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Sums of powers: an arithmetic refinement to
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Erdős and Rényi proposed in 1960 a probabilistic model for sums of s
integral sth powers. Their model leads almost surely to a positive density
for sums of s pseudo sth powers, which does not reflect the case of sums
of two squares. We refine their model by adding arithmetical considerations
and show that our model is in accordance with a zero density for sums of
two pseudo-squares and a positive density for sums of s pseudo sth powers
when s ≥ 3. Moreover, our approach supports a conjecture of Hooley on the
average of the square of the number of representations.

1. Introduction. The asymptotic behaviour of sums of two squares has
been rather well known since Landau [9] proved in 1908 that their number
up to x is asymptotically equal to Cx/

√
log x, for some positive (explicitly

determined) constant C. The similar question concerning sums of 3 cubes,
4 biquadrates, . . . , s integral sth powers is not yet solved. Some numerical
experiments performed by Barrucand [2] in 1968 led him to expect a zero
asymptotic density for sums of 3 cubes and 4 biquadrates, whereas Hooley
[8] presented in 1986 some arguments in favour of a positive density hy-
pothesis. The first heuristic approach to this problem is that of Erdős and
Rényi [4] who suggested in 1960 a probabilistic model for sums of s integral
sth powers. The elements of a sequence having the asymptotic distribution
of the sth powers are called pseudo-squares (s = 2), pseudo-cubes (s = 3) or
pseudo sth powers. Erdős and Rényi announced a Poisson behaviour for the
number of representations of an integer as a sum of s pseudo sth powers.
The case s = 2 was completely proved in 1966 by Halberstam and Roth [6].
We are thankful to Prof. Wirsing who drew our attention to the paper by
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Goguel [5] who proved the Poisson behaviour of the density of the sequences
of the integers having a given number of representations as a sum of s pseudo
sth powers. The claim of Erdős and Rényi was completed in the general case
by Landreau [10]. This model has however the drawback to lead to a positive
density for sums of 2 pseudo-squares. In the above-mentioned work, Hooley
takes into consideration the mean-square of the number rs(n) of represen-
tations of an integer n as a sum of s integral sth powers; he gives many a
non-trivial lower bound for it, and conjectures the validity, for s ≥ 3, of the
asymptotic relation

(1)
1
x

∑

n≤x
r2
s(n) −→

x→∞
A2
sS + s!As

where As = Γ (1 + 1/s)s and S = S(s) is the singular series that naturally
arises in the problem. He notes that this relation implies that the sequence
of sums of sth powers has a positive asymptotic lower density when s ≥ 3.

It is interesting to notice that the Erdős–Rényi model leads to A2
s +s!As

on the right hand side of (1). The additional arithmetic term A2
s(S − 1) is

introduced by Hooley to take into account the arithmetic irregularity of sth
powers, as measured by the contribution of the non-trivial major arcs in the
natural integral representation of the left hand side of (1).

We suggest here a family of probabilistic models which mimic not only
the asymptotic behaviour of sth powers, but also their distribution in given
arithmetic progressions. From now on, by pseudo sth powers, we mean in-
tegers from sequences generated by these models. For each of these models,
we observe, among other features, that the mean-square of the number of
representations of an integer n as a sum of s pseudo sth powers tends to a
finite bound, but also that these sums have a positive asymptotic density.
Moreover, when the modulus of the arithmetic progression considered tends
multiplicatively to infinity (by taking all the prime powers into account)
then the mean-square of the number of representations tends to the right
hand side of (1) when s ≥ 3. Under the same condition on the modulus, the
asymptotic density for the sums of s pseudo sth powers tends to 0 when
s = 2 and to a positive real number when s ≥ 3.

2. General study of the model for a given modulus K. In order to
take into account the irregularities of congruence type in the distribution of
powers, we shall adapt to arithmetic progressions the general probabilistic
model given in [10]. In the sequel, s denotes an integer greater than 1.
Furthermore, the integers K and k will respectively represent the modulus
and the first term of the arithmetic progression we consider.

For n ≥ 1, we let

αn =
1

s(nK)1−1/s
,
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and consider for 0 ≤ k < K a family of sequences of independent Bernoulli
random variables (ξ(k)

n )n≥1 satisfying

P (ξ(k)
n = 1) = αn and P (ξ(k)

n = 0) = 1− αn.
We define the increasing sequences of integral valued random variables

(ν(k)
l )l≥1 as the sequences of the integers n such that ξ(k)

n = 1. We then have

1 ≤ ν(k)
1 < ν

(k)
2 < . . . < ν

(k)
l < . . . ,

and

(2) ξ
(k)
1 + ξ

(k)
2 + . . .+ ξ(k)

νl
= l for all l ≥ 1.

We finally associate with the random variables (ν(k)
l )l≥1 the sequences

(µ(k)
l )l≥1 defined by

µ
(k)
l = ν

(k)
l K +m(ks),

where m(ks) is the residue of ks modulo K.
The sequences (µ(k)

l ) give a probabilistic model for the sequence of sth
powers in congruence classes modulo K: indeed, as can be easily proved by
following the arguments in [10]:

(i) almost surely, the sequence (µ(k)
l )l≥1 is infinite,

(ii) almost surely, µ(k)
l ∼ (Kl + k)s as l tends to infinity.

Let now k0 be a given residue modulo K. We denote by k = (k1, . . . , ks)
a solution of the congruence

(3) ks1 + . . .+ kss ≡ k0 (mod K),

by C(k0) the set of solutions of (3) and by %(k0,K) the cardinality of C(k0).
For k = (k1, . . . , ks) ∈ C(k0) and n congruent to k0 modulo K, we denote
by Rk(n) the number of representations of n as

(4) n = µ
(k1)
l1

+ . . .+ µ
(ks)
ls

,

with

(5) µ
(k1)
l1

< . . . < µ
(ks)
ls

.

Let us explain why we define Rk(n) in that way. Our main concern is to get
information by probabilistic means about the density of the set of integers
which can be represented as a sum of s sth powers. It is easy to see that the
number of integers up to x which are sums of s sth powers, two of which at
least being equal, is O(x1−1/s), which will not affect density results. Thus
we can restrict ourselves in (4) to representations with s different terms.
Furthermore, in order to count each essentially different representation only
once, we are naturally led to impose the condition (5).
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Note that, on the one hand, the condition (5) is implied by the condition

(6) ν
(k1)
l1

< . . . < ν
(ks)
ls

,

and, on the other hand, it implies the condition

(7) ν
(k1)
l1
≤ . . . ≤ ν(ks)

ls
.

Let us denote by R′k(n) the number of representations of n as (4) with the
condition (6) and by R′′k(n) the number of representations of n as (4) with
the condition (7). We then have

(8) R′k(n) ≤ Rk(n) ≤ R′′k(n).

We finally denote by Rn (respectively R′n, R′′n) the total number of rep-
resentations when summing over all solutions k ∈ C(k0):

(9) Rn =
∑

k∈C(k0)

Rk(n) (resp. R′k(n), R′′k(n)).

2.1. Local convergence in distribution. Our first result deals with the
behaviour of the sequence of random variables (Rn) when we consider a
fixed congruence class k0 modulo K.

Theorem 1. When n ≡ k0 (mod K) tends to infinity , the sequence of
random variables (Rn) converges in distribution towards the Poisson law
with parameter

λ(k0,K, s) = γ
%(k0,K)
Ks−1 , where γ = γ(s) =

Γ (1/s)s

s!ss
.

Before embarking upon the proof, let us make a heuristic comment. The
random variable Rn is a finite sum of random variables. By [10], each of
them converges to a Poisson law with parameter γ/Ks−1. If we see them as
being more or less independent, we expect their sum to converge towards a
Poisson law with a parameter which is the sum of the parameters of each of
them. Since there are %(k0,K) of them, we may expect Theorem 1 to hold
true.

P r o o f (of Theorem 1). We shall in fact establish Theorem 1 for the
random variables R′n. The method (developed in [10]) gives also clearly the
same result for R′′n. Then using inequalities (8) and the distribution functions
of Rn, R′n, R

′′
n, it is clear that Theorem 1 also holds for Rn.

The class k0 being fixed, for n large enough, R′k(n) denotes the number
of representations of Nk := (n−m(ks1)− . . .−m(kss))/K as

Nk = ν
(k1)
l1

+ . . .+ ν
(ks)
ls

,

with ν
(k1)
l1

< ν
(k2)
l2

< . . . < ν
(ks)
ls

.
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This implies that

R′k(n) =
∑

h∈H(Nk)

ξ
(k1)
h1

. . . ξ
(ks)
hs

,

whereH(N) = {h = (h1, . . . , hs) : 1 ≤ h1 < . . . < hs ≤ N,h1+. . .+hs = N}
(we retain the notation of [10]).

We then have

R′n =
∑

k∈C(k0)

∑

h∈H(Nk)

ξ
(k1)
h1

. . . ξ
(ks)
hs

=
∑

k∈C(k0),h∈H(Nk)

θk,h,

where θk,h = ξ
(k1)
h1

. . . ξ
(ks)
hs

.
As in [10], we introduce the events Ak,h = {θk,h = 1} and the set

A = {Ak,h : k ∈ C(k0), h ∈ H(Nk)}. We also write P[r] = P (R′n = r) and
denote by Q[r] the quantity

Q[r] :=
∑

A1,A2,...,Ar

P (A1)P (A2) . . . P (Ar)
∏

A 6=A1,...,Ar

P (A),

the summation being performed over all r-subsets of A. If the events Ai
were independent, we would have P[r] = Q[r].

As usual E and D will respectively denote the mathematical expectation
and the dispersion of random variables. An upper bound for the error term
|P[r] −Q[r]| is then given, as in [10], in terms of

∆r(n) =
∑

A1,...,Ar∈A
P (A1 ∩ . . . ∩Ar)− P (A1) . . . P (Ar), r ≥ 2,

and

µ(n) = E(R′n) =
∑

A∈A
P (A) =

∑

k,h

E(θk,h);

namely, we have

(10) |P[r] −Q[r]| ≤ (r + 1)∆r+1(n) +∆r(n) +∆2(n)
µ(n)r

r!
.

The following lemma provides us with the main tools for ending the
proof.

Lemma 1. We have the following properties:

(i) µ(n)→ λ(k0,K, s) as n→∞,
(ii) ∆r(n) = Or,s(1/n1/s) for r ≥ 2.
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P r o o f. We have

µ(n) =
∑

k∈C(k0)

∑

h∈H(Nk)

αh1αh2 . . . αhs

=
1

Ks−1

∑

k∈C(k0)

∑

1≤h1<...<hs≤Nk
h1+...+hs=Nk

1
ss(h1 . . . hs)1−1/s

.

But, when n tends to infinity (always staying in the class k0 modulo K), all
the integers Nk tend to infinity. It easily follows from Lemma 3 of [10] that
µ(n) tends to γ%(k0,K)/Ks−1, which proves (i).

We now consider the case r = 2. In ∆2(n) we may restrict our atten-
tion to pairs {A1, A2} where A1, A2 are dependent and neglect the terms
P (A1)P (A2). We have

∆2(n) =
∑

A1,A2∈A
P (A1 ∩A2)−P (A1)P (A2) ≤ ∆′2(n) :=

∑

A1∼A2

P (A1 ∩A2),

where A1 ∼ A2 means that A1 and A2 are dependent. The method of the
proof of Lemma 5 in [10] leads to ∆′2(n)�r,s 1/n1/s. We further get, by the
correlation inequality of [10] ∆r(n)�r,s ∆

′
2(n), which is (ii).

We go back to the proof of Theorem 1. We now have

(11) P[r] = Q[r] +Or,s

(
1

n1/s

)
.

Estimating Q[r] as in [10] leads to

Q[r] = e−λ(k0,K,s) (λ(k0,K, s))r

r!
+Or,s

(
1

n1−1/s

)
.

We then have

lim
n→∞

P[r] = e−λ(k0,K,s) (λ(k0,K, s))r

r!
,

which proves Theorem 1.

2.2. Density of integers with r representations. In this section, we are
concerned with the density of the sets

Sr := {n ∈ N : Rn = r}, r ≥ 0.

As in [10], we prove the following result.

Theorem 2. Almost surely , the set Sr has density

(12) δr(K) :=
1
K

∑

kmodK

(λ(k,K, s))r

r!
e−λ(k,K,s).

P r o o f. As in the proof of Theorem 1, we shall in fact establish the
result for the random variables R′n and simply notice that the method leads
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to the same result for R′′n. This leads to Theorem 2 since the inequalities (8)
imply that

{n ∈ N : R′′n ≤ r} ⊂ {n ∈ N : Rn ≤ r} ⊂ {n ∈ N : R′n ≤ r}.
Now assume that we have proved that almost surely the density of the two
sets {n ∈ N : R′n ≤ r} and {n ∈ N : R′′n ≤ r} is equal to

∑r
j=0 δj(K). It is

clear that almost surely the set {n ∈ N : Rn ≤ r} has the same density and
by subtracting, the result of Theorem 2 follows.

Let us return to the random variables R′n. For each integer r ≥ 0, we
first introduce the Bernoulli random variables εr(n) which take the value 1
if R′n = r and 0 otherwise, then the random variables

ζr(N) :=
1
N

N∑
n=1

εr(n).

In what follows, we prove that the sequence (ζr(N)) of random variables
almost surely converges towards δr(K).

We have

E(ζr(N)) =
1
N

N∑
n=1

E(εr(n)).

Since we have, for each k modulo K,

lim
n→∞

n≡kmodK

E(εr(n)) =
(λ(k,K, s))r

r!
e−λ(k,K,s),

we easily get

(13) lim
N→∞

E(ζr(N)) =
1
K

∑

kmodK

e−λ(k,K,s) (λ(k,K, s))r

r!
.

Following the method in [10], we prove that D(ζr(N)) = O(N−1/s) and
by Lemma 2 of [10], we deduce the announced result for the almost sure
density of the set {n ∈ N : R′n ≤ r}. This ends the proof of Theorem 2.

The special case r = 0 of Theorem 2 leads to

Corollary. The set of integers which can be represented as a sum of s
pseudo sth powers has almost surely a density , namely

1− δ0(K) = 1− 1
K

∑

kmodK

e−λ(k,K,s).

3. Behaviour of the model when the modulus K tends to infin-
ity. Up to now, we have been working with a fixed modulus K; in order to
take into account all the congruences, we shall let K tend “multiplicatively”
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to infinity. For that purpose we consider the sequence (KB)B≥0 defined by

KB =
∏

pα≤B
pα,

and let B tend to infinity.

Theorem 3. When B tends to infinity , the quantity δ0(KB) tends in-
creasingly towards a limit , denoted by δ0, which for s ≥ 3 satisfies

(14) 0 < δ0 < 1.

P r o o f. Let us first prove that δ0(KB) is an increasing function of B.
Let indeed K and q ≥ 1 be given. By the Chinese Remainder Theorem, and
the convexity of x 7→ e−λx, we have

δ0(Kq) =
1
Kq

∑

k′modKq

exp
(
−γ %(k′,Kq)

(Kq)s−1

)

=
1
K

∑

kmodK

q−1∑

l=0

1
q

exp
(
−γ %(k + lK,Kq)

(Kq)s−1

)

≥ 1
K

∑

kmodK

exp
(
−γ

q−1∑

l=0

1
q
· %(k + lK,Kq)

(Kq)s−1

)

=
1
K

∑

kmodK

exp
(
−γ 1

Ks−1qs

q−1∑

l=0

%(k + lK,Kq)
)

=
1
K

∑

kmodK

exp
(
−γ %(k,K)

Ks−1

)
= δ0(K).

Furthermore, we always have e−γ = δ0(1) ≤ δ0(KB) ≤ 1, which proves the
existence of the limit δ0, 0 < δ0 ≤ 1.

We prove in the following that the limit δ0 is strictly smaller than 1 for
s ≥ 3.

Our first step is to study the local behaviour of sums of s integral sth
powers. It will be convenient to introduce a notation for the normalized value
of %(k,K), namely s(k,K) = %(k,K)/Ks−1. Our aim is to get convenient
lower bounds for s(k,K). In a second step, we prove Theorem 3 for s ≥ 5.
The cases of cubes and biquadrates require a different approach, and will
be studied in a last step.

3.1. Local behaviour of sums of s integral sth powers. Let s ≥ 2. The
function s(k, q) is multiplicative as a function of q. By the orthogonality
relation q−1∑q

r=1 e(hr/q) = 1 or 0 depending on the divisibility of h by q,
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we deduce the relation

(15) s(k, q) =
∑

d|q
Sk(d) =

∏

p|q

∑

pm|q
Sk(pm),

where

(16) Sk(q) =
q∑
a=1

(a,q)=1

q−sS(q, a)se(−ak/q),

and

(17) S(q, a) =
q∑

x=1

e(axs/q).

We denote by cn(k) the Ramanujan sum, which satisfies (cf. [7])

cn(k) =
n∑

m=1
(m,n)=1

e(−mk/n)(18)

= µ

(
n

(k, n)

)
ϕ(n)

ϕ(n/(k, n))
,

where µ and ϕ respectively denote the Möbius and the Euler function.
We recall two classical lemmas (see Lemmas 4.3 and 4.4 of [11]) concern-

ing the Gauß sums defined in (17).

Lemma 2. Let A be the set of non-principal characters modulo p of order
d = (s, p− 1). For (a, p) = 1, we have

(19) S(p, a) =
∑

χ∈A
χ(a)τ(χ),

where τ(χ) =
∑p−1
x=1 χ(x)e(x/p) has modulus

√
p.

For any integer s ≥ 2 and any prime p, we denote by τ the exponent of
p in s, and we define

t(s, p) =
{
τ + 1 if p > 2 or p = 2 and (2, s) = 1,
τ + 2 if p = 2 and 2 | s.

Lemma 3. Let (a, p) = 1. For any integer l ≥ t(s, p) + 1, we have

(20) S(pl, a) =
{
pl−1 if l ≤ s,
ps−1S(pl−s, a) if l > s.

These results lead to the following lemma:
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Lemma 4. Let p and s be coprime. Let l = us+ v, with 1 ≤ v ≤ s.
(i) For v ≥ 2, we have

(21) Sk(pl) =





0 if pl−1 - k,

− 1
ps+1−v if pl−1 ‖ k,

p− 1
ps+1−v if pl | k.

(ii) For v = 1, we have

(22) |Sk(pl)| ≤





0 if pl−1 - k,
(d− 1)s

p(s−1)/2
if pl−1 ‖ k,

(d− 1)s

ps/2−1
if pl | k,

where d = (p− 1, s).

P r o o f. We adapt the proof of Lemma 4.7 of [11] to our needs. From (20),
we get

Sk(pl) = p−us
pl∑
a=1

(a,p)=1

(p−vS(pv, a))se(−ak/pl).

We then write each a as a = bpv + c with 1 ≤ b ≤ pl−v, 1 ≤ c ≤ pv and
(p, c) = 1. The sum over b is equal to pl−v or 0 according as pl−v divides k or
not. In the first case, we write k = hpl−v. For v > 1, we get S(pv, c) = pv−1

from (20), whence

Spl−vh(pl) = p−s
pv∑
c=1

(c,p)=1

e(−ch/pv),

which involves the Ramanujan sum cpv (k). Relations (21) simply come
from (18). For v = 1, we use Lemma 2 to write

Spl−1h(pl) = p−s
∑

χ1∈A
. . .

∑

χs∈A
τ(χ1) . . . τ(χs)

p−1∑
c=1

χ1 . . . χs(c)e(−ch/p).

When p |h (i.e. when pl | k), the sum over c is equal to p− 1 or 0 according
to whether χ1 . . . χs is principal or not. And when (p, h) = 1, its value is −1
if χ1 . . . χs is principal and χ1 . . . χs(h)τ(χ1 . . . χs) otherwise. We now use
the fact that |τ(χ)| = √p to conclude the proof of Lemma 4.

When p is large, we use the above estimates to get lower bounds for the
quantity s(k, pα) of direct interest to us. It leads to
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Lemma 5. For s ≥ 5, we have

(23) s(k, pα) ≥ 1− ss/ps/2−1.

P r o o f. Since (23) is trivial for p ≤ s, we restrict our attention to the
case when (p, s) = 1.

Assume first that p and k are coprime. Then (21) and (22) show that
s(k, pα) = 1+Sk(p) for any α ≥ 1. Using (22) again and the trivial inequality
(p− 1, s) ≤ s, we deduce the results.

Now suppose that p divides k, and let us write k = pmh with m ≥ 1 and
(p, h) = 1, α = us+ v, m = ws+ z where u,w ≥ 0 and 1 ≤ v, z ≤ s. We can
write

s(k, pα) =





1 +
w−1∑

β=0

s∑

l=1

Sk(pβs+l) +
z∑

l=1

Sk(pws+l) + Sk(pm+1) if m < α,

1 +
u−1∑

β=0

s∑

l=1

Sk(pβs+l) +
v∑

l=1

Sk(pus+l) if m ≥ α.

Using (21) and (22), we obtain |Sk(pβs+1)| ≤ (s − 1)s/ps/2−1 when
βs+ 1 ≤ m, and |Sk(pβs+l)| = (p− 1)/ps+1−l for 2 ≤ l ≤ s and βs+ l ≤ m.
Thus we deduce for 0 ≤ β < min(u,w) that

s∑

l=1

Sk(pβs+l) ≥ Dp,s,

where Dp,s = 1− (s− 1)s/ps/2−1 − 1/ps−1. Then

s(k, pα)

≥





1 + wDp,s +
(
− (s− 1)s

ps/2−1
− 1
ps−1

)
if m < α and z ≤ s− 1,

1 + (w + 1)Dp,s − (s− 1)s

p(s−1)/2
if m < α and z = s,

1 + uDp,s +
(
− (s− 1)s

ps/2−1
− 1
ps−1 +

1
ps−v

)
if m ≥ α.

This gives

(24) s(k, pα) ≥ 1− (s− 1)s + 1
ps/2−1

≥ 1− ss

ps/2−1
,

whenever Dp,s ≥ 0. This condition is fulfilled for any prime p such that

(25) ps/2−1 ≥ ss.
When inequality (25) is not satisfied, relation (23) is trivial. That finishes

the proof of the lemma.
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When p is small, we prove a lower bound for s(k, pα) for some classes of
integers k. For this purpose, we directly study the congruences

(26) xs1 + xs2 + . . .+ xss ≡ k (mod pα), 1 ≤ xi ≤ pα.
We have the following result:

Lemma 6. Let t = t(s, p) and assume that congruence (26) has a non-
trivial solution for α = t. Then, for any ν ≥ 1,

(27) s(k, pν) ≥ p−t(s−1).

P r o o f. When ν ≤ t, this clearly gives %(k, pν) ≥ 1 and (27) follows. In
the case when ν > t, we apply Lemma 2.13 of [11] and deduce that

%(k, pν) ≥ p(ν−t)(s−1).

This ends the proof of the lemma.

3.2. Sums of s pseudo sth powers (s ≥ 5). Let s ≥ 5, and γ = γs the
gamma factor introduced in Theorem 1. We give a non-trivial upper bound,
uniform in K, for the quantity

(28) δ0(K) =
1
K

K∑

k=1

exp(−γs(k,K)),

introduced in Theorem 2.
The constants Cn that appear below are positive and do not depend on

k nor K.
We define the following subset:

EK = {k mod K : p ≤ s4 ⇒ k ≡ 1 (mod pt(s,p))}.
We then have |EK | ≥ C1K, when K is large enough. Let indeed P1 =∏
p≤s4 p

t(s,p); we have

|EK | =
∑

kmodK
k≡1 (modP1)

1 = (1 + o(1))K/P1 as K →∞.

On the other hand, from (23) we get

s(k,K) ≥
∏

p |K
p>s4

(
1− ss

ps/2−1

) ∏

pα‖K
p≤s4

s(k, pα).

For k in EK , congruence (26) has a non-trivial solution when α = t(s, p)
for any prime p ≤ s4, namely k ≡ 1s + (s − 1) · 0s (mod pt(s,p)). Thus,
by Lemma 6, the second product is larger than

∏
p≤s4 p

−(s−1)t(s,p) > 0,
which depends only on s. A lower bound for the first product is obtained by
suppressing the conditions on K. This gives a positive convergent Eulerian



Sums of powers 25

product, the value of which is independent of K. We thus have s(k,K) ≥ C2,
which leads for K large enough to

(29) δ0(K) ≤ |EK |
K

e−γC2 +
K − |EK |

K
≤ 1− C3 < 1.

Using again the fact that q |K implies δ0(q) ≤ δ0(K), we deduce that (29)
remains true for any integer K ≥ 1, which proves Theorem 3 when s ≥ 5.

3.3. Case of cubes and biquadrates. In the case of cubes and biquadrates,
we have to follow a different approach. Although the expression we have for
δ0 is not multiplicative, it is possible to expand the exponential function
into a power series and then, for fixed K, to interchange the order of the
summations. We thus get

δ0(K) =
∑

i≥0

(−γ)i

i!
· 1
K

∑

kmodK

s(k,K)i

=
∑

i≥0

(−γ)i

i!
Si(K) = 1− γS1(K) +

γ2

2
S2(K)− . . .

where Si(K) (for i ≥ 1), is defined by

Si(K) :=
1
K

∑

kmodK

s(k,K)i =
1
K

∑

kmodK

(%(k,K)/Ks−1)i.

Thanks to the multiplicativity of %, the function Si is multiplicative, and
we further notice the following properties:

(i) For any K, we have (1/K)
∑
kmodKs(k,K) = 1 and thus, S1(K)=1.

(ii) The function Si is multiplicatively increasing; this simply follows
from the convexity of x 7→ xi.

In particular, for any K, we have

Si(K) ≥ Si(1) = 1.

For any x ≥ 0, we have

1− x ≤ exp(−x) ≤ 1− x+ x2/2,

which implies that for any K we have

1− γ ≤ δ0(K) ≤ 1− γ + 1
2γ

2S2(K).

Our program now is to show that, when K multiplicatively tends to
infinity, S2(K) tends to a value S < 2/γ. We first express S2(K) in terms
of the Gauß sums S(K, a) defined in (17). We have
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K∑
a=1

|S(K, a)|2s(30)

=
∑

1≤h1,...,hs≤K
1≤h′1,...,h′s≤K

K∑
a=1

e

(
a(hs1 + . . .+ hss − h′s1 − . . .− h′ss )

K

)

= K

K∑

k=1

%(k,K)2,

which implies that

S2(K) =
K∑
a=1

∣∣∣∣
S(K, a)
K

∣∣∣∣
2s

.

By writing a = hpα−β , where 1 ≤ h < pβ , (h, p) = 1, in (30), and using

S(pα, hpα−β)
pα

=
S(pβ , h)
pβ

,

we get

(31) S2(pα) =
α∑

β=0

pβ−1∑

h=1
(h,p)=1

∣∣∣∣
S(pβ , h)
pβ

∣∣∣∣
2s

=
α∑

β=0

Ω(pβ),

where

Ω(pβ) :=
pβ−1∑

h=1
(h,p)=1

∣∣∣∣
S(pβ , h)
pβ

∣∣∣∣
2s

;

we thus get, by the multiplicativity of S2,

S2(K) =
∏

pα‖K

∑

0≤β≤α
Ω(pβ).

Lemma 3 and the estimate

S(p, a) = O(
√
p) for (a, p) = 1,

deduced from Lemma 2, lead for s ≥ 3 to Ω(p) = O(1/p2) and Ω(pβ) =
O(1/pβ) for β ≥ 2.

This implies that S2(K) has a limit, let us call it S, as K multiplicatively
tends to infinity. We have

S =
∞∑

K=1

∑

kmodK
(k,K)=1

∣∣∣∣
S(K, k)
K

∣∣∣∣
2s

=
∞∑

K=1

Ω(K)(32)

=
∏
p

( ∞∑

β=0

Ω(pβ)
)

=
∏
p

X(p).
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We indeed recognize in S the singular series considered by Hooley in [8]. Us-
ing the inequalities obtained by Hooley for the case of cubes and biquadrates
(up to corrections of minor computational inaccuracies)

3.09 < S < 3.55 (for cubes) and 10.5 < S < 12.7 (for biquadrates),

and the value 1/γ(3) = 8.42 . . . for cubes and 1/γ(4) = 35.55 . . . for bi-
quadrates, we get δ0 < 0.91 for cubes and δ0 < 0.98 for biquadrates, which
ends the proof of Theorem 3.

Remark. The relation
∑∞
r=0 δr(K) = 1 implies that the δr(K) cannot

all be increasing. It is however possible to show that the sequence δr(KB)
has a limit as B tends to infinity.

Let us consider the function f defined over R+ by f(x) := (xr/r!)e−x

and let K, q ≥ 1 be two integers; we have

δr(Kq)− δr(K) =
1
K

∑

kmodK

1
q

∑

lmod q

f(γs(k + lK,Kq))− f(γs(k,K)).

We use the Taylor identity

f(y)− f(x) = f ′(x)(y − x) + 1
2f
′′(θ)(y − x)2,

for some θ ∈ [x, y]. We have

δr(Kq)− δr(K)

=
1
K

∑

kmodK

f ′(γs(k,K))
1
q

∑

lmod q

γ(s(k + lK,Kq)− s(k,K))

+
1

2K

∑

kmodK

1
q

∑

lmod q

γ2f ′′(θk,l)(s(k + lK,Kq)− s(k,K))2.

The first sum is clearly zero and we note that the function f ′′ is bounded
over R+, thus we have, for some convenient constant C depending only on r,

|δr(Kq)− δr(K)|

≤ C γ
2

2
· 1
K

∑

kmodK

1
q

∑

lmod q

(s(k + lK,Kq)− s(k,K))2

≤ C γ
2

2

(
S2(Kq) + S2(K)− 2

K

∑

kmodK

s(k,K)
1
q

∑

lmod q

s(k + lK,Kq)
)

= C
γ2

2
(S2(Kq)−S2(K)).

We have proved below that the function S2(KB) has a limit as B tends mul-
tiplicatively to infinity, thus the same result holds for the sequence δr(KB).
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4. Density of sums of two pseudo-squares

4.1. Statement of the result. We show that our model gives sums of two
pseudo-squares a density that tends to zero as K multiplicativity tends to
infinity in such a way that any integer divides K from some point onward.
More precisely, we have the following

Theorem 4. When B tends to infinity , we have

1√
logB

� 1− δ0(KB)�
√

log logB√
logB

,

where KB =
∏
pα≤B p

α.

4.2. Local behaviour of sums of two squares. For s = 2 and q = pα,
relation (15) becomes

s(k, pα) =
α∑

m=0

1
p2m

pm∑
a=1

(a,p)=1

S(pm, a)2e(−ak/pm).

Quadratic Gauß sums are well known (cf. [1]); we have

(33) S(q, a) =





√
q if q ≡ 1 (mod 4),

i
√
q if q ≡ 3 (mod 4),

0 if q ≡ 2 (mod 4),
(1 + i)

√
q if q ≡ 0 (mod 4),

and we summarize in the following lemma easy consequences of these rela-
tions.

Lemma 7. If p ≡ 1 (mod 4) then

s(k, pα) =
α∑

h=0

cph(k)
ph

(34)

=
{

(β + 1)(1− 1/p) if pβ ‖ k and β ≤ α− 1,
1 + α(1− 1/p) if pα | k.

If p ≡ 3 (mod 4) then

s(k, pα) =
α∑

h=0

(−1)h
cph(k)
ph

(35)

=





1 + 1/p if pβ ‖ k and β even ≤ α− 1,
0 if pβ ‖ k and β odd ≤ α− 1,
1 if pα | k and α even,
1/p if pα | k and α odd.
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For p = 2, we have

s(k, 2α)(36)

=
{

1 if α ≤ 1 or (α ≥ 2 and 2α−1 | k),
1 + (−1)(d−1)/2 if 0 ≤ γ ≤ α− 2, k = d2γ and (d, 2) = 1.

4.3. A lower bound for δ0(KB). Our aim is to show that δ0(KB) =
1 + o(1); thanks to the trivial upper bound, it is enough to obtain a lower
bound of this type.

Let Q(1)
B (resp. Q(3)

B ) denote the product of the prime numbers at most
equal to B and congruent to 1 (resp. 3) modulo 4, and let

QB =
∏

p≤B
p = 2Q(1)

B Q
(3)
B .

We further denote by n1(k) (resp. p3(k)) the number (resp. the product)
of those prime factors of an integer k which are congruent to 1 (resp. 3)
modulo 4, i.e.

n1(k) =
∑

p≡1 (mod 4)
p|k

1, p3(k) =
∏

p≡3 (mod 4)
p|k

p.

Let τ = 1 + (e log 2)/2 and

(37) EB = {k modulo QB : p3(k) > (logB)τ and n1(k) < (e log2B)/2}.
We first recall some classical results concerning primes in arithmetic pro-
gressions:

Lemma 8. For i ∈ {1, 3} and B tending to infinity , we have
∑

p≡i (mod 4)
p≤B

1
p− 1

=
1
2

log logB +O(1),(38)

∏

p≡i (mod 4)
p≤B

(
1− 1

p

)
=

c(i)√
logB

(1 + o(1)) for some c(i) > 0.(39)

The first result is deduced from the Mertens formula on primes in arith-
metic progressions, namely for a and q coprime,

∑

p≤x
p≡a (mod q)

1
p

=
1

φ(q)
log log x+O(1)

(see [3], p. 57). The second result directly follows from this by taking the
logarithm.

Since QB is squarefree, we deduce from (34) that s(k,Q(1)
B ) is not larger

than 2n1(k). By (35), we get s(k, p3(k)) = 1/p3(k); if (p, k) = 1 and p ≡ 3
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(mod 4) then s(k, p) = 1 + 1/p. Hence, if k ∈ EB we have

s(k,QB) = s(k,Q(1)
B )s(k,Q(3)

B )s(k, 2)

≤ 2n1(k)

p3(k)

∏

p≡3 (mod 4)
p≤B

(p,k)=1

(
1 +

1
p

)
≤ (logB)−1

∏

p≡3 (mod 4)
p≤B

(
1 +

1
p

)
.

This, combined with (39), gives for every sufficiently large B and every k
in EB ,

(40) s(k,QB) ≤ C7√
logB

.

We shall show that EB contains almost all integers modulo QB . We
define FB as the complementary set of EB in the set of classes modulo QB ,
and we write FB as the union of the two subsets

F′B = {k mod QB : p3(k) ≤ (logB)τ},
F′′B = {k mod QB : n1(k) ≥ (e log logB)/2}.

We begin by giving an upper bound for the cardinality of the set Ah(q, q′),
where (q, q′) = 1 and q is squarefree, of integers k in [1, qq′] such that (q, k)
is the product of exactly h distinct prime factors of q; if we write

(41) F (q) =
∑

p|q

1
p− 1

,

we have

(42) |Ah(q, q′)| ≤ ϕ(q)q′
Fh(q)
h!

.

(This is readily seen by writing

|Ah(q, q′)| =
∑

1≤j1<...<jh≤t
|{1 ≤ k ≤ qq′ : p | (k, q)⇔ p ∈ {pjr}1≤r≤h}|

= ϕ(q)q′
∑

1≤j1<...<jh≤t

( h∏
r=1

1
ϕ(pjr )

)
,

where p1 < . . . < pt denote the distinct prime factors of q.) Relation (42)
and the inequality (cf. [6], p. 149)

∑

x≥X

Y x

x!
≤ (eY/X)X , valid for 0 < Y ≤ X,

imply
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|F′′B |/QB =
1

Q
(1)
B

∑

h≥(e log logB)/2

|Ah(Q(1)
B )|

≤ ϕ(Q(1)
B )

Q
(1)
B

(
eF (Q(1)

B )
(e log logB)/2

)(e log logB)/2

,

then by (38) and (39),

(43) |F′′B |/QB ≤
C8√
logB

.

On the other hand, |F′B | does not exceed the number of integers k mod QB
coprime to PB =

∏
(logB)τ<p≤B, p≡3 (mod 4) p. This leads to

|F′B | ≤
QB∑

k=1
(k,PB)=1

1 = QB
∑

d|PB

µ(d)
d

= QB
∏

p|PB

(
1− 1

p

)
,

and relation (39) implies

(44) |F′B |/QB ≤ C9

√
log logB√

logB
.

From relations (40), (43) and (44) we get

δ0(QB) ≥ Q−1
B

∑

k∈EB

exp(−γs(k,QB))

≥ (1− C10

√
log logB/ logB) exp(−γC7/

√
logB)

≥ 1− C11

√
log logB/ logB.

Since QB divides KB , we have δ0(QB) ≤ δ0(KB), whence

(45) 1− δ0(KB) ≤ C11

√
log logB/ logB.

This is the upper bound in Theorem 4.

4.4. An upper bound for δ0(KB). Let us write KB = K
(1)
B K

(2)
B K

(3)
B where

the prime factors of K(1)
B (resp. K(3)

B ) are congruent to 1 (resp. 3) modulo 4
and K

(2)
B = 2[logB/ log 2], and let us denote by HB the set of the classes

modulo KB which are coprimes with K
(3)
B and congruent to 1 modulo 4.

For B ≥ 4 we have

(46) |HB | = KB

4
· ϕ(K(3)

B )

K
(3)
B

≥ C12
KB√
logB

.
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Let k be in HB ; by Lemma 7, we have

s(k,KB) = s(k,K(2)
B )s(k,K(1)

B )s(k,K(3)
B )

≥
∏

p≡1 (mod 4)
p≤B

(
1− 1

p

) ∏

p≡3 (mod 4)
p≤B

(
1 +

1
p

)
,

and by (39), we deduce s(k,KB) ≥ C13. Then

δ0(KB) ≤ |HB |
KB

exp(−γC13) +
KB − |HB |

KB
≤ 1− C14√

logB
.

This gives the lower bound in Theorem 4.

5. Around Hooley’s conjecture. In [8], C. Hooley studies the expres-
sion

M(x) :=
∑

n≤x
r2(n),

for s ≥ 3, where r(n) denotes the number of representations of the integer n
as a sum of s integral sth powers, and gives the following conjecture.

Conjecture (Hooley). As x tends to infinity , we have

M(x) ∼ (A2
sS + s!As)x,

where As = Γ (1+1/s)s and S denotes the singular series that occurs in (32).

This conjecture can be reformulated in terms of the number r′(n) of
representations of n as

n = ns1 + . . .+ nss with n1 < . . . < ns,

which corresponds to our random variable Rn defined in (9). With γ=As/s!,
Hooley’s conjecture becomes∑

n≤x
(r′(n))2 ∼ (γ2S + γ)x as x tends to infinity.

It is interesting to check the behaviour of our model. We define the
random variables ΦN (K) by

ΦN (K) =
1
N

N∑
n=1

R2
n(K),

where Rn(K) denotes the number of representations of n as a sum of s
pseudo sth powers with the model corresponding to modulus K. The method
of the third named author (cf. [10]) that we already used in the proof of
Theorem 2 leads to the following

Proposition. The sequence (ΦN (K)) of random variables almost surely
converges to γ2S2(K) + γ.
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It is satisfactory to notice that as K multiplicatively tends to infinity,
S2(K) tends to S.
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[9] E. Landau, Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach

der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate,
Arch. Math. Phys. (3) 13 (1908), 305–312.
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Mathématiques Stochastiques Laboratoire d’Algorithmique
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