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Dedekind sums with preditable signsbyKurt Girstmair (Innsbruk)1. Introdution and main results. Let b and n be integers, b 6= 0,with (b; n) = 1. The (inhomogeneous) Dedekind sum is de�ned bys(n; b) = jbjXk=1((k=b))((kn=b))where the symbol ((: : :)) has the usual meaning (f., e.g., [8℄). We note therelations(1) s(n;�b) = s(n; b) and s(n+ b; b) = s(n; b):Hene we obtain all Dedekind sums if b is restrited to natural numbers andn to the range 0 � n < b. The general de�nition, however, will be usefullater.In general, it is not easy to guess what the sign of s(n; b) may be.Rademaher ([7℄, Satz 3) showed s(n; b) > 0 for 0 < n < pb� 1. In thisnote we give a onsiderable generalization of Rademaher's result. Roughlyspeaking, we shall show that there are a great many intervals I in [0; b[ suhthat s(n; b) takes a preditable and �xed sign for eah n 2 I.To this end we �x the natural number b for the time being. Let d < bbe another natural number. De�ne(2) �d = �b(d� 1)(d� 2)2(bd � 1) ; �d = (b� d)2bd� 1and(3) d = �d +q�d + �2d;the square root being positive. To eah fration =d,  2 Z, (; d) = 1, weattah an interval of length 2d=d with midpoint b � =d, namely,I(; d) = fx 2 R : jx� b � =dj < d=dg:1991 Mathematis Subjet Classi�ation: Primary 11F20.[283℄



284 K. GirstmairBoth \half-intervals"I(; d)� = fx 2 I(; d) : x < b � =dg; I(; d)+ = fx 2 I(; d) : x > b � =dgare nonempty. Moreover, eah number n 2 Z, (n; b) = 1, lying in I(; d)belongs to one of these half-intervals. Otherwise n = b � =d, but then d j bbeause of (; d) = 1, so b=d divides (n; b), whih is 1. This is impossiblesine b=d > 1. Our �rst main result isTheorem 1. As above, let d < b be natural numbers and  an integerwith (; d) = 1. Let n be an integer in I(; d), (n; b) = 1. Then s(n; b) < 0if n 2 I(; d)�, and s(n; b) > 0 if n 2 I(; d)+.If d = 1, then �d = 0 and �d = b � 1, so d=d = d = pb� 1 andI(0; 1)+ = ℄0;pb� 1[. Therefore, the ase d = 1 of Theorem 1 ontainsRademaher's above-mentioned result. In view of (1) and the well-knownidentity(4) s(�n; b) = �s(n; b);it is lear that Rademaher's theorem is equivalent to this speial ase ofTheorem 1.We look at the intervals I(; d) more losely. It suÆes, of ourse, toonsider only those parts of them that are ontained in [0; b[. Apart fromthe half-intervals I(0; 1)+ and I(1; 1)� = ℄b�pb� 1; b[, these parts are justthe omplete intervals I(; d), 2 � d < b, with 1 �  < d, (; d) = 1. It willbe shown below that, if b � 4, then(5) pb=d3 � 1 < d=d <pb=d3(f. Lemma 2, (20), (21)). This means that the length 2d=d of an intervalI(; d) is of order of magnitude � pb if d3 is small relative to b. In thisase we say that I(; d) is \large". Obviously, large intervals ontain manyintegers n. There is no reason, however, to rule out \small" intervals. Itfollows from (5) that I(; d), (; d) = 1, ontains at least one integer ifd < (3=4)b1=3 ; and it turns out that at least some of the intervals I(; d)ontain an integer as long as d < pb. Conversely, I(; d) \ Z is empty ford � pb (see the remark following the proof of Theorem 1). In view of this,it is natural to study the subset(6) R(b) = I(0; 1)+ [ I(1; 1)� [ [2�d<pb [1�<d(;d)=1 I(; d)of [0; b[. The set R(b) will be alled the region of preditable sign. It wouldbe desirable to know the number(7) S(b) = jR(b) \ Zjof integers in R(b). We show



Dedekind sums with preditable signs 285Theorem 2. If b is large enough, then1:8 � b2=3 < S(b) < 4:75 � b2=3:Aording to Theorem 2 the number of integers in the region of pre-ditable sign is substantially larger than the size of large intervals I(; d).Both onstants in Theorem 2 are rather pessimisti|the true order of mag-nitude of S(b) seems to be � 3:1 �b2=3. Further details on the growth of S(b)an be found in Setions 3 and 4.The diagrams below may give an idea of the behaviour of the values ofs(n; b) inside and outside R(b). They display the ase b = 1009, a prime,where S(b) = 266. The small irles represent pairs (n; 12s(n; b)). Observethat j12s(n; b)j < bholds for arbitrary numbers n, b with (n; b) = 1 (f. (14)). In the �rstdiagram the values n = 1 and n = b � 1 have been omitted|just to savespae, sine these are the only ones with j12s(n; b)j lose to b; for any othern, j12s(n; b)j < b=2. The diagrams suggest that R(b) ontains all integers nfor whih js(n; b)j is \large" but not only these; onversely, the omplement[0; b[ nR(b) seems to onsist only of numbers n with js(n; b)j small. Indeed,our omputations show that j12s(n; b)j seldom exeeds pb if n is not in R(b),whereas there are many numbers n in R(b) with j12s(n; b)j < pb.2. The proof of Theorem 1. Theorem 1 is based on a relation forDedekind sums (Lemma 1) that generalizes the usual three-term relation ofRademaher [6℄. This lemma is a onsequene of the transformation law ofthe logarithm of Dedekind's �-funtion. Relations of this more general typewere given by Dieter [4℄ and frequently used by Bruggeman (f., e.g., [3℄,formula (3.1); [2℄, part 2.3). Nevertheless it seems that these relations arenot ommonly known (f. the redisovery in [5℄). For the onveniene ofthe reader we inlude a short proof, sine it may be toilsome to adapt theresults of [4℄ to the situation onsidered here.Let d, b be natural numbers and n,  integers with (n; b) = (; d) = 1.We write(8) n� b � =d = q=d;where q is an integer. Suppose q 6= 0 and put" = sign(q) (2 f�1g):Moreover, let j and k be integers suh that(9) �j + dk = 1and put r = �bk + nj:



286 K. Girstmaira
aaaaaaaaaaaaaaaaaaaaaaaaaaaaa aa a a aaa a

a
aa aa aaaa a aa

a
aaaaa a aa a aaa a aa aaaaa

a

aaaaaaaaaa aa a a aa a a aa

a

aaaaa a aa aa
a
aaa aa aaaaaa

a
a a

a
a

a a a a aaaaaaaaaaaaaaaa a a a a
a
a
a a
a
aaaaaa aa aaa

a
aa aa a aaaaa

a

aa a a aa a a aa aaaaaaaaaa

a

aaaaa aa a aaa aaa aaaaaa
a

aa a aaaa aa aa
a

a aaa a a aa aaaaaaaaaaaaaaaaaaaaaaaaaaaaa
ab = 1009: the values of 12s(n; b) for n 2 R(b), n 6= 1; b� 1Lemma 1. In the above situation,12s(n; b) = 12s(; d) + " � 12s(r; q) + b2 + d2 + q2bdq � 3":P r o o f. The transformation law of the logarithm of Dedekind's �-fun-tion says(10) �(AB) = �(A) + �(B)� 3 sign(A) sign(B) sign(AB)(f. [8℄, pp. 49 �). Here A, B denote matries in SL(2;Z) and � and signare de�ned in the following way: IfA = �� � Æ � ;then sign(A) = sign() (2 f0;�1g), and�(A) = ��=Æ if  = 0;(�+ Æ)= � 12 sign(A)s(Æ; ) otherwise.



Dedekind sums with preditable signs 287In our situation we putA = �u vb n� ; B = �� �kd j � ;where u; v are integers suh that(11) un� vb = 1:On applying (10) one readily obtains (observe (4))12s(n; b) = 12s(�j; d) + " � 12s(r; q)(12) + (u� vd+ bk � jn)=q + (u+ n)=b+ (j � )=d� 3":Beause of (9), �j � 1 mod d, and a well-known identity (f. [8℄, p. 26)says s(�j; d) = s(; d):Therefore, the right side of (12) has the desired shape if only the sum of thethree frations equals (b2 + d2 + q2)=(bdq). But this follows from a shortalulation whih takes the identities (9) and (11) into aount.Proof of Theorem 1. We onsider the ase n > b � =d �rst. Let q bede�ned by (8), so q > 0 and " = 1. By the lemma, s(n; b) > 0 holds if, andonly if,(13) 12s(; d) + 12s(r; q) + (b2 + d2 + q2)=(bdq) � 3 > 0:Next we apply the estimate(14) j12s(x; y)j � (jyj � 1)(jyj � 2)=jyj;whih holds for arbitrary oprime integers x; y, y 6= 0 (f. [7℄). Thereby, theleft side of (13) is > 0 if only�(d� 1)(d� 2)=d � (q � 1)(q � 2)=q + (b2 + d2 + q2)=(bdq)� 3 > 0:This is the same as saying that f(d; q) < 0, where f(d; q) is the polynomialde�ned by(15) f(d; q) = bq(d� 1)(d� 2) + bd(q � 1)(q � 2)� (b2 + d2 + q2) + 3bdq:We onsider f(d; q) as a polynomial in q only and notef(d; q)=(bd � 1) = q2 � 2�d � q � �d(f. (2)). Hene f(d; q) is negative if, and only if, q lies between the zeros�d �q�d + �2dof f(d; q). Sine q is positive, this means nothing but q < d (f. (3)) andn 2 I(; d)+.



288 K. GirstmairIn the ase n < b � =d we have q < 0 and " = �1. One shows, inthe same way, that s(n; b) < 0 if f(d; jqj) < 0, whih means jqj < d andn 2 I(; d)�.Remark. We draw the reader's attention to the fat that the de�nition(15) of f(d; q) is symmetri in d and q. This allows rephrasing the assertion\n 2 I(; d)" in another way. Indeed, let q be de�ned by (8). Then \n 2I(; d)" is the same as saying jqj < d or f(d; jqj) < 0. This, however, isequivalent to f(jqj; d) < 0 or d < jqj. Now the (still unproved) estimate(5), applied to jqj, gives jqj <pb=jqj; so n 2 I(; d) an hold only ifd <pb=jqj:In partiular, I(; d) \Z is empty if d � pb|as we said in Setion 1.
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b = 1009: the values of 12s(n; b) for n 62 R(b), 1 � n < b3. The sums S1(b) and S2(b). Obviously, the sets I(; d) \Z must bepairwise disjoint (otherwise we get a ontradition to Theorem 1). Hene



Dedekind sums with preditable signs 289the de�nitions (6) and (7) showS(b) = X1�d<pbSb;dwith(16) Sb;d = X0�<d(;d)=1 jI(; d) \ Zj:The proof of Theorem 2 is based on the separate treatment of the sums(17) S1(b) = X1�d<b1=3 Sb;d; S2(b) = Xb1=3�d<pbSb;d:In fat, some of the estimates used for the �rst sum do not work in the aseof the seond and onversely. We shall showProposition 1. (a) For eah suÆiently large natural number b,18�2 b2=3 � 98pb < S1(b) < 27�2 b2=3:(b) If b is large enough, thenS2(b) < 2 � b2=3 + b0:51:Both parts (a) and (b) together yield1:8 �b2=3 < S1(b) � S(b) = S1(b)+S2(b) < 2:74 �b2=3+2:01 �b2=3 = 4:75 �b2=3and hene Theorem 2. Next we list some estimates needed for the proof ofProposition 1.Lemma 2. Let d < b be natural numbers and �d, �d, d as in (2) and(3). Then (d� 3)=2 < j�dj < d=2;(18) pb=d�pd=b <p�d <pb=d;(19) d=d >pb=d3 � 1=pbd� 1=2;(20) d=d <pb=d3:(21)Finally , if 12 � d < b,(22) d < �1 + 4d� bd2 :P r o o f. Observe that2j�dj = b(d� 1)(d � 2)bd� 1 � b(d� 1)(d � 2)bd > d2 � 3dd :



290 K. GirstmairMoreover, if d = 1, j�dj < d=2 is true. For d � 2,2j�dj = (d� 1)(d � 2)d� 1=b � d� 2 < d:This proves (18). In order to prove (19), note�d = (b� d)2bd� 1 > (b� d)2bd ;hene p�d > (b� d)=pbd =pb=d�pd=b. Further,�d = b� dd � b� db� 1=d � b� dd < b=d:Assertion (20) is immediate from the de�nition (3) of d, the upper boundfor j�dj and the lower bound for p�d whih are displayed in (18), (19),respetively. In order to show (21) we useq�d + �2d �p�d + j�dj;whih an be veri�ed by squaring. This gives d � p�d < pb=d, by (19).Finally, (19) implies d < �j�dj+qb=d+ �2d:We show(23) qb=d+ �2d � (1 + 4=d) � b=d2 + j�dj;whih yields (22). However,��1 + 4d� bd2 + j�dj�2 � �2d + 2j�dj�1 + 4d� bd2 � �2d + (d� 3)�1 + 4d� bd2 ;by (19). One heks that (d� 3)(1 + 4=d) � d whenever d � 12 and obtains(23).Proof of Proposition 1(a). Sine I(; d) is an open interval of length2d=d, it is lear that2d=d� 1 � jI(; d) \Zj � 2d=d+ 1:Therefore, (16) gives(24) '(d)(2d=d� 1) � Sb;d � '(d)(2d=d+ 1);where '(: : :) denotes Euler's funtion. Now the assertion follows from (17),(20), (21), and the following three formulas that hold for large b:X1�d<b1=3 '(d)d3=2 = 12�2 b1=6 +C +O(b�1=6 log b);



Dedekind sums with preditable signs 291with �0:56 < C < 0,(25) X1�d<b1=3 '(d)pd = O(pb);and X1�d<b1=3 '(d) = 3�2 b2=3 +O(b1=3 log b):Of these, (25) is quite elementary sine its left side is� X1�d<b1=3pd = O((b1=3)3=2):The remaining two formulas are appliations of standard results (f. [1℄,p. 62, Theorem 3.7, and p. 71, Exerise 7).The upper bound for Sb;d given in (24) is not good enough for the proofof Proposition 1(b). Instead, we shall useLemma 3. Let 1 � d < b. ThenSb;d � 2d + (d; b):P r o o f. By (24), the assertion is true for d = 1. Suppose, heneforth,d � 2. Sb;d is the number of all integers n, 0 � n < b, suh that n 2 I(; d)holds for some , 0 �  < d, (; d) = 1. But saying \n 2 I(; d)" is the sameas saying(26) jnd� bj < d:For every k 2 Z de�ne (k)b 2 Z by the onditions(k)b � k mod b; �b=2 � (k)b < b=2(so (k)b is a ertain representative of the ongruene lass of k mod b). Now(21), together with the inequalities 1 <pb=d < b=d � b=2, yields d < b=2.Consequently, (26) an hold only if j(nd)bj < d. But then(27) Sb;d � jfn : 0 � n < b; j(nd)bj < dgj:We write Æ = (d; b), d = d0Æ, and b = b0Æ. The identity(nd)b = (nd0)b0 � Æreadily shows(28) jfn : 0 � n < b; j(nd)bj < dgj= Æ � jfn : 0 � n < b0; j(nd0)b0 j < d=Ægj:Sine (d0; b0) = 1, the map n 7! (nd0)b0 is injetive on fn : 0 � n < b0g.Thus, jfn : 0 � n < b0; j(nd0)b0 j < d=Ægj � 2d=Æ + 1:By (27) and (28), Sb;d � 2d + Æ, as desired.



292 K. GirstmairProof of Proposition 1(b). Lemma 3 yieldsS2(b) � 2 Xb1=3�d<pb d + Xb1=3�d<pb(d; b):The seond sum is dominated byX1�d<pb(d; b) �Xdjb d � jfn : 1 � n < pb; d jngj �Xdjb d � pb=d = pbXdjb 1;whih is � b0:51 as soon as b is large enough. As to the �rst sum, we assumeb1=3 � 12 and use (22) together with the formulasXd�b1=3 1=d2 = b�1=3 +O(b�2=3); Xd�b1=3 1=d3 = O(b�2=3)(f. [1℄, pp. 55 �). This onludes the proof.4. Additional observations. The proof of Theorem 2 might suggestthat the sum S2(b) does not atually play a role for the growth of S(b)|forinstane, we did not even use S2(b) > 0. Numerial examples, however,indiate that S1(b) and S2(b) have the same order of magnitude, namelyb2=3 (f. Table 1, whih displays some ases in whih b is a prime).If one assumes that the behaviour of the region R(b) relative to integersis \random", one expets that its (usual) measure %(b) is lose to S(b). Thisis the ase in the examples listed below. Here we note that the intervalsI(; d) are mutually disjoint|so this is true not only for the integers inthese intervals. Therefore,%(b) = X1�d<pb'(d) � 2d=d:However, we abstain from proving the said disjointness, some details beingfairly toilsome. With the aid of Lemma 2 it is not diÆult to show%(b) < 36�2 b2=3:The right side seems to be a more realisti upper bound for S(b) than thatof Theorem 2. Table 1b S(b) S1(b) S2(b) %(b) (36=�2) � b2=3105 + 3 6338 4378 1960 6308.8 7858.6106 + 3 30210 20716 9494 30123.4 36475.7107 + 19 143010 97536 45474 142693.3 169305.1108 + 7 672954 457150 215804 671954.9 785843.6109 + 7 3153674 2136180 1017494 3150637.2 3647562.6



Dedekind sums with preditable signs 293One may ask whether the intervals I(; d) of Theorem 1 are \largestpossible" or, onversely, whether they an be extended to larger intervalswith the same behaviour of the sign. Indeed, an extension is possible inindividual ases but not in general. Rademaher ([7℄, Satz 1) showed thats(n; b) = 0 if n = pb� 1, so the intervals I(; 1) annot be enlarged if b� 1happens to be a square. In addition, we investigated many numbers d > 1and found numerous examples of sign hanges of s(n; b) as soon as n passesone of the boundaries of I(; d).The behaviour of s(n; b) inside the intervals I(; d) is explained, partiallyat least, by the following observation, whih is based on Lemma 1, too (f.also [3℄, part 2.4): If d is small relative to b and n is lose to the midpointb � =d of I(; d), the point (n; 12s(n; b)) is lose to the point (x; y) of thehyperbola (x� b � =d) � y = b=d2with x = n. In partiular, the sign of s(n; b) agrees with that of y. Whenn moves away from b � =d, the point (n; 12s(n; b)) may gradually leave itsompanion (n; y)|however, it must not ross the asymptote y = 0 of thehyperbola as long as n remains inside I(; d). The reader may inspet theases d = 2; 3 in the �rst diagram above.Finally, we observe that the estimate (21) impliesjn=b� =dj < 1=(2d2)for any n 2 I(; d) if only b � 12 (reall that d must be < pb if I(; d) isnonempty). Therefore, the fration =d is a onvergent of n=b aording toLegendre's riterion. In order to test whether a given number n, (n; b) = 1,is in the region R(b) one may proeed as follows: Compute the ontinuedfration of n=b and hek whether some onvergent =d, d < pb, satis�es(26). If this is the ase, n is in I(; d) and hene in R(b), otherwise n liesoutside R(b). Referenes[1℄ T. M. Aposto l, Introdution to Analyti Number Theory , Springer, New York, 1976.[2℄ R. Bruggeman, On the distribution of Dedekind sums, in: Contemp. Math. 166,Amer. Math. So., 1994, 197{210.[3℄ |, Dedekind sums for Heke groups, Ata Arith. 71 (1995), 11{46.[4℄ U. Dieter, Beziehungen zwishen Dedekindshen Summen, Abh. Math. Sem. Univ.Hamburg 21 (1957), 109{125.[5℄ J. E. Pommershe im, Tori varieties, lattie points, and Dedekind sums, Math.Ann. 295 (1993), 1{24.[6℄ H. Rademaher, Generalization of the reiproity formula for Dedekind sums, DukeMath. J. 21 (1954), 391{397.[7℄ |, Zur Theorie der Dedekindshen Summen, Math. Z. 63 (1956), 445{463.
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