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Arithmetic of cyclic quotients of the Fermat quintic

by

Pavlos Tzermias (Bellaterra)

1. Introduction. Let F denote the Fermat quintic curve over Q given
by the projective equation

X5 + Y 5 + Z5 = 0

and let J be its Jacobian. Fix an algebraic closure Q of Q in C and let a
and b denote the positive and negative root of the equation X2−X−1 = 0,
respectively. Let ζ ∈ Q be a primitive 5th root of 1 such that a = −(ζ2 +ζ3).
Let K be the cyclotomic field Q(ζ) and denote by K+ the maximal real
subfield of K, i.e. K+ = Q(a). Consider the automorphisms σ, τ and % of
F given by

σ(X,Y, Z) = (ζX, Y, Z), τ(X,Y, Z) = (X, ζY, Z), %(X,Y, Z) = (Z,X, Y ).

For s = 1, 2, 3, consider the cyclic quotient Fs of F by the group of auto-
morphisms generated by στ−s. The genus of Fs equals 2. We denote by Js
the Jacobian of Fs. We have the natural projection maps (defined over Q)

fs : J → Js

and their duals (also defined over Q)

f∗s : Js → J.

It is well known ([7]) that each Js is a simple abelian variety and that the
map

f =
3∏
s=1

fs : J →
3∏
s=1

Js

is an isogeny. The dual isogeny is given by

f∗ =
3∑
s=1

f∗s :
3∏
s=1

Js → J.
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In this paper, we prove some results on the arithmetic of the curves Fs.
In Section 2, we recall some known results and give explicit generators for
the Mordell–Weil groups Js(K). In Section 3, we give explicit generators
for the kernel of f∗. We also describe the action of End(J) on Ker(f∗), by
means of a result of Lim ([9]).

For an abelian variety V and an endomorphism φ of V , let us denote by
V [φ] the kernel of φ. In Section 4, we give generators for the groups Js[5].
It was shown by Greenberg ([5]) that the field of definition L of Js[5] is
generated over K by the 5th roots of the cyclotomic units in K+. Also, by a
result of Faddeev ([3]), the groups Js(K) are finite. We show that the groups
Js(L) are all infinite and we give a lower bound for their rank.

Acknowledgments. This work has been motivated by [2]. To a large
extent, it is an application of Coleman’s results. The author is grateful to
the anonymous referee for suggesting substantial improvements on an earlier
version of this paper.

2. Generators for Js(K). For s = 1, 2, 3, we have the well-known affine
model of Fs:

v5 = us(1− u).
Moreover, the projection maps fs : F → Fs are given in affine coordinates
by (x, y, 1) 7→ (u, v), where (u, v) = (−x5, (−1)s−1xsy).

Let∞s denote the point at infinity on Fs. We also note the affine points
(0, 0)s and (1, 0)s on Fs. The curves F1, F2 and F3 are isomorphic over Q.
This is explained in §2 of [1]. The following explicit formulas for these iso-
morphisms will be needed in the sequel.

Define a rational map F1 → F2 given by

(u, v) 7→ ((u− 1)/u, v2/u).

This map has a rational inverse given by

(u, v) 7→ (1/(1− u), v3/(u(u− 1))).

Therefore, it extends to an isomorphism g : F1 → F2. Similarly, we define
an isomorphism h : F3 → F2 extending the rational map

(u, v) 7→ (1/(1− u), v2/(u(u− 1))),

whose rational inverse is given by

(u, v) 7→ ((u− 1)/u,−v3/u2).

We now have the following easy lemma:

Lemma 1. Let notation be as above.

(i) We have the following equalities of maps F → F2:

gf1 = f2%
2, hf3 = f2%.
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(ii) We have the following equalities of maps J2 → J :

f∗1 g
−1 = %f∗2 , f∗3h

−1 = %2f∗2 .

(iii) Moreover ,

g((1, 0)1) = h(∞3) = (0, 0)2, g((0, 0)1) = h((1, 0)3) =∞2,

g(∞1) = h((0, 0)3) = (1, 0)2.

P r o o f. (i) is straightforward. (ii) follows from (i) and the relations
g∗ = g−1, h∗ = h−1 and %∗ = %2. (iii) follows from (i) after evaluation
at the points (0,−1, 1), (−1, 0, 1), (−1, 1, 0) on F .

Js admits complex multiplication ζ induced by the map (u, v) 7→ (u, ζv)
on Fs. We will use the same symbol π to denote the endomorphisms ζ − 1
and τ − 1 of Js and J , respectively. Then it is easy to see that π commutes
with fs and f∗s .

The following proposition is a combination of results in the literature.
In fact, it is just a special case of a more general theorem concerning the
Jacobians of cyclic Fermat quotients.

Proposition 1 ([1], [3], [5], [6], [8]). For all s we have Js(K) = Js[π3]
and Js(Q) = Js[π].

Specifically, Faddeev showed in [3] that Js(K) is finite. In [5], Greenberg
proved the equality Js[π3] = Js[5∞](K). Coleman showed in [1] that for all
primes l such that l 6= 5, the l-primary part of Js(K) is trivial. The second
statement of Proposition 1 follows from the work of Gross and Rohrlich ([6]).
Finally, Kurihara’s result ([8]) cited in Proposition 1 is not needed in the
specific case we are dealing with. However, it is necessary for obtaining
an analogous statement for the Jacobians of more general cyclic Fermat
quotients and we include it here as a reference for the interested reader.

It should be noted that the proof of Proposition 1 does not give ex-
plicit generators for Js(K). This is done in Proposition 2 below. The only
other examples besides that of Proposition 2 where explicit generators for
the analogues of Js[π3] or Js(K) are determined are for the Jacobians of
quotients of the Fermat cubic and for the Jacobian of the Fermat quotient
v7 = u2(1− u) by Prapavessi ([10]).

We now use an observation of Coleman. One of the points in the hy-
perelliptic torsion packet on F1 is P1 = (a,−1) in F1(K+) (see [2]). Using
Lemma 1, we get the points P2 = (b2,−b) and P3 = (−a,−a) in F2(K+)
and F3(K+), respectively. Define

rs = [Ps−∞s] ∈ Js(K+), ts = πrs ∈ Js(K), ws = [(0, 0)−∞s] ∈ Js(Q),

for s = 1, 2, 3. As in [9], we use the identification End(Js) = Z[ζ]. Observe
that Z[π] = Z[ζ]. We will now prove the following proposition:
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Proposition 2. For s = 1, 2, 3, the Mordell–Weil group Js(K) is gen-
erated by rs as a Z[π]-module. Alternatively , the set {rs, ts, ws} is a Z/5Z-
basis for Js(K).

P r o o f. Fix s. By Proposition 1 and since πrs = ts and πws = 0, the
only thing we need to show is that π2rs 6= 0. Suppose, on the contrary,
that π2rs = 0. Then πrs is Q-rational. In particular, it is fixed by complex
conjugation. Therefore, −ζ−1πrs = πrs, hence ζπrs = −πrs. This implies
that 0 = π2rs = −2πrs. Therefore, by Proposition 1, rs is Q-rational. As
the map Fs(Q)→ Js(Q) defined by R 7→ [R−∞s] is an injection preserved
by the action of Gal(Q/Q), we have reached a contradiction, because Ps is
not defined over Q.

Using some of the arguments in [2] and [4], one can explicitly write down
a rational function on Fs with divisor π3(Ps −∞s). We will use one of the
arguments in [2] in the proof of the following lemma:

Lemma 2. Let notation be as above. We have:

(i) πt2 = 2w2.
(ii) g(r1) = r2 + 2w2, g(t1) = 2t2 + 2w2 and g(w1) = 2w2.

(iii) h(r3) = r2 − w2, h(t3) = 2t2 + 2w2 and h(w3) = 2w2.

P r o o f. By [2], the following divisor on F1 is principal:

ζ4P1 − ζ3P1 − ζ2P1 + ζP1 − 2(1, 0)1 + 2∞1.

Applying the isomorphism g : F1 → F2 and Lemma 1, we get

π2[ζ2P2 + ζP2 − 2∞2] = 2[(1, 0)2 − (0, 0)2].

Since π2r2 is fixed by ζ, we have

π2[ζ2P2 −∞2] = π2[ζP2 −∞2] = π2r2 = πt2.

Therefore,

πt2 = [(1, 0)2 − (0, 0)2].

Now, as in [6], we have the following relations:

5((0, 0)2 −∞2) = div(u), 5((0, 0)2 − (1, 0)2) = div(u/(1− u)).

Since v5 = u2(1− u), we get

5 div(v) = 2 div(u) + div(1− u) = 5(2(0, 0)2 + (1, 0)2 − 3∞2).

Hence, div(v) = 2(0, 0)2 + (1, 0)2 − 3∞2, which implies that

[(1, 0)2 − (0, 0)2] = 2w2.

This proves (i). (ii) and (iii) follow from an easy computation involving the
latter relation, the explicit formulas for g and h and (i).



Cyclic quotients of the Fermat quintic 379

3. Generators for Ker(f∗). Clearly, ](Ker(f∗)) = 56. Therefore, by
Corollary 2 of [12], we have

Ker(f∗) ⊆
3∏
s=1

Js(K).

Let aj (resp. bj , cj) be the cusps on F , i.e. the points for which the first (resp.
the second, the third) projective coordinate vanishes, where j = 0, 1, . . . , 4.
It was shown by Rohrlich ([11]) that divisor classes of degree 0 supported
on these points are killed by 5 on J(K). Consider three such divisor classes,
namely

D1 =
[ 4∑

j=0

j(j + 1)(aj − a0)
]
, D2 =

[ 4∑

j=0

j(j + 1)(bj − b0)
]
,

D3 =
[ 4∑

j=0

j(bj − b0)
]
.

The results in [12] imply that

f∗2 (J2(K)) ⊆ 〈D1 − 2D2, D3〉, f∗2 (J2(K+)) ⊆ 〈D1 − 2D2〉,
f∗2 (J2(Q)) = {0}, πD1 = 2D3.

Moreover, using Corollary 1 of [11], one can show that %D2 = −D1 − D2,
%D1 = D2, %D3 = D3. Therefore, there exists an integer m such that
f∗2 (r2) = m(D1 − 2D2). Then f∗2 (t2) = 2mD3. By Lemmas 1 and 2 and
the relations above we get

f∗1 (r1) = %f∗2 g(r1) = %f∗2 (r2 + 2w2) = m(2D1 + 3D2),

f∗1 (t1) = 4mD3,

f∗3 (r3) = %2f∗2h(r3) = %2f∗2 (r2 − w2) = −m(3D1 +D2),

f∗3 (t3) = −mD3.

Note that these relations imply that m is not divisible by 5, because

f∗
( 3∏
s=1

Js(K)
)

= 〈D1, D2, D3〉,

as proved in [12].
Therefore, an element

(x1r1 + y1t1 + z1w1, x2r2 + y2t2 + z2w2, x3r3 + y3t3 + z3w3) ∈
3∏
s=1

Js(K)

lies in Ker(f∗) if and only if

(2x1 + x2 − 3x3)D1 + (3x1 − 2x2 − x3)D2 + (−y1 + 2y2 − y3)D3 = 0,
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so we get

x1 = x2 = x3, y1 = 2y2 − y3.

This gives a basis for Ker(f∗) as described in the following proposition.
Our choice of basis is not the simplest possible. However, it simplifies the
calculations that follow Proposition 3.

Proposition 3. A Z/5Z-basis for Ker(f∗) is given by the following
points on J1 × J2 × J3:

(r1 − w1, r2, r3 + 3w3), (2t1 − 2w1, t2, 0), (0,−t2, 3t3 − 3w3),

(3w1, 0, 0), (0, w2, 0), (0, 0, 3w3).

By the work of Lim, we know the structure of the endomorphism ring
of J . It turns out (see [9] for more details) that

End(J) = Z[σ, τ, %,W ],

where the first three generators are the endomorphisms of J induced by the
automorphisms σ, τ and % of F , respectively, and the fourth generator W
is an endomorphism of J which is not induced by an automorphism of F .

In [9], Lim uses the identifications End(Js) = Z[ζ] to show that End(J)
can be naturally identified with a subring of the ring M3(Z[ζ]) of 3 × 3
matrices with entries in Z[ζ]. Via the latter identification, End(J) is the set
of matrices in M3(Z[ζ]) which stabilize Ker(f∗). We therefore get a natural
action of End(J) on Ker(f∗), which we will compute below.

In order to use Lim’s calculations, we will work instead with the isogeny
φ̂ defined by

φ̂ = f∗(g−1 × 1× h−1) : J3
2 → J

(see [9], §4). Clearly, Ker(φ̂) is isomorphic to Ker(f∗) via the isomorphism

g−1 × 1× h−1 : J3
2 → J1 × J2 × J3.

Using Lemma 2, we have the following consequence of Proposition 3:

Corollary 1. The basis vectors of Ker(φ̂) corresponding to the basis
vectors of Ker(f∗) given in Proposition 3 are the following points on J3

2 :

e1 = (r2, r2, r2), e2 = (−t2, t2, 0), e3 = (0,−t2, t2),

e4 = (w2, 0, 0), e5 = (0, w2, 0), e6 = (0, 0, w2).

In §2 of [9], Lim writes down explicit matrices that describe the action
of the four generators σ, τ , % and W of End(J) on J3

2 . By Lemma 2 and a
straightforward calculation we find that the action of End(J) on Ker(φ̂) is
given by the following relations:
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σ(e1) = e1 − e2 + e3 + e5, σ(e2) = e2 − 2e4 + e5, σ(e3) = e3 − e5 + 2e6,

τ(e1) = e1 + 2e2 + e3 + e4, τ(e2) = e2− e4 + 2e5, τ(e3) = e3− 2e5 + 2e6,

σ(e4) = τ(e4) = e4, σ(e5) = τ(e5) = e5, σ(e6) = τ(e6) = e6,

%(e1) = e1, %(e2) = −e2 − e3, %(e3) = e2,

%(e4) = e6, %(e5) = e4, %(e6) = e5,

W (e1) = 0, W (e2) = −e2 − e3 + 3e4 − 2e5 − e6,

W (e3) = e2 + 2e3 − e4 − e5 + 2e6, W (e4) = 3e4 + 2e5,

W (e5) = −e4 + 2e5 − e6, W (e6) = 3e4 + e5 + e6.

In particular, we have the following corollary:

Corollary 2. The point (r1−w1, r2, r3 +3w3) on J1×J2×J3 generates
Ker(f∗) as an End(J)-module.

P r o o f. By Proposition 3 and Corollary 1, it suffices to show that e1 gen-
erates Ker(φ̂) as an End(J)-module. By the relations preceding Corollary 2,
we have:

(%2(τ − σ) + (τ − 1)(τ + 2σ − 3))(2e1) = e3, %(e3) = e2,

(σ − 1)(e1) + e2 − e3 = e5, %(e5) = e4, %(e4) = e6.

Therefore, all the basis vectors for Ker(φ̂) can be successively obtained from
e1 by applying suitable elements of End(J). This completes the proof of
Corollary 2.

4. Arithmetic over K(Js[5]). The following proposition gives the hy-
perelliptic torsion packet on Fs, i.e. the set of points P ∈ Fs(Q) such that
[P −∞s] is a torsion point on Js.

Proposition 4 (Coleman, [2]). The hyperelliptic torsion packets on F1,
F2, F3 are the sets

T1 = {∞1, (0, 0)1, (1, 0)1, (1/2, ζi/41/5), (a,−ζi), (b,−ζi)},
T2 = {∞2, (0, 0)2, (1, 0)2, (−1, ζi21/5), (b2,−ζib), (a2,−ζia)},
T3 = {∞3, (0, 0)3, (1, 0)3, (2,−ζi81/5), (−a,−ζia), (−b,−ζib)},

respectively , where i = 0, 1, . . . , 4.

Let L be the field of definition of Js[5]. The field L is independent of
s. In fact, it follows from a general theorem of Greenberg ([5]) that L is
the number field generated over K by the 5th roots of the cyclotomic units
in K+. Fix c ∈ Q such that c5 = a. Since the group of cyclotomic units
in K+ is generated by −1 and a, it follows that L = K(c). By Faddeev’s
work ([3]), we know that each Js(K) is finite. It makes sense to ask whether
this is also true for the groups Js(L). We will prove the following proposition:
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Proposition 5. For s = 1, 2, 3, the Mordell–Weil rank of Js over L is
a positive multiple of 4. Therefore, the Mordell–Weil rank of J over L is a
positive multiple of 12.

P r o o f. The second assertion follows from the first since J and J3
2 are

isogenous over Q. Since the curves F1, F2, F3 are isomorphic over Q, it
suffices to prove the first assertion for s = 1. Consider the point

R = [(ζ2b, 1/c2)−∞1] ∈ J1(L).

By Proposition 4, the point R is an L-rational point of infinite order on J1,
so the rank of J1 over L is positive. Consider the free abelian group

J1(L)inf = J1(L)/J1(L)tors.

We will once again use the identification End(J1) = Z[ζ]. Clearly, J1(L)inf

is a Z[ζ]-module. We now claim that it is a torsion-free Z[ζ]-module. Indeed,
let P be a point of infinite order in J1(L). Suppose that for integers x0, x1,
x2, x3, not all equal to 0, we have

x0P + x1ζP + x2ζ
2P + x3ζ

3P ∈ J1(L)tors.

Then there exists a positive integer M such that P lies in the kernel of the
endomorphism

Mx0 +Mx1ζ +Mx2ζ
2 +Mx3ζ

3

of J1. Now, since J1 is a simple abelian variety, the latter endomorphism
(which, by assumption, is non-trivial) has finite kernel. Therefore, P is a
torsion point in J1(L), which is absurd, and this proves the claim.

Therefore, since Z[ζ] is a principal ideal domain, it follows that J1(L)inf

is a free Z[ζ]-module, hence the Z-rank of J1(L)inf is a multiple of 4. This
completes the proof of Proposition 5.

We conclude this paper by computing generators for the groups Js[5]. In
view of Proposition 2, we only need to exhibit a divisor class qs such that
qs ∈ Js[5]− Js(K). Note that Js[5] = Js[π4].

We first take s = 1. We will find points (u1, v1) and (u2, v2) in F1(Q)
such that

π[(u1, v1) + (u2, v2)− 2∞1] = r1.

The hyperelliptic involution on F1 is given by (u, v) 7→ (1−u, v) and acts as
multiplication by −1 on J1. Therefore, it is sufficient to find points (u1, v1),
(u2, v2) as above and a rational function on F1 whose divisor is

(u1, v1) + (1− u1, ζv1) + (u2, v2) + (1− u2, ζv2) + P1 − 5∞1.

For a rational function of the form u− dv2− ev− f , where d, e, f are in Q,
this means that the equation in v

v5 = (dv2 + ev + f)(1− dv2 − ev − f)
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has the five roots −1, v1, ζv1, v2, ζv2, and that the corresponding values
for u = dv2 + ev + f are a, u1, 1 − u1, u2, 1 − u2, respectively. We now
make a choice of the quantities d, e, f , u1, u2, v1, v2 so that the conditions
mentioned in the previous sentence are satisfied.

Let d be any element in Q satisfying

d5 − (5a+ 5)d3 + (15a+ 10)d− (11a+ 7) = 0.

Define e and f as follows:

e = (2a− 3)(d3 − d), 2f − 1 = (5a− 8)d5 + (9− 6a)d3 + (a− 1)d.

Also, let v1 and v2 be the roots in Q of the equation

d(ζ2 + 1)v2 + e(ζ + 1)v + (2f − 1) = 0,

and define
u1 = dv2

1 + ev1 + f, u2 = dv2
2 + ev2 + f.

We claim that these choices satisfy the required conditions. Indeed, note
that

v1 + v2 = ζ2(a− 1)(d2 − 1), v1v2 = ζ4((5− 3a)d4 + (3a− 6)d2 + 1).

Then a straightforward albeit tedious computation making use of our defi-
nitions of the quantities involved shows that

v5−(dv2 +ev+f)(1−dv2−ev−f) = (v+1)(v−v1)(v−v2)(v−ζv1)(v−ζv2).

Moreover, it is easy to check that 1 − ui = d(ζvi)2 + e(ζvi) + f for i =1, 2
and d− e+ f = a. This proves the claim.

Thus, given our choices above, we define

q1 = [(u1, v1) + (u2, v2)− 2∞1], q2 = g(q1), q3 = h−1(g(q1)).

Since g and h−1g are isomorphisms over Q, our arguments above prove the
following proposition:

Proposition 6. For s = 1, 2, 3, the group Js[5] is generated by qs as a
module over Z[π]. Alternatively , a Z/5Z-basis for Js[5] is given by the set
{qs, rs, ts, ws}.
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