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An explicit version of Birch’s Theorem

by

Trevor D. Wooley (Ann Arbor, Mich.)

1. Introduction. Birch [1] has shown that a system of homogeneous
polynomials with rational coefficients possesses a non-trivial rational zero
provided only that these polynomials are of odd degree, and the system has
sufficiently many variables in terms of the number and degrees of these poly-
nomials. While bounds have been obtained for the number of variables which
suffice to guarantee the existence of a non-trivial zero, in all but the simplest
cases such bounds as are available are too weak to have warranted explicit
determination. Rather general versions of the Hardy–Littlewood method
have been developed in order to investigate this problem, first by Daven-
port (see, in particular, [4, 5]), later by Birch [2], and most recently by
Schmidt [12], but unfortunately even Schmidt’s highly developed version
of the Hardy–Littlewood method is disappointingly ineffective in handling
systems of higher degree (see [11, 12]).

In this paper we obtain explicit bounds for the number of variables re-
quired in Birch’s Theorem by using a method involving the Hardy–Little-
wood method only indirectly, being based on a refinement of the elementary
diagonalisation method of Birch [1] first described in Wooley [15], where we
restricted our investigations to systems of cubic and quintic forms. Although
the size of our bounds may be aptly described as “not even astronomical”
(an eloquent phrase of Birch), it seems that this paper contains the first
truly explicit bounds in this problem.

In order to describe our conclusions we require some notation. When k
is a field, d and r are natural numbers, and m is a non-negative integer, let
v

(m)
d,r (k) denote the least integer (if any such integer exists) with the property

that whenever s > v
(m)
d,r (k), and fi(x) ∈ k[x1, . . . , xs] (1 ≤ i ≤ r) are forms
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of degree d, then the system of equations fi(x) = 0 (1 ≤ i ≤ r) possesses a
solution set which contains a k-rational linear space of projective dimension
m. If no such integer exists, define v(m)

d,r (k) to be +∞. We abbreviate v(0)
d,r(k)

to vd,r(k), and define φd,r(k) in like manner, save that the arbitrary forms
of degree d are restricted to be diagonal.

When d is even one has v(m)
d,r (Q) =∞, because definite forms necessarily

fail the real solubility condition, and thus we restrict attention to odd d.
In previous work [15] we investigated systems of cubic and quintic forms.
In particular, we showed that when r is a natural number and m is a non-
negative integer, then

(1.1) v
(m)
3,r (Q) < (90r)8(log(27r))5(m+ 1)5,

and

(1.2) v
(m)
5,r (Q) < exp(1032((m+ 1)r log(3r))κ log(3r(m+ 1))),

where

(1.3) κ =
log 3430

log 4
= 5.87199 . . .

We note that earlier work of Lewis and Schulze-Pillot [8, inequality (4)]
provides an estimate in many circumstances superior to (1.1), namely

(1.4) v
(m)
3,r (Q)� r11(m+ 1) + r3(m+ 1)5.

Moreover, if one seeks only the existence of a rational point on the intersec-
tion of r cubic hypersurfaces, then Schmidt’s bound v

(0)
3,r(Q) < (10r)5 (see

[10, Theorem 1]) is superior to both (1.1) and (1.4).
We now extend our earlier conclusions to arbitrary systems of forms of

odd degree, and this will entail recording some further notation. Suppose
that A is a subset of R and Ψ is a function mapping A into A. When α is
a real number, write [α] for the largest integer not exceeding α. Then we
adopt the notation that whenever x and y are real numbers with x ≥ 1, then
Ψx(y) denotes the real number a[x], where (an)∞n=1 is the sequence defined
by taking a1 = Ψ(y), and ai+1 = Ψ(ai) (i ≥ 1). Finally, when n is a non-
negative integer we define the functions ψ(n)(x) by taking ψ(0)(x) = exp(x),
and when n > 0 by putting

(1.5) ψ(n)(x) = ψ
(n−1)
42 log x(x).

Theorem 1. Let d be an odd integer exceeding 5, and let r and m be
non-negative integers with r ≥ 1. Then

v
(m)
d,r (Q) < ψ((d−5)/2)(dr(m+ 1)).

The upper bound contained in Theorem 1 provides the first entirely ex-
plicit version of Birch’s Theorem for systems of forms of equal degree, cor-
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responding conclusions for mixed degree systems following almost trivially
(see Theorem 5.1 below). While systems of forms possessing mild singulari-
ties are susceptible to more powerful analyses (see Birch [2], or Tartakovskĭı
[13] for earlier but more restricted work), we stress that our aim in this
paper is to provide generally applicable bounds free of any geometric hy-
potheses. We note that the constant 42 occurring in the definition (1.5) can
be reduced with greater effort, especially for large values of the parameters.
However, it does not appear feasible to adapt the methods of this paper to
replace the level of recursion in (1.5) by any function appreciably smaller
than log x. In this context we remark that even Birch’s original method
[1] could, with sufficient effort, be employed to yield an explicit bound for
v

(m)
d,r (Q), though such a bound would be extraordinarily weak by comparison

with that provided by Theorem 1.
An alternative to Birch’s elementary method for bounding v

(m)
d,r (Q) is

provided by Schmidt’s sophisticated version of the Hardy–Littlewood
method, described briefly in [12]. We discuss the quality of the bounds which
may be wrought from such ideas in an appendix (§6 of this paper). Although
we do not carry out sufficient calculations to be confident of the precise
bounds stemming from Schmidt’s methods, our analysis indicates that they
yield bounds qualitatively no stronger than

(1.6) v
(0)
d,r(Q) < φ((d−5)/2)(dr) (d ≥ 7),

where φ(0)(x) = exp(x), and φ(n)(x) = φ
(n−1)
Ax (x) (n ≥ 1), for a suitable

positive constant A. The superiority of Theorem 1 is plain. In this context
we note that loose remarks concluding §2 of Schmidt [12] might leave the
impression that for a suitable function f , the methods of that section will
establish a bound of the shape

v
(0)
d,r(Q) < expd−3(f(d)r) (d ≥ 5).

As should be clear from §6, however, a bound of the latter strength is wholly
beyond reach of such methods when d ≥ 7.

Our proof of Theorem 1 is based on an inductive strategy which depends
for its success on an efficient diagonalisation process described in Wooley
[15]. We begin, in §2, by recalling several of the key lemmata of [15] crucial
to our subsequent arguments. Here and elsewhere in the proof of Theorem 1,
we must extract conclusions simple enough that it remains feasible to keep
control of the ensuing induction, yet retain sufficient precision to preserve
the quality of the ultimate bounds. It might be said that the construction
of a compromise between the latter two objectives represents the major
difficulty of our argument. In §3 we consider systems of septic forms, bounds
on v

(m)
7,r (Q) forming the basis for our main induction. The main inductive
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step itself, in which we bound v
(m)
d,r (Q) in terms of v(M)

d−2,R(Q) for suitable
M and R, is established in §4. The proof of Theorem 1 is then completed
routinely in §5 by making use of the main conclusions of §§3 and 4. Finally,
in §6, we provide an appendix in which we discuss Schmidt’s method and
its consequences for Birch’s Theorem.

Throughout, implicit constants in Vinogradov’s notation � and � de-
pend at most on the quantities occurring as subscripts to the notation.

2. Preliminary lemmata: reduction to diagonal forms. In this sec-
tion we recall the reduction formulae from Wooley [15] which relate the sol-
ubility of arbitrary systems of homogeneous polynomials to diagonal ones.
In order to describe these formulae we require some additional notation.
Given an r-tuple of polynomials F = (F1, . . . , Fr) with coefficients in a field
k, denote by ν(F) the number of variables appearing explicitly in F. We are
interested in the existence of solutions, over k, of systems of homogeneous
polynomial equations with coefficients in k. When such a solution set con-
tains a linear subspace of the ambient space, we define its dimension to be
that when considered as a projective space. When d is a positive odd inte-
ger, denote by G(m)

d (rd, rd−2, . . . , r1; k) the set of (rd+rd−2 + . . .+r1)-tuples
of homogeneous polynomials, of which ri have degree i for i = 1, 3, . . . , d,
with coefficients in k, and which possess no non-trivial linear space of solu-
tions of dimension m over k. We define D(m)

d (rd, rd−2, . . . , r1; k) to be the
corresponding set of diagonal homogeneous polynomials. We then define
w

(m)
d (r) = w

(m)
d (rd, rd−2, . . . , r1; k) by

w
(m)
d (rd, rd−2, . . . , r1; k) = sup

g∈G(m)
d

(rd,rd−2,...,r1;k)

ν(g),

and we define φ(m)
d (r) = φ

(m)
d (rd, rd−2, . . . , r1; k) by

φ
(m)
d (rd, rd−2, . . . , r1; k) = sup

f∈D(m)
d

(rd,rd−2,...,r1;k)

ν(f).

We observe for future reference that both w
(m)
d (r) and φ

(m)
d (r) are in-

creasing functions of the arguments m and ri (i = 1, 3, . . . , d). For the
sake of convenience we abbreviate w(m)

d (r, 0, . . . , 0; k) to v(m)
d,r (k), and note

that w(0)
d (r, 0, . . . , 0; k) = vd,r(k). We also abbreviate φ(m)

d (r, 0, . . . , 0; k) to
φ

(m)
d,r (k), and write φd,r(k) for φ(0)

d,r(k).

Next, when m ≥ 2, we define H(m)
d (r; k) to be the set of r-tuples,

(F1, . . . , Fr), of homogeneous polynomials of degree d, with coefficients in
k, for which no linearly independent k-rational vectors e1, . . . , em exist such
that Fi(t1e1 + . . .+ tmem) is a diagonal form in t1, . . . , tm for 1 ≤ i ≤ r. We
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then define w̃(m)
d (r) = w̃

(m)
d (r; k) by

w̃
(m)
d (r; k) = sup

h∈H(m)
d

(r;k)

ν(h).

Further, we adopt the convention that w̃(1)
d (r; k) = 0. Note that w̃(m)

d (r; k)
is an increasing function of the arguments m and r. Moreover, when s >

w̃
(m)
d (r; k) and F1, . . . , Fr are homogeneous polynomials of degree d with

coefficients in k possessing s variables, then there exist k-rational vectors
e1, . . . , em with the property that Fi(t1e1 + . . .+ tmem) is a diagonal form
in t1, . . . , tm for 1 ≤ i ≤ r.

The efficient diagonalisation process of [15] alluded to in the introduction
is embodied in the following lemma, which is nothing other than Lemma 2.1
of [15].

Lemma 2.1. Let d be an odd integer with d ≥ 3, and let r, n and m be
natural numbers. Then

w̃
(n+m)
d (r; k) ≤ s+ w

(M)
d−2(R; k),

where

M = w̃
(n)
d (r; k), s = 1 + w

(N)
d−2(S; k), N = w̃

(m)
d (r; k),

and for 0 ≤ u ≤ (d− 1)/2,

R2u+1 = r

(
s+ d− 2u− 2
d− 2u− 1

)
and S2u+1 = r

(
n+ d− 2u− 2
d− 2u− 1

)
.

We must still bound w
(m)
d (r; k) in terms of w̃(M)

d (R; k), for suitable M
and R, and this we choose to do simply in the following two lemmata.

Lemma 2.2. Let d be an odd positive number , let r be a natural number ,
and let m be a non-negative integer. Then

v
(m)
d,r (k) ≤ w̃(M)

d (r; k),

where M = (m+ 1)(φd,r(k) + 1).

P r o o f. This is Lemma 2.2 of [15].

Lemma 2.3. Let d be an odd positive number with d ≥ 3, and let r1, r3, . . .
. . . , rd be non-negative integers with rd > 0. Then for each non-negative
integer m one has

w
(m)
d (rd, rd−2, . . . , r1; k) ≤ w(M)

d−2(rd−2, . . . , r1; k),

where M = v
(m)
d,rd

(k).

P r o o f. This is Lemma 2.3 of [15].
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In order to make use of Lemma 2.2 in our argument, we require an
estimate for φd,r(Q). For this purpose we use the corollary to Theorem 1 of
Brüdern and Cook [3] embodied in the following lemma (this is Lemma 3.2
of [15]; see also Low, Pitman and Wolff [9]). We remark that earlier work of
Davenport and Lewis [6], though weaker, would suffice to provide a version
of Theorem 1 only slightly inferior to that given.

Lemma 2.4. Let d and r be natural numbers with d odd. Then

φd,r(Q) + 1 ≤ 48rd3 log(3rd2).

Before embarking on the analysis of systems of septic forms contained
in the next section, we derive some simple estimates for w(m)

d (r;Q) when
d = 3, 5. Although these estimates are significantly weaker than the best
attainable, we emphasise again that our aim is to control the complexity
of our subsequent machinations through the use of simple bounds. Since in
this and future discussions we will be working only in the rational field Q,
we henceforth omit explicit mention of the underlying field from our various
notations.

Lemma 2.5. Suppose that r3, r1 and m are non-negative integers with
r1 < 3r2

3. Then

w
(m)
3 (r3, r1) < (3r3(m+ 1))25.

P r o o f. It follows from the argument of Lewis and Schulze-Pillot [8,
inequality (4)] (see [15, Lemma 3.3]) that

v
(m)
3,r < (11r)11(m+ 1) + 50r3(m+ 1)5.

Then whenever r1 < 3r2
3, one finds by elimination of implicit linear equations

that

w
(m)
3 (r3, r1) = r1 + v

(m)
3,r3 < 3r2

3 + (11r3)11(m+ 1) + 50r3
3(m+ 1)5.

A modest calculation thus reveals that

w
(m)
3 (r3, r1) < (1111 + 3 + 50)r11

3 (m+ 1)5 < (3r3(m+ 1))25,

whence the lemma follows.

Lemma 2.6. Suppose that r5, r3, r1 and m are non-negative integers with
r1 ≤ 3r2

3 and r3 < 3r2
5. Then

w
(m)
5 (r5, r3, r1) < exp((5r5(m+ 1))49).

P r o o f. Write v = v
(m)
5,r5 . Then by Theorem 2 of [15] (see (1.2) and (1.3)

above), one has

v < exp(1032((m+ 1)r5 log(3r5))κ log(3r5(m+ 1))),
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where κ = (log 3430)/(log 4). But Lemma 2.3 shows that

w
(m)
5 (r5, r3, r1) ≤ w(v)

3 (r3, r1),

whence, in view of the hypotheses of the statement of the lemma, and making
use of Lemma 2.5, one finds that

logw(m)
5 (r5, r3, r1)

< 25 log(9r2
5) + 25(1032 + 1)((m+ 1)r5 log(3r5))κ log(3r5(m+ 1)).

Thus, following a modicum of computation, we obtain the upper bound

logw(m)
5 (r5, r3, r1) < 25(log 9)r2

5 + 25(1032 + 1)((log 3)(m+ 1)r2
5)7

< (5r5(m+ 1))49,

and this completes the proof of the lemma.

3. The basis for the induction: systems of septic forms. We estab-
lish the bounds for v(m)

d,r recorded in Theorem 1 by deriving corresponding

bounds for w(m)
d (r), and these we establish by induction on d, bounding

w
(m)
d (r) in terms of w(M)

d−2(R) for suitable M and R. Although it is possible

to use the bounds for w(m)
5 (r) described in Lemma 2.6 as the basis for this

induction, such a strategy entails complications best avoided. Instead, in
this section, we establish bounds for w(m)

7 (r) which later form the basis of
our induction. We begin with the diagonalisation process.

Lemma 3.1. Suppose that m and r are natural numbers. Then

w̃
(m)
7 (r) < exp5 log(7m)(7rm).

P r o o f. When m and r are natural numbers, write

(3.1) w
(m)
7 (r) = exp5 log(7m)(7rm).

We aim to show that for each R and M one has

(3.2) w̃
(M)
7 (R) < w

(M)
7 (R),

whence the conclusion of the lemma follows. Note that by definition, for
each natural number R one has w̃(1)

7 (R) = 0, so that (3.2) certainly holds
when M = 1. Next suppose that m > 1, and that for each R the inequality
(3.2) holds whenever M < m. We will establish that (3.2) holds for each R
when M = m, and thus (3.2) will follow for all R and M by induction.

Let m and r be natural numbers with m ≥ 2. Write n = [(m + 1)/2],
and note that n < m. By Lemma 2.1 one has

(3.3) w̃
(m)
7 (r) ≤ w̃(2n)

7 (r) ≤ s+ w
(N)
5 (R),
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where

(3.4) N = w̃
(n)
7 (r), s = 1 + w

(N)
5 (S),

and for 0 ≤ u ≤ 3,

R2u+1 = r

(
s+ 5− 2u

6− 2u

)
and S2u+1 = r

(
n+ 5− 2u

6− 2u

)
.

We first bound s. Write N = [w(n)
7 (r)], and note that since n < m, the

inductive hypothesis shows that N ≤ N . Note also that for 0 ≤ u ≤ 3 one
has S2u+1 ≤ rn6−2u. Then the hypotheses required for the application of

Lemma 2.6 to bound w(N)
5 (S) are satisfied, and we may conclude from (3.4)

that

s ≤ 1 + w
(N)
5 (rn2, rn4, rn6) ≤ w(N)

5 (rn2, rn4, 2rn6),

whence

(3.5) s < exp((5rn2(N + 1))49).

But by (3.1) one has

(3.6) N ≤ w(n)
7 (r) = exp5 log(7n)(7rn)

and

(3.7) N = [exp5 log(7n)(7rn)] ≥ 7rn.

Also, plainly, for each m ≥ 2 it follows from (3.1) that N ≥ exp5(7). Then
by combining (3.5) and (3.7), we obtain

(3.8) s ≤ exp((N + 1)147) < exp(N148).

Finally, we bound w̃
(m)
7 (r) by substituting (3.8) into (3.3). Note that

for 0 ≤ u ≤ 3 one has R2u+1 ≤ rs6−2u. Then the hypotheses required for

the application of Lemma 2.6 to bound w
(N)
5 (R) are satisfied, and we may

conclude that

w̃
(m)
7 (r) ≤ s+ w

(N)
5 (rs2, rs4, rs6) ≤ w(N)

5 (rs2, rs4, 2rs6),

whence

w̃
(m)
7 (r) < exp((5rs2(N + 1))49).

Write s = exp(N148). Then by (3.7) and (3.8), one has

w̃
(m)
7 (r) < exp((s(N + 1))98) ≤ exp(s196)

= exp2(196N148) < exp2(N149).

We therefore deduce from (3.6) that

w̃
(m)
7 (r) < exp3(149 logN) < exp3(exp5 log(7n)−1(7rm)).
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But on noting that whenever m ≥ 2 one has

5 log
(

7
[
m+ 1

2

])
≤ 5 log(7m)− 2,

we may conclude from (3.1) that

w̃
(m)
7 (r) < exp5 log(7m)(7rm) = w

(m)
7 (r),

thereby establishing the inequality (3.2) with M = m and R = r. In view
of the comments concluding the first paragraph of the proof, this completes
the proof of the lemma.

A bound for v(m)
7,r may now be obtained by inserting the conclusion of

Lemma 3.1 into Lemma 2.2.

Lemma 3.2. Suppose that m and r are non-negative integers with r ≥ 1.
Then

v
(m)
7,r < exp37 log(7r(m+1))(7r(m+ 1)).

P r o o f. By combining Lemmata 2.2 and 2.4 with Lemma 3.1, one obtains

(3.9) v
(m)
7,r < exp5 log(7M)(7rM),

where

M = 16464r(m+ 1) log(147r) ≤ 16464(log 147)r2(m+ 1)(3.10)

< 76r2(m+ 1).

But it follows from (3.10) that

log(7M) < log(77r2(m+ 1)) ≤ 7 log(7r(m+ 1)),

and

log(7rM) < log(77r3(m+ 1)) ≤ 7 log(7r(m+ 1)) ≤ exp(7r(m+ 1)),

and hence (3.9) provides the estimate

v
(m)
7,r < exp35 log(7r(m+1))+2(7r(m+ 1)).

The conclusion of the lemma follows immediately.

Note that the conclusion of Lemma 3.2 establishes Theorem 1 when
d = 7. In order to establish our main inductive step, however, we require a
slightly more general result.

Lemma 3.3. Suppose that r2u+1 (0 ≤ u ≤ 3) and m are non-negative
integers with r1 ≤ 3r2

3, r3 ≤ 3r2
5 and r5 < 3r2

7. Then

w
(m)
7 (r) < exp39 log(7r7(m+1))(7r7(m+ 1)).
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P r o o f. By Lemma 2.3 one has

w
(m)
7 (r) ≤ w(v)

5 (r5, r3, r1),

where v = v
(m)
7,r7 . But in view of the hypotheses concerning r1, r3, r5, we may

apply Lemma 2.6 together with Lemma 3.2 to conclude that

log2 w
(m)
7 (r) < 49 log(15r2

7(1 + exp37 log(7r7(m+1))(7r7(m+ 1))))

< 98 exp37 log(7r7(m+1))−1(7r7(m+ 1))

< exp37 log(7r7(m+1))(7r7(m+ 1)).

The desired conclusion is almost immediate from the latter inequality.

4. The inductive step: systems of forms of higher degree. Thus
far we have established Theorem 1 for d = 7. We next establish the inductive
step which permits us to prove Theorem 1 for larger exponents, our argument
following in spirit the trail laid down in §3. Our argument will be much
simplified by making use of the following definition.

Definition. We say that the function Ψ : [1,∞) → [1,∞) satisfies the
exponential growth condition if it has derivatives of all orders on [1,∞), and
moreover for each non-negative integer n, one has for each x ∈ [1,∞) that

dnΨ(x)
dxn

≥ ex.
When D is an odd integer exceeding 5, we make use of the following

hypothesis.

Hypothesis HD(Ψ). For all natural numbers M , and all 1
2 (D+1)-tuples

R = (RD, RD−2, . . . , R1) of non-negative integers satisfying RD−2 < 3R2
D

and Ri ≤ 3R2
i+2 (i = 1, 3, . . . , D − 4), one has

(4.1) w
(M)
D (R) < Ψ(DRD(M + 1)).

Our initial advance on the inductive step is provided by the diagonali-
sation process.

Lemma 4.1. Let d be an odd integer exceeding 7. Suppose that Ψ is a
function satisfying the exponential growth condition, and suppose further
that the hypothesis Hd−2(Ψ) holds. Then whenever m and r are natural
numbers, one has

w̃
(m)
d (r) < Ψ5 log(dm)(drm).

P r o o f. When m and r are natural numbers, write

(4.2) w
(m)
d (r) = Ψ5 log(dm)(drm).
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We aim to show that for each R and M one has

(4.3) w̃
(M)
d (R) < w

(M)
d (R),

whence the conclusion of the lemma follows. Since for each natural number R
one has w̃(1)

d (R) = 0, the inequality (4.3) certainly holds for M = 1. Suppose
next that m > 1, and that for each R the bound (4.3) holds whenever
M < m. We establish that (4.3) holds for each R when M = m, and so (4.3)
holds for all R and M by induction.

Let m and r be natural numbers with m ≥ 2. Write n = [(m + 1)/2],
and note that n < m. By Lemma 2.1 one has

(4.4) w̃
(m)
d (r) ≤ w̃(2n)

d (r) ≤ s+ w
(N)
d−2(R),

where

(4.5) N = w̃
(n)
d (r), s = 1 + w

(N)
d−2(S),

and for 0 ≤ u ≤ (d− 1)/2,

R2u+1 = r

(
s+ d− 2u− 2
d− 2u− 1

)
and S2u+1 = r

(
n+ d− 2u− 2
d− 2u− 1

)
.

Write N = [w(n)
d (r)], and note that since n < m, the inductive hypothesis of

this lemma shows that N ≤ N . Note also that for 0 ≤ u ≤ (d−1)/2 one has
S2u+1 ≤ rnd−2u−1, so that the hypotheses required for the application of

the hypothesis Hd−2(Ψ) to bound w
(N)
d−2(S) are satisfied. We may therefore

conclude from (4.5) that

s ≤ 1 + w
(N)
d−2(rn2, rn4, . . . , rnd−1) ≤ w(N)

d−2(rn2, rn4, . . . , rnd−3, 2rnd−1),

whence

(4.6) s < Ψ(drn2(N + 1)).

On recalling that Ψ satisfies the exponential growth condition, it follows
from (4.2) that

(4.7) N = [Ψ5 log(dn)(drn)] ≥ drn.
Also, plainly, for each m ≥ 2 it follows from (4.2) that N ≥ exp5(d). Then
by combining (4.6) and (4.7) we deduce that

(4.8) s < Ψ((N + 1)3) < Ψ(N4).

Having successfully bounded s, we next estimate w̃
(m)
d (r) by substi-

tuting (4.8) into (4.4). Note first that for 0 ≤ u ≤ (d − 1)/2 one has
R2u+1 ≤ rsd−2u−1, so that the hypotheses required for the application of the

hypothesis Hd−2(Ψ) to bound w
(N)
d−2(R) are satisfied. We therefore deduce
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from (4.4) that

w̃
(m)
d (r) ≤ s+ w

(N)
d−2(rs2, rs4, . . . , rsd−1)

≤ w(N)
d−2(rs2, rs4, . . . , rsd−3, 2rsd−1),

whence

w̃
(m)
d (r) < Ψ(drs2(N + 1)).

Write s = Ψ(N4). Then on recalling that Ψ satisfies the exponential growth
condition, it follows from (4.7) and (4.8) that

w̃
(m)
d (r) < Ψ((s(N + 1))2) ≤ Ψ(s4) = Ψ((Ψ(N4))4) ≤ Ψ2(4N4) < Ψ2(N5).

On making use of the bound

N ≤ w(n)
d (r) = Ψ5 log(dn)(drn),

therefore, we conclude that

w̃
(m)
d (r) < Ψ3(5Ψ−1(N)) ≤ Ψ3(Ψ5 log(dn)−1(drm)).

But on noting that whenever m ≥ 2 one has

5 log
(
d

[
m+ 1

2

])
≤ 5 log(dm)− 2,

we find from (4.2) that

w̃
(m)
d (r) < Ψ5 log(dm)(drm) = w

(m)
d (r),

so that (4.3) holds with M = m and R = r. On recalling the comments
concluding the first paragraph of the proof, the lemma now follows by in-
duction.

Following the lead provided in §3, we next bound v(m)
d,r on the hypothesis

Hd−2(Ψ) by combining the conclusions of Lemmata 4.1 and 2.2.

Lemma 4.2. Let d be an odd integer exceeding 7. Suppose that Ψ is a
function satisfying the exponential growth condition, and suppose further
that the hypothesis Hd−2(Ψ) holds. Then whenever m and r are non-negative
integers with r ≥ 1, one has

v
(m)
d,r < Ψ41 log(dr(m+1))(dr(m+ 1)).

P r o o f. On combining Lemmata 2.2 and 2.4 with Lemma 4.1, one obtains

(4.9) v
(m)
d,r < Ψ5 log(dM)(drM),

where

M = 48(m+ 1)rd3 log(3rd2) ≤ 48(log 3)d5r2(m+ 1)(4.10)

< d7r2(m+ 1).



Birch’s Theorem 91

It follows from (4.10) that

log(dM) < 8 log(dr(m+ 1)) and log(drM) < exp(dr(m+ 1)),

and hence (4.9) leads to the upper bound

v
(m)
d,r < Ψ40 log(dr(m+1))+2(dr(m+ 1)).

The conclusion of the lemma follows immediately.

In order to complete the inductive step we must combine the conclusion
of the latter lemma with the hypothesis Hd−2(Ψ) in order to bound w(m)

d (r).

Lemma 4.3. Let d be an odd integer exceeding 7. Suppose that Ψ is a
function satisfying the exponential growth condition, and suppose further
that the hypothesis Hd−2(Ψ) holds. Then whenever r2u+1 (0 ≤ u ≤ 1

2 (d−1))
and m are non-negative integers with ri ≤ 3r2

i+2 (i = 1, 3, . . . , d − 4) and
rd−2 < 3r2

d, one has

w
(m)
d (r) < Ψ42 log(drd(m+1))(drd(m+ 1)).

P r o o f. By Lemma 2.3 one has

w
(m)
d (r) ≤ w(v)

d−2(rd−2, . . . , r1),

where v = v
(m)
d,rd

. The hypotheses concerning ri for i = 1, 3, . . . , d− 2 permit

us the use of the hypothesis Hd−2(Ψ) to bound w(v)
d−2(rd−2, . . . , r1), and thus

on employing Lemma 4.2 to bound v, we deduce that

w
(v)
d−2(rd−2, . . . , r1) < Ψ(3(d− 2)r2

d(v + 1))

< Ψ2(2Ψ41 log(drd(m+1))−1(drd(m+ 1)))

≤ Ψ41 log(drd(m+1))+2(drd(m+ 1)).

The conclusion of the lemma is now immediate.

5. The proof of Theorem 1. The machinery of our argument now fully
assembled, we crank up the induction which establishes Theorem 1. Note
first that, in view of Lemma 3.3, the hypothesis H7(ψ(1)) holds, where ψ(1)

is defined by (1.5). Moreover, ψ(1) plainly satisfies the exponential growth
condition. Suppose next that d is an odd integer exceeding 7, and that the
hypothesisHd−2(ψ((d−7)/2)) holds. Since, plainly, ψ((d−7)/2) also satisfies the
exponential growth condition, it follows from Lemma 4.3 that the hypothesis
Hd(ψ((d−5)/2)) holds. We therefore deduce, by induction, that the hypothesis
Hd(ψ((d−5)/2)) holds for every odd integer d exceeding 5. Consequently, on
applying Lemma 4.2, we conclude that the inequality

v
(m)
d,r < ψ

((d−7)/2)
41 log(dr(m+1))(dr(m+ 1)) < ψ((d−5)/2)(dr(m+ 1))
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holds for every odd integer exceeding 5. This completes the proof of Theo-
rem 1.

We conclude this section by providing a bound, similar to that recorded
in Theorem 1, applicable to systems of forms of mixed degrees.

Theorem 5.1. Let d be an odd integer exceeding 5, and let r1, r3, . . . , rd
and m be non-negative integers with rd ≥ 1. Then

w
(m)
d (rd, . . . , r1;Q) < ψ((d−5)/2)(d(r1 + r3 + . . .+ rd)(m+ 1)).

P r o o f. Let s be any integer exceeding ψ((d−5)/2)(d(r1 + r3 + . . .+ rd)×
(m + 1)), and let Fij(x) ∈ Z[x1, . . . , xs] (1 ≤ j ≤ ri) be homogeneous
polynomials of degree i for i = 1, 3, . . . , d. We aim to show that the system

(5.1) Fij(x) = 0 (1 ≤ j ≤ ri; i = 1, 3, . . . , d)

possesses a solution x ∈ Zs \ {0}, whence the theorem follows.
We define a new system of equations by writing

(5.2) Gij(x) = (x2
1 + x2

2 + . . .+ x2
s)

(d−i)/2Fij(x)

(1 ≤ j ≤ ri; i = 1, 3, . . . , d).

Plainly, each polynomial Gij(x) is homogeneous of degree d, and thus the
system of equations

(5.3) Gij(x) = 0 (1 ≤ j ≤ ri; i = 1, 3, . . . , d)

consists of r1 + r3 + . . .+ rd equations of degree d. In view of the definition
of s, it follows from Theorem 1 that the system (5.3) necessarily possesses a
linear space of rational solutions of projective dimension m, whence by (5.2)
the system (5.1) also possesses such a solution. This completes the proof of
the theorem.

6. Appendix: Bounds stemming from Schmidt’s method. Our
discussion of upper bounds for v(m)

d,r would be incomplete without mention of
Schmidt’s sophisticated version of the circle method, which itself provides an
interesting approach to bounding v(0)

d,r , for odd exponents d. Before outlining
the strategy described by Schmidt in §2 of [12], we require some notation.
When F ∈ Q[x] is a form of degree d > 1, write h(F ) for the least number
h such that F may be written in the form

F =
h∑

i=1

AiBi,

with Ai, Bi forms in Q[x] of positive degree. When F1, . . . , Fr are forms of
equal degree d > 1, and F = (F1, . . . , Fr), write h(F) = minh(F ), where
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the minimum is taken over forms F lying in the rational pencil of F, which
is to say the set

{F ∈ Q[x] : F = c1F1 + . . .+ crFr and (c1, . . . , cr) ∈ Qr \ {0}}.
The important achievement of Schmidt in [12] is the development of a

version of the Hardy–Littlewood method which, given a system of forms
F ∈ Q[x]r with h(F) large enough, establishes an asymptotic formula of
the expected shape for the number of integral zeros of F inside a large box.
Here, “formula of the expected shape” simply means the product of local
densities, embodied in the product of the singular series and singular integral
familiar to experts in the circle method. As Schmidt [12, §2] observes, such
a result offers the possibility of a reduction process which, given sufficiently
many variables, establishes the existence of a non-trivial rational zero to a
given system. Roughly speaking, one observes that for forms of odd degree,
whenever h(F) is large enough Schmidt’s circle method already establishes
the existence of a non-trivial rational zero. On the other hand, if h(F) is not
large enough, say h(F) ≤ h0, then some form F lying in the rational pencil
of F decomposes in the shape

F =
h0∑

i=1

AiBi,

with Ai, Bi forms in Q[x] of positive degree. Since the forms Fi are of odd
degree, one may assume without loss of generality that the Ai are all of odd
degree. Consequently, the system F is soluble non-trivially provided that
there is a non-trivial solution to the system

F̂(x) = 0 and Ai(x) = 0 (1 ≤ i ≤ h0),

where F̂ denotes the system F with a suitable form deleted. Since the Ai all
have odd degree smaller than the deleted form, one perceives an obvious re-
ductive strategy which ultimately either shows the system to be non-trivially
soluble, or else reduces it to a system of linear equations, which again is
non-trivially soluble. We summarise this approach in quantitative form in
the following lemma.

Lemma 6.1. Let d be an odd integer exceeding 1, let r1, r3, . . . , rd be
non-negative integers with rd ≥ 1, and define

h̃d(r; k) = 24kk!rkdw
(0)
d (r;Qp) (3 ≤ k ≤ d).

Then

(6.1) w
(0)
d (r;Q)

≤ max
k=3,5,...,d

w
(0)
d (rd, rd−2, . . . , rk − 1, rk−2 + h̃d(r; k), rk−4, . . . , r1;Q).
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P r o o f. The conclusion (6.1) is immediate from Theorem II of [12] and
its supplement, on applying the argument described by Schmidt in §2 of
[12].

We are now in a position to illustrate the use of Schmidt’s strategy. We
concentrate on systems of septic forms, such systems displaying the salient
features and problems of the method. Although we will be somewhat rough
in our estimates, it should be clear that Lemma 6.1 is incapable of doing
substantially better.

Consider bounds for w(0)
7 (r7, r5, r3, 0). Write R = R(r) = r7+r5+r3, and

suppose throughout that R is large. We recall an immediate consequence of
Corollary 1.1 of Wooley [14] (improving on earlier work of Leep and Schmidt
[7]), which provides the estimate

w
(0)
d (rd, rd−2, . . . , r1;Qp) ≤ (rd + rd−2 + . . .+ r1)2d−1

d2d .

It follows that there is an integral constant c1 > 0 such that whenever
r5 > 0, the best bounds stemming from Lemma 6.1 cannot be substantially
stronger than

(6.2) w
(0)
7 (r7, r5, r3, 0) ≤ w(0)

7 (r7, r5 − 1, r3 +Rc1 , 0).

Meanwhile, when r5 = 0 and r7 > 0, there is an integral constant c2 > 0
such that the corresponding best available bound from Lemma 6.1 cannot
be substantially stronger than

(6.3) w
(0)
7 (r7, 0, r3, 0) ≤ w(0)

7 (r7 − 1, Rc2 , r3, 0).

We next bound v(0)
7,r by use of (6.2) and (6.3), as suggested by Schmidt’s

strategy. When r is large, one obtains

v
(0)
7,r = w

(0)
7 (r, 0, 0, 0) ≤ w(0)

7 (r − 1, rc2 , 0, 0)

≤ w(0)
7 (r − 1, rc2 − 1, c3rc1c2 , 0),

for an integral constant c3 > 0. Next, by repeated application of (6.2) one
obtains for n = 1, . . . , rc2 the estimate

w
(0)
7 (r, 0, 0, 0) ≤ w(0)

7 (r − 1, rc2 − n, cn+2r
cn1 c2 , 0),

with cn > 0 uniformly bounded above by a fixed real number. Consequently,
when r is large enough one has

v
(0)
7,r ≤ w(0)

7 (r − 1, 0, [exp2(ra1)], 0),

for a suitable fixed real number a1 > 0. We next apply (6.3), and then again
repeatedly apply (6.2). We now obtain

v
(0)
7,r ≤ w(0)

7 (r − 2, 0, [exp4(ra2)], 0),
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for a suitable fixed real number a2 > 0. Repeating this iteration pattern, we
ultimately obtain

v
(0)
7,r ≤ w(0)

7 (0, 0, [exp2r(r
a)], 0),

for a suitable fixed real number a > 0. It therefore follows from Schmidt [10,
Theorem 1] that

(6.4) v
(0)
7,r � exp2r+1(r).

Notice that in deriving the upper bound (6.4), it is conceivable that in
following Schmidt’s strategy, we are forced by the structure of our implicit
forms to apply the bounds (6.2) and (6.3) in the indicated fashion. Thus
we conclude that Schmidt’s method is incapable of providing estimates sub-
stantially stronger than (6.4). By contrast, Theorem 1 of the present paper
establishes the bound

v
(0)
7,r ≤ exp42 log(7r)(7r),

which is plainly stronger for large r.
For larger odd exponents d, the worst bounds that arise from Schmidt’s

strategy are obtained as follows. One repeatedly applies Lemma 6.1 so as to
reduce the number of implicit equations of lowest degree until none of that
degree remain. Here one ignores implicit linear equations. One then takes
the next lowest degree for which there are implicit equations, applies Lemma
6.1 so as to reduce the number of such equations, this in turn spawning many
equations of lower degree. An analysis only slightly more careful than that
above will reveal that the bounds attainable by such an approach take the
shape (1.6) indicated in the introduction.
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