varepsilon}, \quad T \to \infty, \]

for \(k/2 \leq \sigma_0 \leq k/2 + 1/4 \),

\[N_f(\sigma_0, T, \chi_0) \ll T^{k+1-2\sigma_0 + \varepsilon}, \quad T \to \infty, \]

for \(k/2 + 1/4 \leq \sigma_0 \leq (k+1)/2 \), and also has shown sharper bounds when \(\sigma_0 \) is near \((k+1)/2\). Therefore, Theorem 1 is a natural extension of Ivić’s results for \(k/2 + 1/\log T \leq \sigma_0 \leq k/2 + 1/4 \).

Theorem 1 is an analogue of zero density estimates of Dirichlet \(L \)-functions by Montgomery [6]. Montgomery used the estimate of the mean fourth power of Dirichlet \(L \)-functions on the critical line for this problem. Since the corresponding fourth power result is not known in our case, we shall use the mean square of \(L_f(s, \chi) \) to prove Theorem 1 (see Theorem 2 in Section 3).

To estimate the mean square of \(L_f(s, \chi) \), we reduce the problem to the study of the mean square of the Dirichlet polynomial by using the approximate functional equation of \(L_f(s, \chi) \), which is proved by applying the method of Good [3].

The author expresses his sincere gratitude to Professor Kohji Matsumoto and Professor Yoshio Tanigawa for their advice and encouragement.

2. The approximate functional equation. Throughout this section, we suppose \(f \) is in \(S_k(\Gamma) \) and \(\chi \) is a primitive character mod \(q \). We shall prove the approximate functional equation of \(L_f(s, \chi) \) whose implied constant is uniform in \(q \), following the method of Good [3].

Rankin has shown in [7] that

\[\sum_{n \leq x} |a(n)|^2 = Cx^k + O(x^{k-2/5}), \quad x \to \infty, \]

where \(C \) is a positive constant depending on \(k \). By Cauchy’s inequality,

\[\sum_{n \leq x} |a(n)| \ll x^{(k+1)/2}, \quad x \to \infty, \]

hence we obtain the following lemma by partial summation.

Lemma 1. Let \(\sigma \) be a real number. Then

\[\sum_{n \leq x} |a(n)|n^{-\sigma} \ll x^{(k+1)/2-\sigma}, \quad x \to \infty, \]
uniformly for $\sigma \leq \sigma_1 < (k+1)/2$, and

\[
\sum_{n \leq x} |a(n)|^2 n^{-2\sigma} \ll \begin{cases}
 x^{k-2\sigma} & \text{uniformly for } \sigma \leq \sigma_2 < k/2, \\
 \log x & \text{uniformly for } k/2 - 1/\log x \leq \sigma \leq k/2 + 1/\log x,
\end{cases}
\]

where σ_1 and σ_2 are constants.

Following the notation in [3], let $\varphi(q)$ be a real-valued function in $[0, \infty)$ which is infinitely differentiable and satisfies $\varphi(q) = 1$ for $0 \leq q \leq 1/2$ and $\varphi(q) = 0$ for $q \geq 2$. We denote by Φ the set of those functions. The function $\varphi_0(q) = 1 - \varphi(1/q)$ is also an element of Φ. For φ in Φ and for a complex variable $w = u + iv$ with $u > 0$, let

\[
K_\varphi(w) = w \int_0^\infty \varphi(q) q^{w-1} dq.
\]

The function $K_\varphi(w)$ has an analytic continuation to the whole complex w-plane, because the relation

\[
K_\varphi(w) = -2 \int_{1/2}^\infty \varphi'(q) q^w dq
\]

can be verified by integration by parts. Let $\varphi^{(j)}$ denote the jth derivative of φ and define

\[
\|\varphi^{(j)}\|_1 = \int_0^\infty |\varphi^{(j)}(q)| dq.
\]

For $\tau > 0$, $t \neq 0$, and $j = 0, 1, \ldots$, let

\[
\gamma_j(s, \tau) = \frac{1}{2\pi i \Gamma(s)} \int_{\mathcal{F}} \Gamma(s + w) \left(\tau \exp\left(-i \frac{\pi}{2} \text{sgn}(t) \right) \right)^w \frac{dw}{w(w+1) \cdots (w+j)},
\]

where $\text{sgn}(t) = t/|t|$ and \mathcal{F} means that integration is taken over the curve which encircles $w = 0, -1, \ldots, -j$. If $j = 0$, it is easy to see that $\gamma_0(s, \tau) = 1$ for any s. In case $j \neq 0$, it was shown in [3] that

\[
\gamma_j(s, |t|^{-1}) \ll \begin{cases}
 |t|^{-(j+1)/2} & \text{for odd } j, \\
 |t|^{-j/2} & \text{for even } j,
\end{cases}
\]

uniformly for σ which is in a fixed strip. For $x > 0$ and φ in Φ, let

\[
G_f(s, x; \varphi, \chi) = \frac{1}{2\pi i \Gamma(s)} \prod_{k=2}^{k/2+1-\sigma} \Gamma(s + w) L_{ij}(s + w, \chi) \frac{K_\varphi(w)}{w} \times \left(\frac{q x}{2\pi} \exp\left(-i \frac{\pi}{2} \text{sgn}(t) \right) \right)^w.
\]
where \(\mathbb{I}_{(k/2+1-\sigma)} \) means that integration is taken over the vertical line \(u = k/2 + 1 - \sigma \).

We can derive the following lemma by modifying Satz of [3].

Lemma 2. Let \(x > 0, \varphi \in \Phi, f \in S_k(\Gamma), \) and \(\chi \) a primitive character mod \(q \). Then the following properties hold.

(a) For \((k-1)/2 \leq \sigma \leq (k+1)/2 \),
\[
\left(\frac{2\pi}{q} \right)^{-s} \Gamma(s)L_f(s, \chi) = \left(\frac{2\pi}{q} \right)^{-s} \Gamma(s)G_f(s, \varphi, \chi) + i^k \left(\frac{W(\chi)}{|W(\chi)|} \right)^2 \left(\frac{2\pi}{q} \right)^{s-k} \frac{\Gamma(k-s)}{\Gamma(s)} \times G_f(k-s, x^{-1}; \varphi_0, \chi),
\]
where the implied constant is uniform in \(\sigma, \varphi, \) and \(q \) for \((k-1)/2 \leq \sigma \leq (k+1)/2 \).

(b) Let \(y = qx|t|/(2\pi) \) and \(l \) an integer with \(l > (k+1)/2 \). For \(|t| > t^2 \),
\[
G_f(s, x; \varphi, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)a(n)}{n^s} \sum_{j=0}^{l} \varphi(j) \left(\frac{n}{y} \right) \left(-\frac{n}{y} \right)^j \gamma_j(s, |t|^{-1}) + O(\|\varphi^{(l+1)}\|_1 y^{(k+1)/2-\sigma}|t|^{-1/2}),
\]
where the implied constant is uniform in \(\sigma, \varphi, \) and \(q \) for \((k-1)/2 \leq \sigma \leq (k+1)/2 \).

Put \(x = 1 \) and \(y = q|x|/(2\pi) \) in Lemma 2. Then we have
\[
L_f(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)a(n)}{n^s} \varphi \left(\frac{n}{y} \right) + i^k \left(\frac{W(\chi)}{|W(\chi)|} \right)^2 \left(\frac{2\pi}{q} \right)^{2s-k} \frac{\Gamma(k-s)}{\Gamma(s)} \sum_{n=1}^{\infty} \frac{\chi(n)a(n)}{n^k-s} \varphi_0 \left(\frac{n}{y} \right) + R(s),
\]
where
\[
R(s) = \sum_{n=1}^{\infty} \frac{\chi(n)a(n)}{n^s} \sum_{j=1}^{l} \varphi(j) \left(\frac{n}{y} \right) \left(-\frac{n}{y} \right)^j \gamma_j(s, |t|^{-1}) + i^k \left(\frac{W(\chi)}{|W(\chi)|} \right)^2 \left(\frac{2\pi}{q} \right)^{2s-k} \frac{\Gamma(k-s)}{\Gamma(s)} \sum_{n=1}^{\infty} \frac{\chi(n)a(n)}{n^k-s} \varphi_0 \left(\frac{n}{y} \right) \gamma_j(k-s, |t|^{-1}) + O(\|\varphi^{(l+1)}\|_1 y^{(k+1)/2-\sigma}|t|^{-1/2}) + O(\|\varphi_0^{(l+1)}\|_1 y^{(k+1)/2-\sigma}|t|^{-1/2}).
\]
Now we fix a φ. By (5) and (7), we have
\[
R(s) \ll \sum_{j=1}^{l} |\gamma_j(s, |t|^{-1})| \sum_{n \leq 2y} \frac{|a(n)|}{n^\sigma} \left(\frac{n}{q|t|}\right)^j
\]
\[
+ \left(\frac{2\pi}{q}\right)^{2s-k} \frac{\Gamma(k-s)}{\Gamma(s)} \sum_{j=1}^{l} |\gamma_j(k-s, |t|^{-1})| \sum_{n \leq 2y} \frac{|a(n)|}{n^{k-\sigma}} \left(\frac{n}{q|t|}\right)^j
\]
\[
+ (q|t|)^{(k+1)/2-\sigma}|t|^{-l/2}
\]
\[
\ll (q|t|)^{(k+1)/2-\sigma}|t|^{-1}.
\]
Therefore we have

Lemma 3. Let $\varphi \in \Phi$, $f \in S_k(\Gamma)$, χ a primitive character mod q, and $\kappa = 2\pi/q$. Then
\[
L_f(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)a(n)}{n^s} \varphi \left(\frac{\kappa n}{|t|}\right)
\]
\[
+ i^k \left(\frac{W(\chi)}{|W(\chi)|}\right)^2 \kappa^{2s-k} \frac{\Gamma(k-s)}{\Gamma(s)} \sum_{n=1}^{\infty} \frac{\chi(n)a(n)}{n^{k-s}} \varphi_0 \left(\frac{\kappa n}{|t|}\right)
\]
\[
+ O((q|t|)^{(k+1)/2-\sigma}|t|^{-1}),
\]
where the implied constant is uniform in σ and q for $(k-1)/2 \leq \sigma \leq (k+1)/2$.

3. **The mean square of** $L_f(s, \chi)$. Throughout this section, we suppose f is in $S_k(\Gamma)$ and χ is a Dirichlet character mod q. The aim of this section is to estimate the mean square
\[
\sum_{\chi}^* \int_{-T}^{T} |L_f(\sigma + it, \chi)|^2 dt
\]
uniformly in σ and q for $k/2 - 1/\log(qT) \leq \sigma \leq k/2 + 1/\log(qT)$, where \sum^* means a sum running over all primitive characters mod q.

We need the following lemmas.

Lemma 4. Let $0 < \delta < \delta_1$, and let $\varphi(\varrho)$ be a real-valued function in $[0, \infty)$ which is twice continuously differentiable and satisfies $\varphi(\varrho) = 1$ for $0 \leq \varrho \leq \delta$ and $\varphi(\varrho) = 0$ for $\varrho \geq \delta_1$. Let m and n be positive integers, κ and T positive real numbers, and β a real number which satisfies $-1 < A \leq \beta \leq B < 1$ for some constants A, B. Then
\[\int_0^T \varphi \left(\frac{\kappa t}{T} \right) \varphi \left(\frac{\kappa m}{t} \right) t^{-\beta} \cos \left(t \log \frac{n}{m} \right) dt = \begin{cases} 0 & \text{for } m \geq T \delta_1 / \kappa \text{ or } n \geq T \delta_1 / \kappa, \\ O(T^{1-\beta}) & \text{for } m = n < T \delta / \kappa, \\ O((\kappa n)^{-1-\beta}) & \text{for } m = n \geq T \delta / \kappa, \\ \frac{1}{\log \frac{n}{m}} \sin \left(T \log \frac{n}{m} \right) \varphi \left(\frac{\kappa n}{T} \right) \varphi \left(\frac{\kappa m}{T} \right) T^{-\beta} + O \left(\frac{(\kappa \max(n,m))^{-\beta-1}}{(\log(n/m))^2} \right) & \text{for } m \neq n, \end{cases} \]

where the implied constants are uniform in \(m, n, \kappa, \) and \(\beta. \)

It is easy to prove Lemma 4 by modifying the proof of Lemma 7 of [3].

Lemma 5. Let \(f \in S_k(\Gamma) \) and \(\chi \) a Dirichlet character mod \(q. \) Let \(\varepsilon \) be a positive real number and assume \((k - \varepsilon)/2 < \sigma < (k + \varepsilon)/2.\) If \(|t| \leq C\) for some positive constant \(C,\) then

\[\sum_{\chi} |L_f(s, \chi)|^2 \ll_C \phi(q) q^{k-2\sigma + 2\varepsilon} \left(\int_1^\infty u^{2\sigma-k-1-\varepsilon} du + \int_1^\infty u^{k-2\sigma-1-\varepsilon} du \right) \]

uniformly in \(\sigma \) and \(q, \) where \(\phi \) is the Euler function.

Proof. By the automorphic property of \(\sum_{n=1}^\infty \chi(n) a(n) e^{2\pi i n z}, \) which is the twist of \(f \) by the primitive character \(\chi, \)

\[\left(\frac{2\pi}{q} \right)^{-s} \Gamma(s) L_f(s, \chi) = \int_0^\infty u^{s-1} \sum_{n=1}^\infty \chi(n) a(n) e^{-2\pi n u/q} du \]

\[= \int_1^\infty u^{s-1} \sum_{n=1}^\infty \chi(n) a(n) e^{-2\pi n u/q} du \]

\[+ i^k \left(\frac{W(\chi)}{|W(\chi)|} \right)^2 \int_1^\infty u^{k-s-1} \sum_{n=1}^\infty \overline{\chi(n)} a(n) e^{-2\pi n u/q} du. \]

Hence

\[\left(\frac{2\pi}{q} \right)^{-\sigma} \left| \Gamma(s) \right| \cdot \left| L_f(s, \chi) \right| \leq \int_1^\infty u^{\sigma-1} \left| \sum_{n=1}^\infty \chi(n) a(n) e^{-2\pi n u/q} \right| du \]

\[+ \int_1^\infty u^{k-\sigma-1} \left| \sum_{n=1}^\infty \overline{\chi(n)} a(n) e^{-2\pi n u/q} \right| du. \]

By squaring both sides above and taking \(\sum_{\chi}, \) we have
(8) \[
\frac{1}{2} \left(\frac{2\pi}{q} \right)^{-2\sigma} |\Gamma(s)|^2 \sum\chi |L_f(s, \chi)|^2 \\
\leq \sum\chi^* \left(\int_1^\infty u^{\sigma-1} \left| \sum_{n=1}^\infty \chi(n)a(n)e^{-2\pi nu/q} \right| du \right)^2 \\
+ \sum\chi^* \left(\int_1^\infty u^{k-\sigma-1} \left| \sum_{n=1}^\infty \overline{\chi(n)a(n)e^{-2\pi nu/q}} \right| du \right)^2.
\]
Let \(\alpha \) be real. By Cauchy’s inequality,
\[
\sum\chi^* \left(\int_1^\infty u^{\alpha-1} \left| \sum_{n=1}^\infty \chi(n)a(n)e^{-2\pi nu/q} \right| du \right)^2 \\
\leq \sum\chi^* \left(\int_1^\infty u^{2\alpha-1+\epsilon} \left| \sum_{n=1}^\infty \chi(n)a(n)e^{-2\pi nu/q} \right|^2 du \int_1^\infty u^{-1-\epsilon} du \right) \\
\ll \epsilon \int_1^\infty u^{2\alpha-1+\epsilon} \sum\chi \left(\sum_{n=1}^\infty \chi(n)a(n)e^{-2\pi nu/q} \right)^2 du.
\]
Here,
\[
\sum\chi \left| \sum_{n=1}^\infty \chi(n)a(n)e^{-2\pi nu/q} \right|^2 \\
= \phi(q) \sum_{n=1}^\infty \sum_{m=1}^\infty \pi(n)a(m)e^{-2\pi(n+m)u/q} \\
\leq \phi(q) \sum_{n=1}^\infty \sum_{m=1}^\infty (|a(n)|^2 + |a(m)|^2)e^{-2\pi(n+m)u/q} \\
\leq \phi(q) \sum_{n=1}^\infty |a(n)|^2 e^{-2\pi nu/q} \sum_{r=0}^\infty e^{-2\pi r u} \\
\ll \phi(q) \sum_{n=1}^\infty |a(n)|^2 e^{-2\pi nu/q}.
\]
By using partial summation, the right-hand side is
\[
\ll \phi(q) \frac{u^k}{q} \int_1^\infty x^k e^{-2\pi xu/q} dx \\
\ll \epsilon \phi(q) \frac{u^k}{q} \int_1^\infty x^k \left(\frac{xu}{q} \right)^{-k-1-2\epsilon} dx \\
\ll \epsilon \phi(q) \left(\frac{u}{q} \right)^{-k-2\epsilon}.
\]
Hence we have
\[\sum_{\chi}^* \left(\int_1^\infty u^{-1} \left| \sum_{n=1}^\infty \chi(n)a(n)e^{-2\pi nu/q} \right| du \right)^2 \ll \epsilon^2 \phi(q)q^{k+2\epsilon} \int_1^\infty u^{2\alpha-k-1-\epsilon} \, du.\]

Substituting this into (8), we obtain the assertion of Lemma 5.

Theorem 2. Let \(f \in S_k(\Gamma) \) and \(\chi \) a Dirichlet character mod \(q \). If \(q \ll T \), then
\[\sum_{\chi}^* \int_{-T}^T |L_f(\sigma+it,\chi)|^2 \, dt \ll \phi(q)T \log(qT), \quad T \to \infty,\]
uniformly in \(\sigma \) and \(q \) for \(k/2 - 1/\log(qT) \leq \sigma \leq k/2 + 1/\log(qT) \).

Proof. Denote the right-hand side of the formula in the statement of Lemma 3 by \(f_1 + f_2 + f_3 \), say. Let \(C_0 \) be a positive constant for which
\[f_3(\sigma+it) \ll (q|t|)^{(k+1)/2 - \sigma |t|^{-1}}\]
for \(|t| \geq C_0 \). Put
\[A_{\mu\nu}(\sigma,C_0) = \int_{[-T,T]-[-C_0,C_0]} f_{\mu}(\sigma+it)f_{\nu}(\sigma+it) \, dt, \quad \mu, \nu = 1, 2, 3.\]

By Cauchy’s inequality,
\[\left| \sum_{\chi}^* A_{\mu\nu}(\sigma,C_0) \right| \leq \left(\sum_{\chi}^* A_{\mu\mu}(\sigma,C_0) \right)^{1/2} \left(\sum_{\chi}^* A_{\nu\nu}(\sigma,C_0) \right)^{1/2} \leq \frac{1}{2} \sum_{\chi}^* A_{\mu\mu}(\sigma,C_0) + \frac{1}{2} \sum_{\chi}^* A_{\nu\nu}(\sigma,C_0).\]

Hence we have
\[\sum_{\chi}^* \int_{-T}^T |L_f(\sigma+it,\chi)|^2 \, dt \ll \sum_{\mu,\nu=1}^3 \sum_{\chi}^* A_{\mu\nu}(\sigma,C_0) + \sum_{\chi}^* \int_{-C_0}^C_0 |L_f(\sigma+it,\chi)|^2 \, dt \ll \sum_{\nu=1}^3 \sum_{\chi}^* A_{\nu\nu}(\sigma,C_0) + \sum_{\chi}^* \int_{-C_0}^C_0 |L_f(\sigma+it,\chi)|^2 \, dt.\]

We use Lemma 5 with \(\epsilon = 1/2 \) for \(k/2 - 1/\log(qT) \leq \sigma \leq k/2 + 1/\log(qT) \) and \(|t| \leq C_0 \) to obtain
\[\sum_{\chi}^* \int_{-C_0}^C_0 |L_f(\sigma+it,\chi)|^2 \, dt \ll C_0 \phi(q).\]
By (9), we have

\[
\sum_{\chi}^{\ast} A_{33}(\sigma, C_0) \ll \phi(q)q^{2/\log(qT)+1} \int_{C_0}^{T} t^{2/\log(qT)-1} \, dt \\
\ll \phi(q)q \log T.
\]

Substituting (11) and (12) into (10), gives

\[
\sum_{\chi}^{\ast} \int_{-T}^{T} |L_f(\sigma + it, \chi)|^2 \, dt \ll \sum_{\chi}^{\ast} A_{11}(\sigma) + \sum_{\chi}^{\ast} A_{22}(\sigma) + \phi(q)q \log T,
\]

where

\[
A_{\nu\nu}(\sigma) = \int_{-T}^{T} |f_{\nu}(\sigma + it)|^2 \, dt, \quad \nu = 1, 2.
\]

First, we estimate \(\sum_{\chi}^{\ast} A_{11}(\sigma)\). We have

\[
\sum_{\chi}^{\ast} A_{11}(\sigma) \leq \sum_{\chi} \int_{-T}^{T} |f_{1}(\sigma + it)|^2 \, dt \\
= 2\phi(q) \sum_{n<2T/\kappa} \sum_{m<2T/\kappa} |a(n)|^2 \sum_{(n,q)=1}^{\sigma} (nm)^\sigma \\
\times \int_{0}^{T} \phi\left(\frac{\kappa n}{t}\right) \varphi\left(\frac{\kappa m}{t}\right) \cos\left(t \log \frac{n}{m}\right) \, dt \\
= 2\phi(q) \left\{ \sum_{n<T/(2\kappa)} \frac{|a(n)|^2}{n^{2\sigma}} \int_{0}^{T} \varphi\left(\frac{\kappa n}{t}\right)^2 \, dt \\
+ \sum_{T/(2\kappa) \leq n < 2T/\kappa} \frac{|a(n)|^2}{n^{2\sigma}} \int_{0}^{T} \varphi\left(\frac{\kappa n}{t}\right)^2 \, dt \\
+ \sum_{0} a(n) |a(m)| \int_{0}^{T} \varphi\left(\frac{\kappa n}{t}\right) \varphi\left(\frac{\kappa m}{t}\right) \cos\left(t \log \frac{n}{m}\right) \, dt \right\},
\]

where we set

\[
\sum_{0} = \sum_{n<2T/\kappa} \sum_{m<2T/\kappa} \sum_{(n,q)=1}^{\sigma} (nm)^\sigma \\
\sum_{m \equiv m \, (q)} \sum_{n \not\equiv m \, (q)}.
\]
Applying Lemma 4, we have

\[
\sum_{\chi} \Lambda_{11}(\sigma) \ll \phi(q) \left\{ T \sum_{n<T/(2\kappa)} \frac{|a(n)|^2}{n^{2\sigma}} + \frac{1}{q} \sum_{n<2T/\kappa} \frac{|a(n)|^2}{n^{2\sigma-1}} \right. \\
+ \sum_{n<2T/\kappa} \frac{|a(n)a(m)|}{(nm)^\sigma |\log \frac{n}{m}|} \\
+ q \sum_{n<2T/\kappa} \frac{|a(n)a(m)|}{(nm)^\sigma \max(n, m)(\log \frac{n}{m})^2} \right\}.
\]

The third sum on the right-hand side is

\[
\leq \sum_{n<2T/\kappa} \frac{|a(n)|^2}{n^{2\sigma}} \sum_{\substack{m<n \atop m \equiv n \pmod{q}}} \frac{1}{|\log \frac{n}{m}|} \\
= \sum_{n<2T/\kappa} \frac{|a(n)|^2}{n^{2\sigma}} \sum_{\substack{m<n \atop m \equiv n \pmod{q}}} \frac{1}{|\log \frac{n}{m}|} + \sum_{n<2T/\kappa} \frac{|a(n)|^2}{n^{2\sigma}} \sum_{\substack{m<n \atop m \not\equiv n \pmod{q}}} \frac{1}{|\log \frac{n}{m}|}.
\]

In the first term we put \(m = n - qr \) to get

\[
\sum_{\substack{m<n \atop m \equiv n \pmod{q}}} \frac{1}{|\log \frac{n}{m}|} < \frac{n}{q} \sum_{1 \leq r<T/(q\kappa)} \frac{1}{r} \ll \frac{n}{q} \log T,
\]

and in the second term we put \(m = n + qr \) to get

\[
\sum_{\substack{m<n \atop m \not\equiv n \pmod{q}}} \frac{1}{|\log \frac{n}{m}|} < \sum_{1 \leq r<T/(q\kappa)} \frac{n+qr}{qr} \ll T + \frac{n}{q} \log T.
\]

Therefore we have

\[
\sum_{n<2T/\kappa} \frac{|a(n)a(m)|}{(nm)^\sigma |\log \frac{n}{m}|} \ll T \sum_{n<2T/\kappa} \frac{|a(n)|^2}{n^{2\sigma}} + \frac{\log T}{q} \sum_{n<2T/\kappa} \frac{|a(n)|^2}{n^{2\sigma-1}}.
\]

Next, the fourth sum on the right-hand side of (14) is

\[
\leq \sum_{n<2T/\kappa} \frac{|a(n)|^2}{n^{2\sigma}} \sum_{\substack{m<n \atop m \equiv n \pmod{q}}} \frac{1}{\max(n, m)(\log \frac{n}{m})^2} \\
= \sum_{n<2T/\kappa} \frac{|a(n)|^2}{n^{2\sigma+1}} \sum_{\substack{m<n \atop m \equiv n \pmod{q}}} \frac{1}{(\log \frac{n}{m})^2} + \sum_{n<2T/\kappa} \frac{|a(n)|^2}{n^{2\sigma}} \sum_{\substack{m<n \atop m \equiv n \pmod{q}}} \frac{1}{m(\log \frac{n}{m})^2}.
\]
In the first term we put $m = n - qr$ to get
\[\sum_{m < n \atop m \equiv n \pmod{q}} \frac{1}{\left(\log \frac{n}{m} \right)^2} < \frac{n^2}{q^2} \sum_{1 \leq r < n/q} \frac{1}{r^2} \ll \frac{n^2}{q^2}, \]
and in the second term we put $m = n + qr$ to get
\[\sum_{n < m < \frac{2T}{\kappa} \atop m \equiv n \pmod{q}} \frac{1}{m \left(\log \frac{n}{m} \right)^2} < \sum_{1 \leq r < \frac{2T}{\kappa q \kappa}} \frac{1}{n + qr} \left(\frac{n + qr}{qr} \right)^2 \ll \frac{n^2}{q^2} + \frac{1}{q} \log T. \]
Therefore we have
\[q \sum_{0} \frac{|a(n)a(m)|}{(nm)^\sigma \max(n, m) \left(\log \frac{n}{m} \right)^2} \ll (\log T) \sum_{n < 2T/\kappa} \frac{|a(n)|^2}{n^{2\sigma}} + \frac{1}{q} \sum_{n < 2T/\kappa} \frac{|a(n)|^2}{n^{2\sigma-1}}. \]
Substituting (15) and (16) to (14), we obtain
\[\sum_{\chi} A_{11}(\sigma) \ll \phi(q) \left(T \sum_{n < 2T/\kappa} \frac{|a(n)|^2}{n^{2\sigma}} + \frac{1}{q} \sum_{n < 2T/\kappa} \frac{|a(n)|^2}{n^{2\sigma-1}} \right). \]
Combining this estimate with (6), we obtain
\[\sum_{\chi} A_{22}(\sigma) \ll \phi(q) T \log(qT), \quad T \to \infty, \]
uniformly in σ and q for $k/2 - 1/\log(qT) \leq \sigma \leq k/2 + 1/\log(qT)$.
Second, we estimate $\sum_{\chi} A_{22}(\sigma)$. We have
\[\sum_{\chi} A_{22}(\sigma) \leq \sum_{\chi} T \int_{-T}^{T} |f_2(\sigma + it)|^2 \, dt \]
\[= 2\phi(q) \kappa^{2(2\sigma-k)} \sum_{n < 2T/\kappa} \sum_{m < 2T/\kappa} \frac{|a(n)|}{nm^{k-\sigma}} \sum_{n \equiv m \pmod{q}} \frac{\varphi_0(kn/t) \varphi_0(km/t) \left| \frac{\Gamma(k-s)}{\Gamma(s)} \right|^2 \cos \left(t \log \frac{n}{m} \right) \, dt.} \]
Note that the interval $[0, T]$ of integration can be replaced by an interval $[(\kappa/2) \max(n, m), T]$, because $\varphi_0(kn/t)\varphi_0(km/t) = 0$ for $0 \leq t \leq (\kappa/2) \max(n, m)$. By Stirling’s formula, we have
\[\left| \frac{\Gamma(k-s)}{\Gamma(s)} \right|^2 = |t|^{2(k-2\sigma)} \left(1 + O \left(\frac{1}{t^2} \right) \right) \]
for $0 < \sigma < k$ and $|t| \geq C_1$, where C_1 is some positive constant. In case n and m satisfy $C_1 \leq (\kappa/2) \max(n,m)$, we have

$$
\int_{(\kappa/2) \max(n,m)}^{T} \varphi_0 \left(\frac{kn}{t} \right) \varphi_0 \left(\frac{km}{t} \right) \left| \frac{\Gamma(k-s)}{\Gamma(s)} \right|^2 \cos \left(t \log \frac{n}{m} \right) \, dt
$$

$$
= \int_{(\kappa/2) \max(n,m)}^{T} \varphi_0 \left(\frac{kn}{t} \right) \varphi_0 \left(\frac{km}{t} \right) t^{2(k-2\sigma)} \cos \left(t \log \frac{n}{m} \right) \, dt + O(1)
$$

uniformly in σ and q for $k/2 - 1/\log(qT) \leq \sigma \leq k/2 + 1/\log(qT)$. The same result also holds in case $C_1 > (\kappa/2) \max(n,m)$, because in this case

$$
\int_{(\kappa/2) \max(n,m)}^{C_1} \varphi_0 \left(\frac{kn}{t} \right) \varphi_0 \left(\frac{km}{t} \right) \left| \frac{\Gamma(k-s)}{\Gamma(s)} \right|^2 \cos \left(t \log \frac{n}{m} \right) \, dt = O(1)
$$

and

$$
\int_{(\kappa/2) \max(n,m)}^{C_1} \varphi_0 \left(\frac{kn}{t} \right) \varphi_0 \left(\frac{km}{t} \right) t^{2(k-2\sigma)} \cos \left(t \log \frac{n}{m} \right) \, dt = O(1).
$$

Let us denote

$$
\sum_1 = \sum_{n < T/(2\kappa)} \sum_{\substack{n < T/(2\kappa) \\ (n,q) = 1 \\ \sigma \in (\kappa/2) \max(n,m)}} \sum_{\substack{n \equiv m \pmod{q} \\ (m,q) = 1}}
$$

and \sum_0 is as before. From the above result, it follows that

$$
\sum_1 \overline{a(n)} a(m) (nm)^{k-\sigma}
$$

$$
\times \int_{(\kappa/2) \max(n,m)}^{T} \varphi_0 \left(\frac{kn}{t} \right) \varphi_0 \left(\frac{km}{t} \right) \left| \frac{\Gamma(k-s)}{\Gamma(s)} \right|^2 \cos \left(t \log \frac{n}{m} \right) \, dt
$$

$$
= \sum_1 \overline{\pi(n)} a(m) (nm)^{k-\sigma}
$$

$$
\times \int_{(\kappa/2) \max(n,m)}^{T} \varphi_0 \left(\frac{kn}{t} \right) \varphi_0 \left(\frac{km}{t} \right) t^{2(k-2\sigma)} \cos \left(t \log \frac{n}{m} \right) \, dt
$$

$$
+ O \left(\sum_1 |a(n)| a(m) (nm)^{k-\sigma} \right)
$$

$$
= \sum_{n < T/(2\kappa)} \frac{|a(n)|^2}{n^{2(k-\sigma)}} \int_{0}^{T} \varphi_0 \left(\frac{kn}{t} \right)^2 t^{2(k-2\sigma)} \, dt.
$$
\[\begin{align*}
+ & \sum_{\substack{n<2T/\kappa \leq n<2T/\kappa \equiv 1 \mod q}} \left| a(n) \right|^2 \frac{T}{n^{2(k-\sigma)}} \int_0^T \varphi_0 \left(\frac{\kappa n}{t} \right)^2 t^{2(k-2\sigma)} \, dt \\
& + \sum_{0} \frac{\pi(n)a(m)}{(nm)^{k-\sigma}} \int_0^T \varphi_0 \left(\frac{\kappa n}{t} \right) \varphi_0 \left(\frac{\kappa m}{t} \right) t^{2(k-2\sigma)} \cos \left(t \log \frac{n}{m} \right) \, dt \\
& + O \left(\sum_1 \left| a(n)a(m) \right| \right). \end{align*}\]

Since \(-4/\log(qT) \leq -2(k-2\sigma) \leq 4/\log(qT)\), by using Lemma 4, we see that the right-hand side of the above is

\[\ll T \sum_{n<T/(2\kappa)} \frac{|a(n)|^2}{n^{2(k-\sigma)}} + \frac{1}{q} \sum_{n<2T/\kappa} \frac{|a(n)|^2}{n^{2(k-\sigma)-1}} + \sum_0 \frac{|a(n)a(m)|}{(nm)^{k-\sigma} |\log \frac{n}{m}|} \]

\[+ q \sum_0 \frac{|a(n)a(m)|}{(nm)^{k-\sigma} \max(n,m) \left(\log \frac{n}{m} \right)^2} + \sum_1 \frac{|a(n)a(m)|}{(nm)^{k-\sigma}} \]

uniformly in \(\sigma\) and \(q\) for \(k/2 - 1/\log(qT) \leq \sigma \leq k/2 + 1/\log(qT)\). By (15), (16), and the estimate

\[\sum_1 \frac{|a(n)a(m)|}{(nm)^{k-\sigma}} \leq \sum_{n<2T/\kappa} \frac{|a(n)|^2}{n^{2(k-\sigma)}} \sum_{m<2T/\kappa} \frac{1}{n^{2(k-\sigma)}} \ll T \sum_{n<2T/\kappa} \frac{|a(n)|^2}{n^{2(k-\sigma)}}, \]

we have

\[\sum_\chi A_{22}(\sigma) \ll \phi(q) \left(T \sum_{n<2T/\kappa} \frac{|a(n)|^2}{n^{2(k-\sigma)}} + \frac{\log T}{q} \sum_{n<2T/\kappa} \frac{|a(n)|^2}{n^{2(k-\sigma)-1}} \right), \]

hence, by (6), we obtain

\[(18) \sum_\chi A_{22}(\sigma) \ll \phi(q) T \log(qT), \quad T \to \infty, \]

uniformly in \(\sigma\) and \(q\) for \(k/2 - 1/\log(qT) \leq \sigma \leq k/2 + 1/\log(qT)\).

Combining (13), (17), (18), and the assumption \(q \ll T\), we obtain the assertion of Theorem 2.

Corollary 1. Under the same notation as in Theorem 2, we have

\[\sum_\chi \int_{-T}^T \left| L_f(k/2 + it, \chi) \right|^2 \, dt \ll \phi(q) T (\log(qT))^3, \quad T \to \infty, \]

uniformly in \(q\).
Proof. Put \(r = (\log(qT))^{-1} \). Since

\[
|L'_f(k/2 + it, \chi)|^2 \ll r^{-3} \int_{|z-k/2-it|=r} |L_f(z, \chi)|^2|dz|,
\]

we have

\[
\sum^* \chi \int_{-T}^{T} |L'_f(k/2 + it, \chi)|^2|dt \\ll r^{-3} \sum^* \chi \int_{|z-k/2-it|=r} |L_f(z, \chi)|^2|dz| |dt|.
\]

From Theorem 2, it follows that

\[
\sum^* \chi \int_{-T}^{T} \int_{|z-k/2-it|=r} |L_f(z, \chi)|^2|dz| |dt|
\leq 2 \left\{ \int_{k/2-r}^{k/2+r} \left(\sum^* \chi \int_{-T}^{T} |L_f(\sigma + it, \chi)|^2|dt| \right)^{3/2} d\sigma \right\}^{1/2}
\times 2 \left\{ \int_{k/2-r}^{k/2+r} \left(1 - \left(\frac{\sigma - k/2}{r} \right)^2 \right)^{-1/4} d\sigma \right\}^{2/3}
\ll r \phi(q) T \log(qT) \ll \phi(q) T.
\]

This proves the corollary.

Corollary 2. Let \(\chi \) be a Dirichlet character mod \(q \), and \(\chi^* \) the primitive character inducing \(\chi \). Let \(\delta \) be a positive real number such that \(\delta \ll T \), and \(T\chi^* \) a finite subset of \([-T, T]\) with \(|t-t'| \geq \delta\) for any distinct \(t \) and \(t' \) in \(T\chi^* \). If \(q \ll T \), then

\[
\sum \chi \sum_{t \in T\chi^*} |L_f(k/2 + it, \chi^*)|^2 \ll \left(\frac{1}{\delta} + \log(qT) \right) qT \log(qT), \quad T \to \infty,
\]

uniformly in \(q \).

Corollary 2 can be derived from Theorem 2 and Corollary 1 by the same argument as the proof of Corollary 10.4 of [6].

4. Proof of Theorem 1. Our argument is a modification of the proof of the zero density estimates of Dirichlet \(L \)-functions in [6], so we give only a sketch.
Let $L_f(s) = \sum_{n=1}^{\infty} a(n)n^{-s}$ for $\sigma > (k+1)/2$. We define $\mu_f(n)$ by

$$\frac{1}{L_f(s)} = \sum_{n=1}^{\infty} \frac{\mu_f(n)}{n^s}$$

for $\sigma > (k+1)/2$. By the Euler product expansion of $L_f(s)$ and the estimate $|a(n)| \leq n^{(k-1)/2}d(n)$ (see [2]), where $d(n)$ is the divisor function, it is easy to see that the following properties hold:

$$|\mu_f(n)| \leq n^{(k-1)/2}d(n),$$

$$\sum_{d|n, d>0} \mu_f(d)a\left(\frac{n}{d}\right) = \begin{cases} 1 & \text{if } n = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Since $L_f(s, \chi)$ and $L_f(s, \chi^*)$ have the same zeros for $\sigma \geq k/2$, it is enough to consider $N_f(\sigma_0, T, \chi^*)$ instead of $N_f(\sigma_0, T, \chi)$. Let A_1 be a positive real number, and let X and Y be parameters satisfying $2 \leq X \leq Y \leq (qT)^{A_1}$. We define

$$M(s, \chi^*) = \sum_{n\leq X} \frac{\mu_f(n)\chi^*(n)}{n^s}.$$

Then it follows that, for $\sigma > (k+1)/2$,

$$L_f(s, \chi^*)M(s, \chi^*) = \sum_{n=1}^{\infty} \frac{h(n)\chi^*(n)}{n^s},$$

where $h(n) = \sum_{d|n, 0<d\leq X} \mu_f(d)a(n/d)$ has the following properties: $h(1) = 1$, $h(n) = 0$ for $2 \leq n \leq X$, and $|h(n)| \leq n^{(k-1)/2}d(n)^3$ for $n > X$. By using the Mellin integral formula, we have

$$e^{-1/Y} + \sum_{n>X} h(n)\chi^*(n)n^{-s}e^{-n/Y}$$

$$= \frac{1}{2\pi i} \int_{(k+1)/2+1-i\infty}^{(k+1)/2+1+i\infty} L_f(s+w, \chi^*)M(s+w, \chi^*)Y^w \Gamma(w) \, dw$$

for $\sigma > -1$. Let $\varrho = \beta + i\gamma$ be a zero of $L_f(s, \chi^*)$ such that $\sigma_0 \leq \beta \leq (k+1)/2$ and $-T \leq \gamma \leq T$, and take $s = \varrho$ in the equation above. Since $L_f(\varrho + w, \chi^*)M(\varrho + w, \chi^*)Y^w \Gamma(w)$ is holomorphic for $-1/2 \leq \Re w$, the path of integration in the above can be moved to the line $\Re w = k/2 - \beta$. Therefore, if Y is large, every ϱ counted by $N_f(\sigma_0, T, \chi^*)$ has at least one of the following properties:

(a) $\left| \sum_{X<n \leq Y^2} h(n)\chi^*(n)n^{-\varrho}e^{-n/Y} \right| \geq \frac{1}{5},$
where \(z = A_2 \log(qT) \) for a large absolute constant \(A_2 \). Let \(\mathcal{R}(\chi^*) \) be a set of \(\varrho \)'s which are well-spaced, that is, \(3z \leq |\gamma - \gamma'| \) for any distinct \(\varrho = \beta + i\gamma \) and \(\varrho' = \beta' + i\gamma' \). We denote by \(R(\chi^*) \) the number of elements of \(\mathcal{R}(\chi^*) \).

From (2) and the definition of \(R(\chi^*) \), it follows that

\[
N_f(\sigma_0, T, \chi^*) \ll R(\chi^*)(\log(qT))^2,
\]

hence

\[
\sum_{\chi} N_f(\sigma_0, T, \chi) = \sum_{\chi} N_f(\sigma_0, T, \chi^*) \ll R(\log(qT))^2,
\]

where \(R = \sum_{\chi} R(\chi^*) \). The sets \(\mathcal{R}_1(\chi^*) \) and \(\mathcal{R}_2(\chi^*) \) are defined to be the subsets of \(\mathcal{R}(\chi^*) \) such that every element of \(\mathcal{R}_1(\chi^*) \) satisfies the condition (a), and every element of \(\mathcal{R}_2(\chi^*) \) satisfies the condition (b). Denote by \(R_j(\chi^*) \) the number of elements of \(\mathcal{R}_j(\chi^*) \), \(j = 1, 2 \). Put

\[
\mathcal{R}_j = \bigcup_{\chi} \mathcal{R}_j(\chi^*) \quad \text{and} \quad R_j = \sum_{\chi} R_j(\chi^*), \quad j = 1, 2,
\]

and we shall estimate \(R_1 \) and \(R_2 \).

First, we estimate \(R_1 \). For every \(\varrho \) in \(\mathcal{R}_1 \),

\[
\max_{1 \leq l \leq l_0 + 1} \left\{ \left| \sum_{2^{l-1}X < n \leq 2^lX} h(n)\chi^*(n)n^{-\varrho}e^{-n/Y} \right| \right\} \geq \frac{1}{15\log Y}
\]

for large \(Y \), where \(l_0 = \left\lfloor (\log 2)^{-1}\log(X^{-1}Y^2) \right\rfloor \). Hence, there exists \(U \) such that \(X < U \leq Y^2 \) and the inequality

\[
\left| \sum_{U < n \leq 2U} \sum_{n \leq Y^2} h(n)\chi^*(n)n^{-\varrho}e^{-n/Y} \right| \geq \frac{1}{15\log Y}
\]

holds for more than \(R_1/(4\log Y) \) zeros of \(\mathcal{R}_1 \). Therefore, by Theorem 7.6 of [6],

\[
R_1 \ll (\log Y)^3 \sum_{\chi} \sum_{\varrho \in \mathcal{R}_1(\chi^*)} \left| \sum_{U < \varrho \leq 2U} \sum_{n \leq Y^2} h(n)\chi^*(n)n^{-\varrho}e^{-n/Y} \right|^2
\]

\[
\ll (qTX^{k-2\sigma_o} + Y^{k+1-2\sigma_o})(\log(qT))^{67}.
\]
Second, we estimate R_2. For every ϱ in \mathcal{R}_2,
\[
\int_{-z}^{z} |L_f(k/2 + i(\gamma + \varrho), \chi^*)M(k/2 + i(\gamma + \varrho), \chi^*)| \times Y^{k/2 - \beta} |\Gamma(k/2 - \beta + iv)| \, dv \geq \frac{2\pi}{5}.
\]

Let $t_\varrho = \gamma + \varrho$ be a value for which $|L_f(k/2 + i(\gamma + \varrho), \chi^*)M(k/2 + i(\gamma + \varrho), \chi^*)|$ is maximal. Since $z/CK - z|\Gamma(k/2 - \beta + iv)|dv \ll 1/CK - 1/\beta - k/2dv \ll \log(qT)$, we have
\[
|L_f(k/2 + it_\varrho, \chi^*)M(k/2 + it_\varrho, \chi^*)| \gg Y^{\sigma_0 - k/2(\log(qT))^{-1}}.
\]

Hence,
\[
Y^{\sigma_0 - k/2(\log(qT))^{-1}} R_2 \ll \sum_{\chi} \sum_{\varrho \in \mathcal{R}_2(\chi^*)} |L_f(k/2 + it_\varrho, \chi^*)M(k/2 + it_\varrho, \chi^*)|
\leq \left(\sum_{\chi} \sum_{\varrho \in \mathcal{R}_2(\chi^*)} |L_f(k/2 + it_\varrho, \chi^*)|^2 \right)^{1/2}
\times \left(\sum_{\chi} \sum_{\varrho \in \mathcal{R}_2(\chi^*)} |M(k/2 + it_\varrho, \chi^*)|^2 \right)^{1/2}.
\]

Since $|t_\varrho - t_\varrho^\prime| \geq z$, we can use Corollary 2 under the assumption $q \ll T$:
\[
\sum_{\chi} \sum_{\varrho \in \mathcal{R}_2(\chi^*)} |L_f(k/2 + it_\varrho, \chi^*)|^2 \ll qT(\log(qT))^2.
\]

From Theorem 7.6 of [6], if $X \leq qT$, then
\[
\sum_{\chi} \sum_{\varrho \in \mathcal{R}_2(\chi^*)} |M(k/2 + it_\varrho, \chi^*)|^2 \ll qT(\log(qT))^6.
\]

Therefore, if $q \ll T$ and $X \leq qT$, we obtain
\[
(21) \quad R_2 \ll Y^{k/2 - \sigma_0} qT(\log(qT))^5.
\]

Substituting (20) and (21) into (19) gives
\[
\sum_{\chi} N_f(\sigma_0, T, \chi) \ll (qT X^{k-2\sigma_0} + Y^{k+1-2\sigma_0} + qTY^{k/2-\sigma_0})(\log(qT))^69,
\]
and putting $X = qT$, $Y = (qT)^{(k/2+1-\sigma_0)}$, we now obtain (3) uniformly in σ_0 and q for $k/2 + 1/\log(qT) \leq \sigma_0 \leq (k + 1)/2$.
Finally, the estimate (4) can be derived by a different treatment of R_1 and R_2. This is almost identical to the proof of Theorem 12.1 of [6], so we omit the details.

References

Graduate School of Mathematics
Nagoya University
Chikusa-ku, Nagoya 464-01, Japan
E-mail: m95011@math.nagoya-u.ac.jp

Received on 5.5.1997
and in revised form on 13.2.1998