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1. Introduction. If χ is a Dirichlet character, we define

(1.1) SN (H,χ) =
N+H∑

y=N+1

χ(y)

for any integers N , H with H ≥ 1. Our first objective is to obtain a condi-
tional improvement of the following well-known result:

Theorem 1.2 (Burgess [8], [10]). Let n, H be positive integers, let N be
any integer , and let ε be any positive real number. Let χ be a nonprincipal
Dirichlet character mod n. Then

(1.3) SN (H,χ)�ε,t H
1−1/tn(t+1)/4t2+ε

for each of the values t = 1, 2, 3 (the implied constant depends at most on
ε and t). Furthermore, if n is cubefree, then (1.3) holds for every positive
integer t.

Note that when t = 1, (1.3) is a slightly weakened version of the Pólya–
Vinogradov inequality (in which the factor nε can be replaced by log n).

Theorem 1.2 has significant applications in number theory. For such ap-
plications, it is important that (1.3) be superior to the trivial inequality

(1.4) |SN (H,χ)| ≤ H
in the widest possible range of H. For a given positive integer t, (1.3) is
better than (1.4) if H ≥ n(t+1)/4t+δ for some fixed δ > 0, and otherwise
(1.4) is better. In particular, (1.3) with t = 3 is better than (1.4) whenever
H ≥ n1/3+δ, and (1.4) is better for every t if H ≤ n1/4. In order to get
nontrivial estimates from Theorem 1.2 in the range n1/4 < H ≤ n1/3, we
must assume t > 3, which in turn requires the hypothesis that n be cubefree.
We shall show that this latter hypothesis can be removed at the cost of
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an extra factor on the right-hand side of (1.3). We shall in fact obtain a
new version of (1.3) which holds for any positive integers n, H, t and any
nonprincipal χ mod n. This will lead to improved estimates in several related
problems about the structure of the multiplicative group mod n.

Before stating our results, we need to specify some notation to be used
throughout. The symbols n, k always represent positive integers, to be re-
garded as completely arbitrary unless further assumptions are stated. Also,
y is any integer and p denotes any (positive) prime number. If a is a non-
negative integer, pa ‖n means that pa |n and pa+1 -n. We say n is cubefree
if p3 -n for every prime p. The symbols δ, ε represent any positive real num-
bers, and ε is not necessarily the same from one occurrence to the next. To
avoid undue repetition in the statements of our theorems, we shall adopt
the following convention throughout this paper:

(1.5) Any inequality involving ε is asserted to hold for every ε > 0.

The notations Oδ,ε,... and �δ,ε,... imply constants depending at most on
δ, ε, . . . , while O and � without subscripts imply absolute constants. We
use φ to denote Euler’s function, and we define log2 x = log log x, logr x =
log(logr−1 x) for r = 3, 4, . . . We often write x1 . . . xm/y1 . . . yn instead of
(x1 . . . xm)(y1 . . . yn)−1. [x] denotes the greatest integer ≤ x. Empty sums
mean 0, empty products 1. The term “character” means “Dirichlet char-
acter” throughout except in Lemma 3.6, where we refer to characters of a
finite Abelian group. If χ is a character mod n, we write ordχ for the order
of χ (in the group of characters mod n).

Our new version of Theorem 1.2 reads as follows:

Theorem 1.6. Let n, k, N , H be any integers with n, k, H positive. Let
χ be a nonprincipal character mod n such that χk is principal. Then (recall
(1.5))

(1.7) SN (H,χ)�ε,t Rk(n)1/tH1−1/tn(t+1)/4t2+ε

for every positive integer t, where

(1.8) Rk(n) = min{M(n)3/4, Q(k)9/8}
and

(1.9) M(n) =
∏

pa‖n, a≥3

pa,

(1.10) Q(k) =
∏

pa‖ k, a≥2

pa.

In particular ,

(1.11) SN (H,χ)�δ Hn
−δ2(1+2δ)−1

if H ≥ Rk(n)n1/4+δ and δ > 0.
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Theorem 1.6 generalizes Theorem 1.2 when t > 3. The inequality (1.7)
is of greatest interest when Q(k) is of small or moderate size. For example,
if k is bounded or squarefree, then (1.7) has the same strength as (1.3)
with no restriction on n or t. In particular, it follows that (1.3) holds for
all real-valued nonprincipal characters (the case k = 2) without restriction
on n or t, a fact noted in a slightly weaker form by Burgess [7], p. 194,
Corollary. When n is arbitrary and Rk(n) ≤ n1/12−α for some fixed α > 0,
(1.11) shows that Theorem 1.6 gives a nontrivial estimate for SN (H,χ) in
a wider range of H than Theorem 1.2. On the other hand, it is not hard to
see that Theorem 1.6 offers no advantage over the combination of (1.4) and
Theorem 1.2 when Rk(n) ≥ n1/12.

Our first application of Theorem 1.6 is

Theorem 1.12. Let χ be a nonprincipal character mod n. Let m, h be
any integers with h positive, and suppose χ is constant on the set {y : m < y
≤ m+ h and (y, n) = 1}. Then h�ε n

1/4+ε.

This generalizes a theorem of Burgess [9], who obtained the estimate
h � p1/4 log p when n = p is prime. Theorem 1.12 also generalizes a result
on consecutive power residues (or nonresidues) which was stated without
proof by Norton [34], Theorem 4; a weaker version of that result was proved
in [30], Theorem 3.15. See the remarks after the proof of Theorem 3.27
below.

The proof of Theorem 1.12 is a short, simple application of Theorem 1.6
(see §2). With more effort, Theorem 1.12 can be generalized considerably.
Recall that ordχ denotes the order of the character χ. If ordχ = k, it is
a straightforward exercise to show that the set of nonzero values of χ is
exactly the set of kth roots of unity. Our generalization of Theorem 1.12
reads as follows:

Theorem 1.13. Let K(q) be a real-valued function on the positive inte-
gers such that (recall (1.5))

(1.14) 1 ≤ K(q)�ε q
ε.

Let χ be a nonprincipal character mod n with ordχ = k. Let m, h be any in-
tegers with h positive, and suppose that χ assumes at most min{k−1,K(n)}
distinct values on the set {y : m < y ≤ m + h and (y, n) = 1}. Then
h�ε n

1/4+ε.

We shall prove this in §5. Some nontrivial bound on the number of values
assumed by χ is necessary in Theorem 1.13, for if χ is a character mod p
with ordχ = p − 1, then χ assumes exactly h distinct values on the set
{y : 0 < y ≤ h} for any integer h with 1 ≤ h ≤ p−1. It would be interesting
to know whether the conclusion of Theorem 1.13 still holds if the assumption
(1.14) is weakened somewhat.
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In order to state further applications of Theorem 1.6, we must introduce
some additional notation. For any positive integer n, let C(n) denote the
multiplicative group of residue classes mod n which are relatively prime to n.
(For convenience in stating theorems about C(n) and its subgroups, we shall
generally ignore the distinction between a member {y : y ≡ b (mod n)} of
C(n) and the integer b itself.) If E is any subgroup of C(n), write

(1.15) ν = ν(n;E) = [C(n) : E],

and let

1 = g0(n;E) < g1(n;E) < . . . < gν−1(n;E)

be the smallest positive representatives of the ν cosets of E in C(n). Thus
for 1 ≤ m ≤ ν − 1, gm = gm(n;E) is the least positive integer relatively
prime to n such that gm 6∈

⋃m−1
r=0 grE.

A particularly interesting example of E is the subgroup

(1.16) Ck(n) = {z : z = xk for some x ∈ C(n)},
where k is a positive integer. In this case, we write

(1.17) ν(n;Ck(n)) = νk(n).

When νk(n) > 1, g1(n;Ck(n)) exists and is the least positive kth power
nonresidue mod n which is relatively prime to n. When p is prime, the esti-
mation of the numbers gm(p;Ck(p)) is a classical problem of great interest,
particularly in the case m = 1. In a series of papers [29]–[34], the author
generalized the classical methods for prime modulus to the case of an arbi-
trary modulus n, obtaining estimates for gm(n;Ck(n)) and various related
results on the distribution of power residues and nonresidues mod n. Using
Theorem 1.6, we shall show in this paper how to strengthen several of those
results, and we shall simultaneously generalize them by replacing Ck(n) by
an arbitrary subgroup E of C(n). Bach [2] seems to be the only previous
author to investigate the size of gm(n;E) when n and E are both arbitrary;
however, he assumed the extended Riemann hypothesis and considered only
the case m = 1.

To state here some of our main theorems, we need to introduce Dickman’s
function %, defined recursively by

(1.18) %(α) =





1 (0 ≤ α ≤ 1),
%(N)− Tα

N
v−1%(v − 1) dv (N < α ≤ N + 1;

N = 1, 2, . . .).

The function %(α) is positive, continuous, and strictly decreasing for α ≥ 1,
and %(α) → 0 as α → +∞. (See [31], Lemma 4.7, or see [21], §2, where
additional information and references are given.) Hence we can define a
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function α(w) by α(1) = 1 and

(1.19) %(α(w)) = w−1 for real w > 1.

It follows that α(w) is strictly increasing for w ≥ 1, and α(w) → +∞ as
w → +∞. (Estimates for α(w) and some numerical results are given at the
end of §4.)

Theorem 1.20. Let w be any integer > 1. Let E be any subgroup of
C(n) with ν(n;E) ≥ w. Then (recall (1.5))

(1.21) g1(n;E)�w,ε n
1/4α(w)+ε.

Taking w = 2, we get the universal estimate

(1.22) g1(n;E)�ε n
β+ε whenever E 6= C(n),

where

(1.23) β = 1/4α(2) = 1/4e1/2 = 0.15163 . . .

For the special case E = Ck(n), the estimate (1.21) was stated without
proof in Norton [34], Theorem 1. (The proof we had in mind at that time
was different from the proof in this paper.) A somewhat less precise and less
general result for E = Ck(n) was proved in [31], Theorem 6.4. The latter
result was a generalization of a theorem of Wang Yuan, who essentially ob-
tained Theorem 1.20 for n = p and E = Ck(p), thus generalizing a theorem
of Burgess for n = p and E = C2(p) (for references and comments, see [31],
pp. 4–7).

We can generalize Theorem 1.20 to the estimation of gm(n;E) when
1 < m < w ≤ ν(n;E), but the result (Theorem 4.23) is crude unless m is
quite small compared to w. That result can be used, however, to obtain the
following somewhat more satisfactory theorem:

Theorem 1.24. Let m be any positive integer , and let E be any subgroup
of C(n) with ν(n;E) > m. Then

(1.25) gm(n;E)�m,ε n
1/4+ε.

For fixed m ≥ 2, Theorem 1.24 gives our best universal upper bound
for gm(n;E) (i.e., our best upper bound if we assume only that gm(n;E)
exists). This theorem is significant only for bounded values of m, and in
general, it sheds no light on the especially interesting case m = ν(n;E)− 1.
In the latter case, our methods do not yield good results unless ν = ν(n;E)
is a rather small function of n. Some such difficulty is to be expected, since
trivially gm(n;E) ≥ m + 1 for 0 ≤ m ≤ ν − 1 (and gm(p; {1}) = m + 1 for
0 ≤ m ≤ p− 2). However, we can get the estimate

(1.26) gν−1(n;E)�k,ε n
1/4+ε if E contains Ck(n)
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(see Corollary 3.38 and the comments following it). We shall also prove the
following uniform result when ν(n;E) is not too large (see Corollary 3.43
and the remark following it):

Theorem 1.27. Let K(q) be a real-valued function on the positive in-
tegers such that (1.14) holds. Let E be any subgroup of C(n) with ν =
ν(n;E) ≤ K(n). Then

(1.28) gν−1(n;E)�ε n
1/4+ε.

Our theorems yield new results on a problem considered by Kolesnik and
Straus [25]. Let χ be a character mod n with ordχ = k. As we remarked
before Theorem 1.13, χ assumes exactly k nonzero values (the kth roots
of unity). As in [25], define g0 = g0(χ) = 1, and for 1 ≤ m ≤ k − 1, let
gm = gm(χ) be the least positive integer such that

(1.29) χ(gm) 6∈ {0, χ(g0), χ(g1), . . . , χ(gm−1)}.
In other words, gm(χ) is the least positive integer at which χ attains its
(m+ 1)st nonzero value. Clearly

1 = g0(χ) < g1(χ) < . . . < gk−1(χ) ≤ n.
Kolesnik and Straus obtained upper bounds for the numbers gm(χ) under
the assumptions that the modulus n is cubefree and k = ordχ is bounded.
We shall improve certain aspects of their work by eliminating these two
assumptions. For example:

Theorem 1.30. Let w be any integer > 1. Let χ be a character mod n
with ordχ = k ≥ w. Then

(1.31) g1(χ)�w,ε n
1/4α(w)+ε,

where α(w) is defined by (1.19).

This may be compared with Lemma 4.8 of [25], where (1.31) is proved
under the assumptions that n is cubefree and k = w > 1. Theorem 1.30 also
improves Theorem 3.6 of Burthe [11], who obtained the case w = 2 of (1.31)
under the assumption that 8 -n. (For arbitrary n, Burthe got a result like
(1.31) with w = 2 and 1/4α(w) replaced by 1/3α(w).)

We shall prove Theorem 1.30 and give estimates for gm(χ) when m > 1
in §5. See especially (5.7) and Corollary 5.14.

Our final main result is

Theorem 1.32. Let G(n) be the least positive integer G such that {y :
1 ≤ y ≤ G and (y, n) = 1} generates C(n). Then

(1.33) G(n)�ε n
β+ε,

where β is defined by (1.23).
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To prove this, let n ≥ 3, and let E be the subgroup of C(n) generated by
{y : 1 ≤ y < G(n) and (y, n) = 1}. Then E 6= C(n), and clearly G(n) 6∈ E.
Hence G(n) = g1(n;E) and the result follows from (1.22).

In [11], Proposition 2.1, Burthe showed that for n ≥ 3,

(1.34) G(n) = max{g1(χ) : χ nonprincipal mod n}.
Observe that (1.34) and Theorem 1.30 (with w = 2) yield another proof of
Theorem 1.32. Burthe used (1.34) and a weaker version of Theorem 1.30
to get (1.33) when 8 -n, and he obtained the inequality G(n) �ε n

4β/3+ε

for all n. Bach and Huelsbergen [3] had previously stated without proof the
much weaker estimate

G(n)� n1/2(logn) log2 n.

Our upper bounds for the numbers g1(n;E) and g1(χ) are much larger
than bounds which can be obtained on the assumption of the extended
Riemann hypothesis (ERH). Montgomery [28], Theorem 13.1, generalized
work of Ankeny [1] by showing that

(1.35) g1(χ)� (logn)2 on ERH

for any nonprincipal character χ mod n. Bach [2] showed that

(1.36) g1(n;E) < 3(log n)2 on ERH

if E is any subgroup of C(n) with E 6= C(n). (For remarks on related upper
bounds, see [31], pp. 6–7, and [34], pp. 214–215, 218.) On the other hand,
Elliott [14] obtained the unconditional lower bound

(1.37) g1(p;Ck(p)) > dk log p

for infinitely many primes p ≡ 1 (mod k), where dk is positive and depends
only on k. (Elliott actually stated this result only for prime values of k but
remarked to the author that it holds for any k > 1.) In the case k = 2,
(1.37) was improved slightly but unconditionally by Graham and Ringrose
[18], while Montgomery [28], Theorem 13.5 and p. 128, obtained a somewhat
better result on ERH.

By (1.34) and (1.35), G(n) � (log n)2 for all n ≥ 2 on ERH, and Pap-
palardi [35] has recently shown unconditionally that G(p) � (log p)2 for
almost all primes p. Bach and Huelsbergen [3] gave a heuristic argument
suggesting that the maximal order of G(n) is about (log n) log2 n. On the
other hand, since ν(n;C2(n)) = ν2(n) ≥ 2 for n ≥ 3 (see the remarks at the
beginning of §3), we have

(1.38) G(n) ≥ g1(n;C2(n)) for n ≥ 3,

for otherwise the integers y with 1 ≤ y ≤ G(n) and (y, n) = 1 would all be
quadratic residues mod n and hence could not generate C(n). Thus (1.37)
and the improvements mentioned above lead to lower bounds for G(p). (For
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further information on lower bounds for G(n), see Burthe [11].) Moreover,
(1.38) shows that any improvement in (1.33) would lead to a corresponding
improvement in the long-standing estimate (1.22) for g1(n;C2(n)). Thus we
expect that it will be difficult to improve Theorem 1.32.

My thanks to Dr. Ronald Burthe, Jr. for stimulating my interest in the
problem of estimating G(n). It was that stimulus which led to all of the
developments in this paper.

2. Proofs of Theorems 1.6 and 1.12

Lemma 2.1. Suppose that n, q, m are positive integers with n = qm and
(q,m) = 1. If χ is a character mod n, then χ has a unique representation of
the form χ = θξ, where θ is a character mod q and ξ is a character mod m.
Also, χ is primitive if and only if θ and ξ are primitive.

The proof of Lemma 2.1 is a straightforward exercise using the Chinese
Remainder Theorem. For details, see [19], pp. 220–221. (Also see [19], pp.
217–224 for basic properties of conductors and primitive characters.)

In the remainder of this section, SN (H,χ) is always defined by (1.1).

Lemma 2.2. Let χ be a primitive character mod n, where n > 1. Let N ,
H, t be any integers with H, t positive. Then

(2.3) SN (H,χ)�ε,t M(n)3/4tH1−1/tn(t+1)/4t2+ε,

where M(n) is defined by (1.9).

P r o o f. This lemma generalizes and strengthens a result of Burgess [7],
Corollary to Theorem 1. We shall use his method of proof.

Write M(n) = m, and define

q =
∏

pa‖n, a≤2

pa,

so n = qm and (q,m) = 1. First observe that if H < m, then

m3/4tH1−1/tn(t+1)/4t2+ε > m3/4tH1−1/tm1/4t > H ≥ |SN (H,χ)|.
Hence we may assume

(2.4) H ≥ m.
Also, if m = n, then (2.4) gives

m3/4tH1−1/tn(t+1)/4t2+ε > n ≥ |SN (H,χ)|.
Hence we may assume m < n, so q > 1.

By Lemma 2.1, we can write χ = θξ, where θ is primitive mod q and
ξ is primitive mod m. Observe that for each integer y, there is a unique
integer w with 1 ≤ w ≤ m and y ≡ −wq (mod m). If we use the notation
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∑{f(x) : P (x)} for the summation of f(x) over all x satisfying the condition
P (x) (a similar notation will be used below for certain products), it follows
that

|SN (H,χ)| =
∣∣∣
m∑
w=1

∑
{θ(y)ξ(y) : N < y ≤ N +H, y ≡ −wq (mod m)}

∣∣∣

≤
m∑
w=1

∣∣∣
∑
{θ(y) : N < y ≤ N +H, y ≡ −wq (mod m)}

∣∣∣.

Writing y = zm− wq, we get θ(y) = θ(z)θ(m), so

|SN (H,χ)| ≤
m∑
w=1

∣∣∣
∑
{θ(z) : (N + wq)/m < z ≤ (N + wq +H)/m}

∣∣∣.

Now apply Theorem 1.2 to the inner sum on the right, keeping in mind
that q is cubefree. The number of integers z in the interval of summation is
< 2H/m by (2.4). Hence for any positive integer t,

SN (H,χ)�ε,t

m∑
w=1

(H/m)1−1/tq(t+1)/4t2+ε

= m1/tH1−1/t(n/m)(t+1)/4t2+ε.

Lemma 2.5. Let χ be a nonprincipal character mod n with conductor d.
Let N , H, t be any integers with H, t positive. Then

(2.6) SN (H,χ)�ε,t 2ω(n)M(d)3/4tH1−1/td(t+1)/4t2+ε,

where ω(n) is the number of distinct prime factors of n.

P r o o f. Let X be the primitive character mod d which induces χ. Define

f =
∏

p|n, p - d
p.

Then χ = χ0X, where χ0 is the principal character mod f . Using the rep-
resentation

χ0(y) =
∑

h|(f,y)

µ(h) =
∑

h|f, h|y
µ(h),

where µ is the Möbius function, we easily obtain

|SN (H,χ)| ≤
∑

h|f

∣∣∣
∑
{X(z) : N/h < z ≤ (N +H)/h}

∣∣∣.

We now apply Lemma 2.2 to the inner sum on the right and use the fact
that

∑
h|f 1 = 2ω(f) ≤ 2ω(n) to obtain (2.6).
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In the special cases t = 1, 2, 3, the same method of proof with Theo-
rem 1.2 in place of Lemma 2.2 shows that (2.6) holds without the factor
M(d)3/4t on the right-hand side.

Before going further, we mention the simple fact that if n and q are any
positive integers, then

(2.7) n | q implies M(n) |M(q).

Since 2ω(n) �ε n
ε, it follows that for any nonprincipal χ mod n and any

positive integer t, (2.6) implies (1.7) with Rk(n) replaced by M(n)3/4. It
requires a little more work to obtain the full strength of Theorem 1.6.

Proof of Theorem 1.6 . We need to introduce some notation. Write

n = pa1
1 . . . parr ,

where p1, . . . , pr are primes with p1 < . . . < pr and aj is a positive integer
for each j. With reference to this factorization of n, write

k = pf1
1 . . . pfrr k

′,

where each fj is a nonnegative integer and k′ is an integer with (k′, p1 . . . pr)
= 1. For 1 ≤ j ≤ r, define

γj =
{

min{aj , fj + 1} if pj is odd,
min{aj , fj + 2} if pj = 2.

Also, let

λ = λk(n) =
{

2 if n is even and k is odd,
1 otherwise,

and define

(2.8) nk =
r∏

j=λ

p
γj
j .

(As always, an empty product means 1.)
Let d be the conductor of χ. We need the fact that

(2.9) d |nk.
This is the same as (3.18) of [32], where two proofs are given. (Some back-
ground is presented in [29]. Note that in both papers, ψ denotes a typical
character mod n such that ψk is principal, and K(ψ) is the conductor of ψ.)
From (2.9) and (2.7), we get M(d) ≤M(nk). Applying Lemma 2.5 and the
inequalities ω(n) ≤ ω(nk) + 1, 2ω(m) �ε m

ε, we obtain

(2.10) SN (H,χ)�ε,t M(nk)3/4tH1−1/tn
(t+1)/4t2+ε
k

for every positive integer t.
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It is obvious that nk |n, so

(2.11) M(nk) |M(n)

by (2.7). We shall complete the proof of (1.7) by showing that

(2.12) M(nk) ≤ 8Q(k)3/2.

To prove (2.12), first suppose that n is odd, or that n is even and k is odd.
Then for each j with λ ≤ j ≤ r and γj ≥ 3, it follows that pj is odd, fj ≥ 2,
and γj ≤ fj + 1 ≤ (3/2)fj . Hence

M(nk) ≤
∏
{p(3/2)fj
j : λ ≤ j ≤ r, fj ≥ 2} ≤ Q(k)3/2.

Now suppose that n and k are both even, so λ = 1 and p1 = 2. If γ1 < 3,
we obtain M(nk) ≤ Q(k)3/2 as before. If γ1 = 3, then

M(nk) ≤ 23
∏
{p(3/2)fj
j : 2 ≤ j ≤ r, fj ≥ 2} ≤ 8Q(k)3/2.

If γ1 ≥ 4, then f1 ≥ 2 and

M(nk) ≤ 2 · 2(3/2)f1
∏
{p(3/2)fj
j : 2 ≤ j ≤ r, fj ≥ 2} ≤ 2Q(k)3/2.

This completes the proof of (2.12), and (1.7) follows from (2.10), (2.11), and
(2.12).

To prove (1.11), note that if H ≥ Rk(n)n1/4+δ for some δ > 0, then (1.7)
yields

SN (H,χ)�ε,t Hn
f(t)+ε,

where f(t) = −δ/t + 1/4t2. The function f(x) increases for real x ≥ 1/2δ,
so if we take t = [1/2δ] + 1, we get

f(t) ≤ f(1/2δ + 1) = −2δ2(1 + 2δ)−1 + δ2(1 + 2δ)−2

< (−δ2 − 2δ3)(1 + 2δ)−2 = −δ2(1 + 2δ)−1,

and (1.11) follows with an appropriate choice of ε = ε(δ).

Note that (2.10) is our most general estimate for SN (H,χ) under the
hypotheses of Theorem 1.6. Because of the complicated definition (2.8) of nk,
it seems preferable to have the simplified inequality (1.7) in place of (2.10).

As an application of Theorem 1.6, we have

Proof of Theorem 1.12 . Let χ be a nonprincipal character mod n which
is constant on {y : m < y ≤ m + h and (y, n) = 1}. Write ordχ = k, and
define a character θ mod n as follows: choose a prime factor q of k and let
θ = χk/q. Then θ has order q, and θ is constant on {y : m < y ≤ m + h
and (y, n) = 1}. Hence |Sm(h, θ)| = Sm(h, χ0), where χ0 is the principal
character mod n. Now, the estimate

(2.13) Sm(h, χ0) = n−1φ(n)h+Oε(nε)
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is easily obtained by using the representation for χ0(y) given in the proof of
Lemma 2.5 (see [29], (3.17)). On the other hand, Theorem 1.6 gives

Sm(h, θ)�ε,t h
1−1/tn(t+1)/4t2+ε

for every positive integer t. Comparing this inequality with (2.13) and choos-
ing t as an appropriate function of ε, we get the result.

The use of Theorem 1.2 instead of Theorem 1.6 in the preceding proof
would yield the weaker estimate h�ε n

1/3+ε (unless n is cubefree).

3. Distribution of integers in cosets of a subgroup of C(n).
Throughout this section, n and k denote any positive integers, and we use
the notations C(n), E, ν(n;E), gm(n;E), Ck(n), νk(n) introduced after
Theorem 1.13. Thus E denotes an arbitrary subgroup of C(n), while Ck(n)
is the special subgroup defined by (1.16). In [29], p. 167, it was shown that
for fixed k, the index νk(n) = [C(n) : Ck(n)] is a multiplicative function
of n, and the following formulas were established:

(3.1) νk(pa) = (k, φ(pa)) if p is an odd prime and a = 1, 2, . . . ,

(3.2) νk(2) = 1, νk(2a) = (k, 2)(k, 2a−2) for a = 2, 3, . . .

It follows that

(3.3) νk(n) ≤ 2kω(n),

where ω(n) is the number of distinct prime factors of n. It is well known
that ω(n)� (log n)(log2 n)−1 for n ≥ 3, so (3.3) implies

(3.4) νk(n)�k,ε n
ε.

If k is an integer such that E contains Ck(n), then clearly ν(n;E) ≤ νk(n).
Hence

(3.5) ν(n;E)�k,ε n
ε if E contains Ck(n).

Our objective in this section is to study the distribution of members of
cosets of E in intervals. We begin with the following lemma:

Lemma 3.6. Let G be a finite multiplicative Abelian group, and let G∗

denote its character group. Let k be a positive integer , and write Gk = {z :
z = xk for some x ∈ G}. If H is any subgroup of G, define

(3.7) H ′ = {θ ∈ G∗ : θ(x) = 1 for all x ∈ H}
(thus H ′ is a subgroup of G∗). For each θ ∈ H ′, define θ∗ on G/H by
θ∗(xH) = θ(x). Then:

G is isomorphic to G∗;(3.8)

H = {x ∈ G : θ(x) = 1 for all θ ∈ H ′};(3.9)

the mapping θ 7→ θ∗ is an isomorphism of H ′ onto (G/H)∗;(3.10)
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(3.11)
∑

x∈H
θ(x) =

{ |H| if θ ∈ H ′,
0 if θ ∈ G∗ \H ′;

(3.12)
∑

θ∈H′
θ(x) =

{
[G : H] if x ∈ H,
0 if x ∈ G \H;

(3.13) if σ = [G : H] and x1, . . . , xσ are any representatives of the distinct
cosets of H in G, then

σ∑

j=1

θ(xj) =
{
σ if θ is the principal character ,
0 if θ ∈ H ′ and θ is nonprincipal ;

(3.14) |H ′| = [G : H];
(3.15) H contains Gk if and only if θk is principal for each θ ∈ H ′;
(3.16) if [G : H] divides k, then H contains Gk.

P r o o f. The assertions (3.8) to (3.13) constitute Lemma 3.1 of [29].
The assertion (3.14) follows from (3.10) and (3.8). The result (3.15) is an
obvious consequence of the elementary fact that if J and H are subgroups
of G, then H contains J if and only if J ′ contains H ′ (the proof of this uses
(3.9)). Finally, if [G : H] divides k, then |H ′| divides k by (3.14), so θk is
principal for each θ ∈ H ′, so H contains Gk by (3.15).

Lemma 3.17. Write ν(n;E) = ν, gs(n;E) = gs. Let s, m be any integers
with 0 ≤ s ≤ ν − 1, and let h be real with h ≥ 1. Define Ns(n,E;m,m+ h)
to be the number of integers y such that m < y ≤ m+ h and y ∈ gsE. Then
(recall (1.1))

(3.18) Ns(n,E;m,m+ h) = ν−1Sm([h], χ0) + ν−1∆s(n,E;m,m+ h),

where χ0 is the principal character mod n,

(3.19) ∆s(n,E;m,m+ h) =
∑′

θ

θ(gs)Sm([h], θ),

and

(3.20)
∑′

θ

means
∑

θ∈E′, θ 6=χ0

.

Furthermore,

(3.21)
ν−1∑
s=0

∆s(n,E;m,m+ h) = 0,

(3.22)
ν−1∑
s=0

{∆s(n,E;m,m+ h)}2 = ν
∑′

θ

|Sm([h], θ)|2.
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P r o o f. Apply Lemma 3.6 with G = C(n), H = E. By (3.14), |E′| =
[C(n) : E] = ν, and it follows from (3.12) that

ν−1
∑

θ∈E′
θ(y)θ(gs) =

{
1 if y ∈ gsE,
0 otherwise.

Summing this formula over m < y ≤ m + h, we get (3.18). To get (3.21),
simply observe that

ν−1∑
s=0

Ns(n,E;m,m+ h) = Sm([h], χ0)

and apply (3.18). To prove (3.22), square both sides of (3.19) and sum over
s to get

ν−1∑
s=0

{∆s(n,E;m,m+ h)}2

=
ν−1∑
s=0

∑′

θ1,θ2

∑

1≤y1, y2≤h
(θ1θ2)(gs)θ1(m+ y1)θ2(m+ y2).

Now invert the order of summation and use (3.13) to get (3.22).

Theorem 3.23. Write ν(n;E) = ν. Let s, m be any integers with 0 ≤
s ≤ ν − 1, and let h be real with h ≥ 1. Then

(3.24) Ns(n,E;m,m+ h) = (νn)−1φ(n)h+Oε(h1−1/tn(t+1)/4t2+ε)

for each of the values t = 1, 2, 3. If we assume also that k is a positive integer
such that E contains Ck(n), then

(3.25) Ns(n,E;m,m+ h)

= (νn)−1φ(n)h+Oε,t(Rk(n)1/th1−1/tn(t+1)/4t2+ε)

for every positive integer t, where Rk(n) is defined by (1.8).

P r o o f. To prove (3.24), we use (2.13) to estimate the first term on
the right-hand side of (3.18), then estimate ∆s(n,E;m,m+ h) by applying
Theorem 1.2 and (3.14) (with G = C(n), H = E) to (3.19):

∆s(n,E;m,m+ h)�ε,t

∑′

θ

h1−1/tn(t+1)/4t2+ε

�ε,t νh
1−1/tn(t+1)/4t2+ε

for t = 1, 2, 3.
Now suppose that E contains Ck(n). By (3.15), θk = χ0 for each θ ∈ E′.

Using Theorem 1.6 instead of Theorem 1.2, we obtain (3.25) (for every
positive integer t) in the same way as (3.24).



A character-sum estimate and applications 65

Theorem 3.23 is an appreciable improvement of Theorem 3.7 of Norton
[30], which dealt only with the special case E = Ck(n) (and which in turn
strengthened and generalized a result of Jordan [23]). Note that for any
subgroup E of C(n), (3.16) shows that

(3.26) If ν = ν(n;E) divides k, then E contains Ck(n).

In particular, E contains Cν(n), so that (3.25) holds for every positive integer
t if Rk(n) is replaced by Rν(n) (which does not exceed ν9/8 by Theorem
1.6).

Theorem 3.27. Let m, w be any integers with 1 ≤ w < ν = ν(n;E), and
let h ≥ 1 be real. Suppose that the set {y : m < y ≤ m + h and (y, n) = 1}
is contained in the union of w distinct cosets of E in C(n). Then

(3.28) h�ε {νw(ν − w)−1}t/2n(t+1)/4t+ε for t = 1, 2, 3.

If we assume also that k is a positive integer such that E contains Ck(n),
then

(3.29) h�ε,t {νw(ν − w)−1}t/2Rk(n)n(t+1)/4t+ε

for every positive integer t. In particular ,

(3.30) h�k,ε n
1/4+ε if E contains Ck(n).

P r o o f. Let T be a set of w distinct indices such that {y : m < y
≤ m+h and (y, n) = 1} is contained in

⋃
s∈T gsE, where gs = gs(n;E). Let

V = {s : 0 ≤ s ≤ ν − 1 and s 6∈ T}, and write Sm([h], χ0) = B, where χ0 is
the principal character mod n. If s ∈ V, then Ns(n,E;m,m+ h) = 0, so by
(3.18),

(3.31) B = −∆s(n,E;m,m+ h) for each s ∈ V
and

(3.32) (ν − w)B2 =
∑

s∈V
{∆s(n,E;m,m+ h)}2.

Adding the identities (3.31) over all s ∈ V and using (3.21), we get

(ν − w)B =
∑

s∈T
∆s(n,E;m,m+ h).

Applying the Cauchy–Schwarz inequality to this, we get

(3.33) (ν − w)2B2 ≤ w
∑

s∈T
{∆s(n,E;m,m+ h)}2.

A combination of (3.32) and (3.33) yields

(ν − w)B2 + w−1(ν − w)2B2 ≤
ν−1∑
s=0

{∆s(n,E;m,m+ h)}2,
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and it follows from this and (3.22) (see (3.20)) that

(3.34) B2 ≤ w(ν − w)−1
∑′

θ

|Sm([h], θ)|2.

Applying Theorem 1.2 to (3.34) and using (3.14), we get

B �ε,t {νw(ν − w)−1}1/2h1−1/tn(t+1)/4t2+ε for t = 1, 2, 3.

By (2.13), n−1φ(n)h = B +Oε(nε), and since n/φ(n)�ε n
ε, we find that

h�ε,t {νw(ν − w)−1}1/2h1−1/tn(t+1)/4t2+ε for t = 1, 2, 3,

from which (3.28) follows. The estimate (3.29) is obtained in the same way
from (3.34), (3.15), and (1.7).

Finally, observe that

ν(ν − w)−1 = 1 + w(ν − w)−1 ≤ w + 1,

so (3.29) gives

(3.35) h�ε,t w
tRk(n)n(t+1)/4t+ε (if E contains Ck(n))

for all positive integers t. Now apply (3.5), choose t appropriately as a func-
tion of ε, and observe that Rk(n) ≤ k9/8 by (1.8) and (1.10). This gives
(3.30).

In the special case w = 1, the conclusion of Theorem 3.27 can be im-
proved, for (3.14) shows that there exists a nonprincipal character χ in E′,
and χ must be constant on {y : m < y ≤ m + h and (y, n) = 1}. Hence
h�ε n

1/4+ε by Theorem 1.12 (there is no need for the assumption that E
contains Ck(n)). This result generalizes Theorem 4 of [34] (which was stated
without proof) and strengthens Theorem 3.15 of [30].

As an example of the application of Theorem 3.27, suppose that ν =
ν(n;E) > 1 and that m < q are successive members of a given coset of E.
Then the set {y : m < y < q and (y, n) = 1} is contained in the union of
the remaining ν − 1 distinct cosets of E, so by (3.28),

(3.36) q −m�ε ν
tn(t+1)/4t+ε for t = 1, 2, 3,

and if E contains Ck(n), (3.30) gives

(3.37) q −m�k,ε n
1/4+ε.

These inequalities generalize and strengthen Theorem 3.23 of [30], where
the best unconditional estimate was q −m�k,ε n

3/8+ε when E = Ck(n).
Similarly, Theorem 3.27 can be applied to the estimation of the coset

representatives gm(n;E):

Corollary 3.38. Let m be any integer with 1 ≤ m < ν = ν(n;E). Then

(3.39) gm(n;E)�ε m
tn(t+1)/4t+ε for t = 1, 2, 3.
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If k is a positive integer such that E contains Ck(n), then

(3.40) gm(n;E)�m,ε Rk(n)n1/4+ε

and

(3.41) gν−1(n;E)�k,ε n
1/4+ε.

P r o o f. Write gm(n;E) = gm. The set {y : 1 ≤ y < gm and (y, n) = 1}
is contained in the union of the cosets g0E, g1E, . . . , gm−1E. Thus (3.39)
follows from (3.28) and the inequality ν(ν−m)−1 ≤ m+ 1. Likewise, (3.40)
follows from (3.29), and (3.41) is a consequence of (3.30).

Corollary 3.38 generalizes and strengthens Theorems 7.18 and 7.21 of
Norton [29], where the best unconditional result was essentially gm(n;Ck(n))
�k,ε n

3/8+ε for 1 ≤ m < νk(n). Better results than (3.41) are known in some
special cases. For example, when n = p is prime, Jordan [24] (see also [22])
obtained

(3.42) gν−1(p;Ck(p))�k,ε p
(1−d)/4+ε.

Here ν = νk(p) = (k, p − 1) and d = d(ν) is a small positive function
of ν defined in a complicated way. Certain generalizations of (3.42) to the
case of arbitrary modulus n were given by Norton [29], Theorem 7.27; these
required that n have a bounded number of distinct prime factors. More
recently, Elliott [16], Theorem 1 (see also [15]) used a new method to obtain
a result which implies (3.42) with a different (quite small) value of d = d1(ν).
See (5.9) below and the comments following it.

We shall show in §4 that the factor Rk(n) in (3.40) can be omitted,
and the assumption that E contains Ck(n) is not needed for this improved
version of (3.40). This is the content of Theorem 1.24.

If we assume that ν(n;E) is not very large, we can derive a version of
Theorem 3.27 which is uniform in w and dispenses with the hypothesis that
E contains Ck(n):

Corollary 3.43. Let K(q) be a real-valued function on the positive
integers such that (1.14) holds. Let E be any subgroup of C(n) with 2 ≤ ν =
ν(n;E) ≤ K(n). Let m, h be any integers with h positive, and suppose that
the set {y : m < y ≤ m + h and (y, n) = 1} is contained in the union of
ν − 1 distinct cosets of E. Then h�ε n

1/4+ε.

P r o o f. By (3.26), E contains Cν(n). Apply Theorem 3.27 with w = ν−1
and k = ν. By (3.29),

h�ε,t ν
tRν(n)n(t+1)/4t+ε/4

for all positive integers t. Now, Rν(n) ≤ ν9/8 by (1.8), and by assumption,
ν ≤ K(n)�ε,t n

ε/4t. Hence

h�ε,t n
ε/4+(9/8)(ε/4t)+(t+1)/4t+ε/4
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for every positive integer t. If we choose t = max{2, [1/ε] + 1}, we get the
result.

Theorem 1.27 follows immediately from Corollary 3.43 if we take m = 0,
h = gν−1(n;E)− 1.

4. Proofs of Theorems 1.20 and 1.24. We continue to use the no-
tation of §3. At this point, we have proved the estimates for gm(n;E)
given by Corollary 3.38 and Theorem 1.27. Also, from the remark imme-
diately following the proof of Theorem 3.27, Theorem 1.12 implies that
g1(n;E) �ε n

1/4+ε whenever ν(n;E) > 1. We now seek to improve these
results on gm(n;E) when m is bounded. For this purpose, we introduce
the function Ψn(x, z), defined to be the number of integers y such that
1 ≤ y ≤ x, (y, n) = 1, and y has no prime factor greater than z (here x, z
are real numbers with x ≥ 1, z ≥ 1). We shall need an asymptotic formula
(or at least a sharp lower bound) for Ψn(x, z).

A very large amount of research has been done on the estimation of
Ψ1(x, z), but there have been relatively few papers on Ψn(x, z) for n > 1.
Norton [31] gave the first complete proofs of asymptotic formulas for Ψn(x, z)
when n is allowed to assume values which are rather large relative to x and z.
Those formulas were applied in [31] to the estimation of g1(n;Ck(n)) from
above. Norton’s formulas for Ψn(x, z) were extended to asymptotic expan-
sions and further improved by Hazlewood [20]. (Hazlewood used ideas of
Levin and Făınlĕıb [26], and he clarified and corrected some of their work in
the process.) The next progress on Ψn(x, z) was made much more recently by
Fouvry and Tenenbaum [17], who used more difficult methods and consid-
erably extended the range and precision of Norton’s and Hazlewood’s work.
For further recent results on Ψn(x, z), see Tenenbaum [36] and Xuan [37].

A survey of the research on Ψn(x, z) up to 1970 (most of it dealing with
the case n = 1) was given in [31]. For a very extensive survey of the literature
since then, together with many proofs and a discussion of related problems,
see Hildebrand and Tenenbaum [21].

While [17], [36], [37] contain refinements of Norton’s and Hazlewood’s
work on Ψn(x, z), those refinements are stated in such a way that they are
inconvenient to use for our present purpose: the estimation of gm(n;E) for
bounded m. Furthermore, we have no need for the extra precision and wider
range of validity of the recent work on Ψn(x, z), and the following rather
simple formula (which follows immediately from [31], Theorem 5.48) is quite
sufficient:

Lemma 4.1. Let n ≥ 3, and let x, α, A be real with x > e, 1 ≤ α ≤ A.
Then (see (1.5) and (1.18))
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Ψn(x, x1/α)

= n−1φ(n)%(α)x+Oε,A((log2 n)2(x/ log x) + nε(x1/α + x1−1/α)).

With this formula, we are in a position to prove the following preliminary
estimates:

Lemma 4.2. Define the function α(w) by (1.19). Let m, w be any integers
with 1 ≤ m < w, and let E be any subgroup of C(n) with ν = ν(n;E) ≥ w.
Write gs(n;E) = gs for 0 ≤ s ≤ ν − 1, and suppose that {gsE : 0 ≤ s ≤
m − 1} is a subgroup of the quotient group C(n)/E. Then for each δ > 0,
we have

(4.3) gm �w,δ n
1/3α(w/m)+δ.

If we assume also that k is a positive integer such that E contains Ck(n),
then for each δ > 0,

(4.4) gm �w,δ Rk(n)n1/4α(w/m)+δ.

P r o o f. It is clear that for each real h ≥ 1, the set {y : 1 ≤ y ≤ h,
(y, n) = 1, and y has no prime factor > gm − 1} is contained in the set

m−1⋃
s=0

{y : 1 ≤ y ≤ h and y ∈ gsE}.

Therefore,

(4.5) Ψn(h, gm − 1) ≤
m−1∑
s=0

Ns(n,E; 0, h) for real h ≥ 1,

in the notation of Lemma 3.17. The idea of the proof is to take h = (gm−1)α

for a suitable α, then compare the estimates of Lemma 4.1 and Theorem 3.23
via (4.5). While the proof is similar to the proof of [31], Theorem 6.4, we
shall give it in full because of some additional complications.

It suffices to prove (4.3) and (4.4) under the assumption that

(4.6) 0 < δ ≤ 1/2w.

By the definition (1.18),

(4.7) %(α) = 1− logα for 1 ≤ α ≤ 2,

and it follows from (1.19) that

(4.8) α(u) = exp(1− u−1) for 1 ≤ u ≤ (1− log 2)−1 = 3.25889 . . .

Since α(u) is strictly increasing for u ≥ 1, we have

(4.9) α(w/m) ≥ α(w(w − 1)−1) = exp(w−1) > 1 + w−1.
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For the remainder of this proof, we hold δ fixed (subject to (4.6)), and we
define

(4.10) α = α(w/m)− δ,
so

(4.11) α(w) > α > 1 + (2w)−1

by (4.6) and (4.9).
Since %(u) is positive and strictly decreasing for u ≥ 1, we can apply

[31], (4.10), to get

γ%(γ) =
γ\
γ−1

%(z) dz ≤ %(γ − 1) for γ ≥ 1,

and by [31], (4.8), it follows that

%(β)− %(γ) =
γ\
β

z−1%(z − 1) dz ≥ (γ − β)γ−1%(γ − 1)(4.12)

≥ (γ − β)%(γ) for 1 ≤ β ≤ γ.
Applying this with β = α, γ = α(w/m), and using (4.10), we obtain

(4.13) %(α) ≥ mw−1(1 + δ).

For the remainder of this proof, we let h = (gm − 1)α, and we assume
h > e (if h ≤ e, there is nothing to prove). We can use Lemma 4.1 and the
inequalities (4.11) and (4.13) to get the lower bound

(4.14) Ψn(h, h1/α) ≥ n−1φ(n)hmw−1(1 + δ)

+Oε,w((log2 n)2(h/ log h) + nε(h2w/(2w+1) + h1−1/α(w))).

Now if E contains Ck(n) and t is any positive integer, we can use (3.25)
and the hypothesis ν ≥ w to get an upper bound for Ns(n,E; 0, h) with
main term (wn)−1φ(n)h and the same error term as in (3.25). Adding these
estimates for Ns(n,E; 0, h), we get

(4.15)
m−1∑
s=0

Ns(n,E; 0, h)

≤ m(wn)−1φ(n)h+Oε,t(mRk(n)1/th1−1/tn(t+1)/4t2+ε).

Combining (4.5), (4.14), and (4.15), then subtracting m(wn)−1φ(n)h
from both sides and recalling that m < w by hypothesis, we obtain

m(wn)−1φ(n)hδ �ε,w,t (log2 n)2(h/ log h)(4.16)

+ nε(h2w/(2w+1) + h1−1/α(w))

+Rk(n)1/th1−1/tn(t+1)/4t2+ε

if E contains Ck(n) and t is any positive integer.
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Likewise, if t = 1, 2, 3 and we drop the assumption that E contains
Ck(n), then (3.24), (4.5), and (4.14) show that (4.16) holds with the factor
Rk(n)1/t replaced by 1.

Temporarily assuming that E contains Ck(n), we multiply both sides
of (4.16) by wn(mφ(n)h)−1 and apply the estimate n/φ(n) � log2 n. This
gives

δ �ε,w,t (log2 n)3(log h)−1 + nε(h−1/(2w+1) + h−1/α(w))(4.17)

+Rk(n)1/th−1/tn(t+1)/4t2+ε

for any positive integer t. Take t = [1/δ] + 1, so

(4.18) 1/δ < t < 3/2δ,

and choose

ε = min
{

1
8(2w + 1)

,
1

8α(w)
,
δ2

24

}
.

If h > Rk(n)n1/4+δ/2 and n > A1(w, δ) (sufficiently large), we get a con-
tradiction from (4.17) and (4.18). Hence either n ≤ A1(w, δ) (in which case
(4.4) is trivial) or h ≤ Rk(n)n1/4+δ/2 and we have

(4.19) gm − 1 = h1/α ≤ Rk(n)1/αn(1/4+δ/2)/α.

Since α > 1 by (4.11), it follows from (4.9) and (4.10) that

1
α

=
α+ δ

α(w/m)α
<

1
α(w/m)

+ δ,

so

(1/4 + δ/2)/α < 1/4α(w/m) + δ

and (4.4) follows from (4.19).
The proof of (4.3) is similar: as we remarked above, if we drop the as-

sumption that E contains Ck(n), then (4.16) holds if t = 3 and Rk(n)1/t is
replaced by 1. Keeping t = 3 and taking

ε = min
{

1
6(2w + 1)

,
1

6α(w)
,
δ

12

}
,

we get a contradiction as before if h > n1/3+δ/2 and n > A2(w, δ) (suffi-
ciently large), and (4.3) follows.

Lemma 4.20. Write gs(n;E) = gs for each s. Let m be any integer with
1 ≤ m ≤ ν(n;E) − 1. If g2

m−1 < gm, then {gsE : 0 ≤ s ≤ m − 1} is a
subgroup of C(n)/E.

P r o o f. If t, u are integers with 0 ≤ t ≤ u ≤ m− 1, then gtgu ≤ g2
m−1,

so (gtE)(guE) = (gtgu)E is in the set {gsE : 0 ≤ s ≤ m − 1}. Hence the
latter set is closed under multiplication.
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From Lemma 4.2, we can derive the following more satisfactory result:

Theorem 4.21. Let m, w be any integers with 1 ≤ m < w, and let E
be any subgroup of C(n) with ν = ν(n;E) ≥ w. Write gs(n;E) = gs, and
suppose that {gsE : 0 ≤ s ≤ m− 1} is a subgroup of C(n)/E. Then

(4.22) gm �w,δ n
1/4α(w/m)+δ for each δ > 0.

P r o o f. Keeping m, w fixed, we first prove (4.22) when ν is sufficiently
large. Since α(u) → +∞ as u → +∞, we can choose y = y(w) to be the
smallest positive integer such that α(y) ≥ (4/3)α(w). Let x = wy, and
observe that α(x/m) > α(y) ≥ (4/3)α(w/m). Thus if ν ≥ x, it follows from
(4.3) that

gm �x,δ n
1/3α(x/m)+δ �w,δ n

1/4α(w/m)+δ

for each δ > 0.
Now suppose that ν < x. By (3.26), E contains Cν(n), so (4.4) holds

with k = ν. By (1.8) and (1.10), Rν(n) ≤ ν9/8 < x9/8, and (4.22) follows.

Only in the case m = 1 of Theorem 4.21 do we know without further
hypotheses that {gsE : 0 ≤ s ≤ m− 1} is a subgroup of C(n)/E. However,
this is clearly enough to establish Theorem 1.20 (note that (1.22) and (1.23)
then follow from (4.8)). We can also use Theorem 4.21 to prove the following
more general result:

Theorem 4.23. Let m, w be any integers with 1 ≤ m < w. Let E be any
subgroup of C(n) with ν(n;E) ≥ w. Then for each δ > 0, we have

(4.24) gm = gm(n;E)�w,δ n
2m−3/α(w)+δ.

P r o o f. Fix δ > 0. By Theorem 4.21, there is a constant c(w, δ) ≥ 1
such that if {gsE : 0 ≤ s ≤ m− 1} is a subgroup of C(n)/E, then

(4.25) gm ≤ c(w, δ)n1/4α(w/m)+δ/2w .

In particular, (4.25) certainly holds for m = 1:

(4.26) g1 ≤ c(w, δ)n1/4α(w)+δ/2w = F,

say. We shall now prove by induction on m (without assuming that {gsE :
0 ≤ s ≤ m− 1} is a subgroup of C(n)/E) that

(4.27) gm ≤ F 2m−1

for 1 ≤ m < w. From this, (4.24) follows immediately.
If m = 1, (4.27) is the same as (4.26). Suppose that 2 ≤ m < w and that

(4.27) holds with m replaced by m − 1. If gm ≤ g2
m−1, then we get (4.27)

immediately. On the other hand, if g2
m−1 < gm, then {gsE : 0 ≤ s ≤ m− 1}



A character-sum estimate and applications 73

is a subgroup of C(n)/E by Lemma 4.20, so (4.25) holds. To derive (4.27),
take β = α(w/m) and γ = α(w) in (4.12) and simplify to get

α(w)/α(w/m) ≤ m/α(w/m) + 1− 1/α(w/m)

≤ m/α(w/m) +m{1− 1/α(w/m)} = m ≤ 2m−1.

Proof of Theorem 1.24 . As we remarked after (1.19), α(w) → +∞ as
w → +∞. Let w = w(m) be the least integer such that w > m and
2m−3/α(w) ≤ 1/4. If ν = ν(n;E) ≥ w, then the result follows from Theo-
rem 4.23. Now suppose that m < ν < w. By (3.26), E contains Cν(n), and
we can apply (3.40) and (1.8) to get

gm(n;E)�m,ε ν
9/8n1/4+ε �m,ε n

1/4+ε.

Because the function α(w) plays an important role in our results, we
summarize here some facts about this function of the real variable w ≥ 1.
As we mentioned after the definition (1.19), α(w) is strictly increasing. Using
an asymptotic formula for log %(α) due to de Bruijn [5], (1.8) (see also [31],
(3.24) or [21], Corollary 2.3), one can show that

(4.28) α(w) =
logw
log2 w

{
1 +

1
log2 w

+ o

(
1

log2 w

)}
as w → +∞.

Also, Buchštab [6] established a specific lower bound for %(α) and used it
to obtain the inequality

(4.29) α(w) > (logw)(log2 w + 2)−1 > 6 for w > e33.

(See [31], pp. 11, 74 for remarks about a small correction of Buchštab’s work
needed to establish (4.29).)

By (4.8),

(4.30) α(2) = e1/2 = 1.64872 . . . , α(3) = e2/3 = 1.94773 . . .

It is harder to calculate α(w) when w ≥ 4. Slightly refining a result of
Davenport and Erdős [13], p. 256, Chamayou [12], p. 203, obtained

(4.31) α(4) = 2.12459 . . . , α(5) = 2.25710 . . .

Using Table 1 of Bellman and Kotkin [4] (see van de Lune and Wattel
[27] for comments and corrections) and interpolating by use of the mean-
value theorem for derivatives, one can do further computations of α(w). For
example, we get these approximate values (correct to two decimal places):

(4.32) α(6) = 2.36, α(7) = 2.45, α(8) = 2.52.

We remarked above that for fixed m ≥ 2, Theorem 1.24 gives our best
universal upper bound for gm(n;E). Even in the case m = 2, the applica-
tion of Theorem 4.23 and (4.30) gives essentially nothing better than the
inequality g2(n;E) � n0.257 when ν(n;E) = 3. However, Theorem 4.23
gives a better estimate for g2(n;E) than Theorem 1.24 if ν(n;E) ≥ 4. In
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any case, (4.28) shows that (4.24) is crude (even worse than trivial) unless
m is very small compared to w.

5. Estimates for the Kolesnik–Straus numbers gm(χ). Throughout
this section, n and k are any positive integers as usual, and we assume

(5.1) χ is a character mod n with ordχ = k.

Recall that the numbers gm(χ) (0 ≤ m ≤ k − 1) were defined just before
Theorem 1.30.

Lemma 5.2. Assume (5.1), and let F be the subgroup of C(n) defined by

(5.3) F = {y ∈ C(n) : χ(y) = 1}.
Then

(5.4) ν(n;F ) = k

and

(5.5) gm(χ) = gm(n;F ) for 0 ≤ m ≤ k − 1.

P r o o f. Observe that if y, z are members of C(n), then

(5.6) yF = zF if and only if χ(y) = χ(z).

It follows that the mapping yF 7→ χ(y) is a well-defined one-to-one map-
ping of the quotient group C(n)/F into the multiplicative group Wk of kth
roots of unity, so ν(n;F ) ≤ k. On the other hand, the distinct characters
χ, χ2, . . . , χk are all members of F ′ (see (3.7)), so by (3.14), ν(n;F ) ≥ k.
Thus (5.4) follows. (Alternatively, it is straightforward to show directly that
the image of the homomorphism χ|C(n) is exactly Wk, so C(n)/F is iso-
morphic to Wk by the first isomorphism theorem of group theory, and (5.4)
follows.)

Using (5.6) and the definitions of gm(χ) and gm(n;F ), one can now prove
(5.5) easily by strong induction on m.

Theorem 1.30 follows immediately from Lemma 5.2 and Theorem 1.20.
Likewise, Lemma 5.2 and Theorem 1.24 yield

(5.7) gm(χ)�m,ε n
1/4+ε if (5.1) holds and 0 ≤ m ≤ k − 1.

Kolesnik and Straus [25], (4.7), obtained (5.7) in the special case when
n is cubefree and m = k − 1. (Note, however, that their result gives no
information when k is large, whereas (5.7) is significant for bounded m
regardless of the size of k.) They also used an elaborate and very ingenious
method to show ([25], Theorem 4.13) that if (5.1) holds, then

(5.8) gm(χ)�k,ε n
m/4α(k)+ε for n cubefree, 0 ≤ m ≤ k − 1.
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Note that the exponent in (5.8) is much smaller than the exponent in (4.24)
with w = k. However, because of the slow growth of α(k) (see (4.28)), (5.8)
is superior to (5.7) only when n is cubefree, k is bounded, and m is rather
small compared to k. We shall not attempt to generalize (5.8) to the case of
arbitrary n.

Elliott [15], [16] obtained a small improvement of (5.7) when n = p is
prime, m = k − 1, and (5.1) holds:

(5.9) gk−1(χ)�k,ε p
1/4−ck−19+ε,

where c is a positive absolute constant. As we remarked above, this implies
a result of the type (3.42). To see this, let p ≡ 1 (mod k). Since C(p) and
its character group are both cyclic, the same is true of Ck(p) and Ck(p)′

(defined by (3.7)), and we have |Ck(p)′| = νk(p) = k by (3.14) and (3.1).
Let χ be a generator of Ck(p)′. Then Ck(p) = {y ∈ C(p) : χ(y) = 1} by
(3.9), so gm(p;Ck(p)) = gm(χ) for 0 ≤ m ≤ k − 1 by (5.5), and (5.9) yields
a version of (3.42).

A drawback to (5.8) and (5.9) is that they give no information when k
is large. Likewise, (5.7) is uninformative when m is large. We can partially
remedy these disadvantages by proving Theorem 1.13.

Proof of Theorem 1.13 . Define D = {y : m < y ≤ m+h and (y, n) = 1},
and let w = min{k − 1, [K(n)]}. Let q be any integer such that

(5.10) q | k and q > w.

Define θ = χk/q. Then ord θ = q, and θ assumes, say, s (≤ w) distinct
values θ(y1), . . . , θ(ys) on D. Define F = {y ∈ C(n) : θ(y) = 1}. By (5.4),
ν(n;F ) = q. By (5.6), if y ∈ D, then y ∈ yjF for some j (1 ≤ j ≤ s). Hence
D is contained in the union of w distinct cosets of F in C(n). Clearly F
contains Cq(n), so by (5.10) and (3.29),

(5.11) h�ε,t {qw(q − w)−1}t/2Rq(n)n(t+1)/4t+ε/4

for every positive integer t. Applying the inequalities (1.8) and q(q−w)−1 ≤
w + 1, we get

(5.12) h�ε,t w
tQ(q)9/8n(t+1)/4t+ε/4

for every positive integer t, whenever (5.10) holds.
Next, we shall show that

(5.13) There exists q such that (5.10) holds and Q(q) ≤ w2.

To see this, write k = pa1
1 . . . parr , where p1 < . . . < pr are primes and

a1, . . . , ar are positive integers. First suppose that pajj > w for some j. Let
c be the smallest integer such that pcj > w, and take q = pcj . Then (5.10)
holds, and if c = 1, we have Q(q) = 1 by (1.10), while if c ≥ 2, then (1.10)
gives Q(q) = q, and we have q ≤ wpj ≤ w2. Now suppose that pajj ≤ w
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for each j = 1, . . . , r. Since k > w, there exists a smallest positive integer v
such that pa1

1 . . . pavv > w. If we take q = pa1
1 . . . pavv , then (5.10) holds, and

Q(q) ≤ q ≤ wpavv ≤ w2. Thus (5.13) holds.
By (1.14), w �ε,t n

ε/4t for each positive integer t, and if we combine
this inequality with (5.12) and (5.13), we get

h�ε,t n
ε/4+(9/4)(ε/4t)+(t+1)/4t+ε/4

for t = 1, 2, . . . Choosing t = max{3, [1/ε] + 1}, we obtain the result.

Applying Theorem 1.13 to the set {y : 0 < y ≤ gm(χ)−1 and (y, n) = 1},
we get

Corollary 5.14. Assume (5.1), and let K(q) be any function on the
positive integers which satisfies (1.14). If m is any integer such that 0 ≤
m ≤ min{k − 1,K(n)}, then gm(χ)�ε n

1/4+ε.

Corollary 5.14 generalizes (5.7) and compares favorably with (5.8) and
(5.9).

In conclusion, we mention a result which follows from Montgomery [28],
Theorem 13.2: if n > 1 and (5.1) holds, and if we assume the extended
Riemann hypothesis, then gk−1(χ)� k(log n)2.
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