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Distint zeros of L-funtionsbyE. Bombieri (Prineton, N.J.) and A. Perelli (Genova)1. Introdution. Let L1(s) and L2(s) be two \independent" L-fun-tions, where the meaning of \independent" will be lari�ed later on. Sinethe L-funtions are determined by their zeros, we may expet that L1(s) andL2(s) have few ommon zeros. This problem appears to be very diÆult atpresent, therefore we may ask the easier question of getting a fair quantity ofdistint zeros of suh funtions. In this paper we show that, under suitableonditions, L1(s) and L2(s) have a positive proportion of distint zeros.We state our results in the moderately general setting of Bombieri{Hejhal's paper [1℄, whih also provides the basi ingredients of the presentpaper. Moreover, we will work out our main tool, Theorem 2 below, in thease of several L-funtions. Hene, for a given integer N � 2, we onsiderN funtions L1(s); : : : ; LN (s) satisfying the following basi hypothesis.Hypothesis B. (I) Eah funtion Lj(s) has an Euler produt of the formLj(s) =Yp dYi=1(1� �ipp�s)�1with j�ipj � p� for some �xed 0 � � < 1=2 and i = 1; : : : ; d.(II) For every " > 0 we haveXp�x dXi=1 j�ipj2 � x1+":(III) The funtions Lj(s) have an analyti ontinuation to C as mero-morphi funtions of �nite order with a �nite number of poles, all on theline � = 1, and satisfy a funtional equation of the form�(s) = "�(1� s);where �(s) = QsQmi=1 � (�is+ �i), Q > 0, �i > 0, Re�i � 0 and j"j = 1.1991 Mathematis Subjet Classi�ation: Primary 11M41.[271℄



272 E. Bombieri and A. Perell i(IV) The oeÆients aj(p) of the Dirihlet seriesLj(s) = 1Xn=1 aj(n)n�ssatisfy Xp�x aj(p)ak(p)p = Æjknj log log x+ jk +O� 1log x�for ertain onstants nj > 0.We expliitly remark that all the data involved in Hypothesis B onern-ing a funtion Lj(s) may depend on j. We also remark that the onditionsof Hypothesis B may be somewhat relaxed (see Selberg [10℄) in order todedue our results below.We refer to Setion 3 of [1℄ for a thorough disussion of Hypothesis B, ofits standard onsequenes and of several examples of funtions satisfying it.Here we point out only that B(II) implies that both the Dirihlet series andthe Euler produt of Lj(s) onverge absolutely for � > 1, B(I) ensures thatLj(s) 6= 0 for � > 1 and B(III) gives rise to the familiar notions of ritialstrip, ritial line and trivial and non-trivial zeros. Moreover, writing�j = mXi=1 �i;Nj(t) = jf% : Lj(%) = 0; 0 � Re % � 1 and 0 � Im % � tgjand Sj(t) = 1� argLj(1=2 + it);for suÆiently large t we have(1) Nj(t) = �j� t log t+ jt+ 0j + Sj(t) +O(1=t)with ertain onstants j and 0j .Condition B(IV), introdued by Selberg [10℄, plays a speial role, sineit provides a form of \near-orthogonality" of the funtions Lj(s); the \in-dependene" alluded to at the beginning of the setion omes from this\near-orthogonality". For instane, B(IV) implies that L1(s); : : : ; LN (s)are linearly independent over C ; see Bombieri{Hejhal [1℄ and Kazorowski{Perelli [7℄ for further results in this diretion.We expet that the funtions Lj(s) satisfy the Generalized RiemannHypothesis. As a substitute of it in our arguments, we will instead assumethe following density estimate. LetNj(�; T ) = jf% : Lj(%) = 0; Re % � � and jIm %j � Tgj:



Distint zeros of L-funtions 273Hypothesis D. There exists 0 < a < 1 suh thatNj(�; T )� T 1�a(��1=2) log Tuniformly for � � 1=2 and j = 1; : : : ; N .The main point in introduing Hypothesis D is that, unlike the Gener-alized Riemann Hypothesis, it an be veri�ed in many interesting ases. Infat, it has been proved by Selberg [9℄ for the Riemann zeta funtion, byFujii [5℄ for Dirihlet L-funtions, and by Luo [8℄ in the more diÆult aseof L-funtions attahed to ertain modular forms.In order to state our main result, we de�ne the ounting funtionD(T;L1; L2) of the distint non-trivial zeros, ounted with multipliity, oftwo funtions L1(s) and L2(s) asD(T;L1; L2) = X0�Re %�10�Im %�T max(m1(%)�m2(%); 0);where % runs over the zeros of L1(s)L2(s) and is ounted without multipli-ity. We also de�neD(T ) = D(T;L1; L2) +D(T;L2; L1) = X0�Re %�10�Im%�T jm1(%)�m2(%)j;with the same onvention about %.Our main result isTheorem 1. Let L1(s) and L2(s) satisfy Hypotheses B and D and sup-pose that �1 = �2. Then D(T;L1; L2)� T log T:Clearly, the same lower bound holds for D(T;L2; L1) and D(T ) too.The �rst result of this type has been obtained by Fujii [6℄ in the ase oftwo primitive Dirihlet L-funtions, by means of Selberg's moments method.The problem of ounting strongly distint zeros, i.e., zeros plaed at dif-ferent points, appears to be more diÆult, and the best result is due toConrey{Ghosh{Gonek [3℄, [4℄. They deal with this problem, in the ase oftwo primitive Dirihlet L-funtions, by onsidering the more diÆult ques-tion of getting simple zeros of L(s; �1)L(s; �2), and show that there are� T 6=11 suh zeros up to T . Moreover, if the Riemann Hypothesis is as-sumed for one of the two funtions, then a positive proportion of suh zerosis obtained. However, the tehniques in [3℄ and [4℄ do not extend to overthe ase of more general L-funtions, suh as GL2 L-funtions.Let us all oprime two funtions in Selberg's lass S (see [10℄) eahhaving a fatorization into primitive funtions (in the sense of Selberg [10℄)



274 E. Bombieri and A. Perell isuh that there are no ommon fators of suh fatorizations. AssumingSelberg's Conjetures 1.1 and 1.2 in [10℄, we see that B(IV) holds for o-prime funtions. Hene, assuming Hypothesis D for every funtion in S,we may regard the lower bound in Theorem 1, in the ase of oprime fun-tions, as a onsequene of Selberg's onjetures. Another onsequene ofSelberg's onjetures is that S has unique fatorization (see Conrey{Ghosh[2℄). We remark here that the latter onsequene of Selberg's onjetures iseasily implied by a very weak form of the former. Preisely, assuming thattwo oprime funtions in S have D(T ) � 1 for suÆiently large T , we getthe unique fatorization in S. In fat, the assumption implies that two o-prime funtions are neessarily distint, and this learly implies the uniquefatorization.Theorem 1 appears to be the limit of our method, although muh moreis expeted to hold. For instane, if L1(s) and L2(s) are distint primitivefuntions, we expet that almost all zeros of L1(s) and L2(s) are distint,i.e., D(T ) � �1 + �2� T log T;in whih ase almost all zeros are atually strongly distint, or even thatD(T ) = N1(T ) +N2(T ) +O(1);i.e., L1(s) and L2(s) have O(1) ommon non-trivial zeros.The proof of Theorem 1 is based on Bombieri{Hejhal's [1℄ variant ofSelberg's [9℄ moments method, whih leads in a more diret way to the dis-tribution funtion for the logLj(1=2+ it) (see Theorem B of [1℄). Althoughwe ould follow a variant more in the spirit of Selberg [9℄ and Fujii [6℄, wewill prove Theorem 1 by means of a short intervals analog of the abovementioned Theorem B, whih we believe to be of interest in itself.Let M � 10, write h =M=log T andVj(t) = logLj(1=2 + i(t+ h)) � logLj(1=2 + it)(2�nj logM)1=2 ;and let �T denote the assoiated probability measure on C N , de�ned by(2) �T (
) = 1T jft 2 [T; 2T ℄ : (V1(t); : : : ; VN (t)) 2 
gjfor every open set 
 � CN . Moreover, let e��kzk2 denote the gaussianmeasure on CN and let d! be the eulidean density on C N .Theorem 2. Let L1(s); : : : ; LN (s) satisfy Hypotheses B and D and letM =M(T )!1 with M � (log T )= log log T as T !1. Then, as T !1,�T tends to the gaussian measure with assoiated density e��kzk2 d!.



Distint zeros of L-funtions 275We remark that we an easily get a slight variant of Theorem 2, whereh = M=log t and M =M(t)!1 with M � log1�" t as t!1. Therefore,if we separate the Vj(t) into their real and imaginary parts, Theorem 2 anbe expressed by saying that the funtionslog ��Lj�12 + i�t+ Mlog t����� log ��Lj� 12 + it���(2�nj logM)1=2 ; j = 1; : : : ; N;and argLj� 12 + i�t+ Mlog t��� argLj� 12 + it�(2�nj logM)1=2 ; j = 1; : : : ; N;beome distributed, in the limit of large t, like independent random vari-ables, eah having gaussian density exp(��u2)du, provided M ! 1 withM � log1�" t as t!1.Aknowledgments. The seond named author wishes to thank theInstitute for Advaned Study for its hospitality and for providing exellentworking onditions.2. Basi lemmas. In this setion we follow the arguments in Setion 5of Bombieri{Hejhal [1℄. For � > 1 and j = 1; : : : ; N we writelogLj(s) = 1Xn=1 j(n)�1(n)n�s; �1(n) = � 0; n = 1;�(n)=log n; n � 2;and denote by u(x) a real positive C1 funtion with ompat support in[1; e℄ and by eu(s) its Mellin transform. We also writev(x) = 1\x u(t) dtand assume that u is normalized so that v(0) = 1. We refer to Lemma 1 of[1℄ and the remark following it for relevant properties of eu(s).By (5.4) of [1℄ we have the approximate formulalogLj(1=2 + it) = 1Xn=1 j(n)�1(n)n1=2+it v(e(log n)= logX)(3) +X% 1\1=2 1%� s eu(1 + (%� s) logX) d� +O(1);where jtj is suÆiently large and not the ordinate of a zero of Lj(s), where2 � X � t2 and where % runs over zeros of Lj(s) with 0 � Re % � 1. Wewrite (3) aslogLj(1=2 + it) = Dj(1=2 + it;X) +Rj(1=2 + it;X)where Dj(1=2 + it;X) is the Dirihlet series on the right hand side of (3).



276 E. Bombieri and A. Perell iFrom Lemma 3 of [1℄ we immediately get our �rst basi lemma.Lemma 1. Assume Hypotheses B and D, and let 2 � X � T a=2 and TsuÆiently large. Then for j = 1; : : : ; N we have2T\T jRj(1=2 + it;X)j dt� T log TlogX :Our seond basi lemma is a short intervals analog of Lemma 6 of [1℄,i.e., the mixed moments of the di�erenes of the Dj(1=2 + it;X). Sine theproof of Lemma 2 below follows that of Lemma 6 of [1℄, we will only skethit. For suÆiently large M , write h =M=log T and�j(t) = Dj(1=2 + i(t+ h);X) �Dj(1=2 + it;X):Moreover, let kj � 0 and lj � 0, j = 1; : : : ; N , be integers and let usabbreviate k = (k1; : : : ; kN ), Kj = k1 + : : :+ kj , K = KN and similarly forl; Lj and L. We also write k! =QNj=1 kj !.We state here the basi estimate we will repeatedly use in the proof ofLemma 2. For X � 3 we have(4) Xp aj(p)ak(p)p v(e(log p)=logX)2je�ih log p � 1j2= Æjk 2nj log+�h2 logX�+O(1)uniformly for h � 1=log logX, where log+ x = max(log x; 0). In fat,je�ih log p � 1j = 4 sin2((h=2) log p) and hene (4) follows from B(IV) bypartial summation (see also (3.8) of [1℄).Lemma 2. Assume Hypothesis B and let X � T 1=(K+L+1) and M �(log T )=log logX. Write�j(t) = 1Xn=1 bj(n)n1=2+it ; bj(n) = j(n)�1(n)v(e(log n)=logX)(e�ih logn � 1):Then2T\T NYj=1(�j(t))kj (�j(t))ljdt = Æk;l k!T NYj=1�2nj log+�M2 log TlogX��kj+O�T�log+�M2 log TlogX��(K+L�1)=2�:P r o o f. We may learly assume that K+L � 1. For notational simpli-ity, we abbreviate �j = �j(t). Sine �j is supported at prime powers only,we split it as �j = �0j +�00j



Distint zeros of L-funtions 277where �0j ranges over primes p and �00j over prime powers pr, r � 2. Then,aordingly, we get(5) NYj=1(�j)kj (�j)lj = NYj=1(�0j)kj (�0j)lj +R(t);where, as in the proof of Lemma 6 of [1℄,(6) 2T\T jR(t)j dt� 2T\T j�00j1 jj�0j2 jK+L�1 dt+ 2T\T j�00j3 jK+L dtfor a suitable hoie of j1; j2 and j3.Sine e�ih logn � 1� 1, by (5.14) of [1℄ we have(7) 2T\T j�00j j2(K+L) dt� Tfor j = 1; : : : ; N , provided X � T 1=(K+L+1).By Montgomery{Vaughan's mean-value theorem for Dirihlet polynomi-als (see, e.g., Lemma 4 of [1℄) we have2T\T j�0j j2(K+L) dt = TX jB0(n)j2n +O�X jB0(n)j2�;where B0(n) = Xp1:::pK+L=n bj(p1) : : : bj(pK+L):Sine j(p) = aj(p) and �1(p) = 1, from (5.16) of [1℄ and (4) we getX jB0(n)j2n � (K + L)!�Xp jbj(p)j2p �K+L � �log+�M2 log TlogX��K+L:Moreover, from (5.17) of [1℄ we obtainX jB0(n)j2 � X(1+")(K+L) ;and hene(8) 2T\T j�0j j2(K+L) dt� T�log+�M2 log TlogX��K+Lprovided X � T 1=(K+L+1).From (6){(8) and H�older's inequality we get(9) 2T\T jR(t)j dt� T�log+�M2 log TlogX��(K+L�1)=2provided X � T 1=(K+L+1).



278 E. Bombieri and A. Perell iIn order to treat the main produt on the right hand side of (5) we useagain Lemma 4 of [1℄. We abbreviate n = (n1; : : : ; nK),b(n;k) = NYj=1 KjYr=Kj�1+1 bj(nr) and B(n;k) = Xn1:::nK=n b(n;k);and as in (5.18) of [1℄ we have2T\T NYj=1(�0j)kj (�0j)lj ; dt = TX B(n;k)B(n; l)n(10) +O��X jB(n;k)j2�1=2�X jB(n; l)j2�1=2�;where the sums are restrited to n of type n = p1 : : : pK for k and n =q1 : : : qL for l; here p and q denote prime numbers. By a variant of theargument leading to (8) we see that(11) �X jB(n;k)j2�1=2�X jB(n; l)j2�1=2� T�log+�M2 log TlogX��(K+L�1)=2provided X � T 1=(K+L+1).In view of (5), (9), (10) and (11), to omplete the proof of Lemma 2 itsuÆes to show thatX B(n;k)B(n; l)n = Æk;l k! NYj=1�2nj log+�M2 log TlogX��kj(12) +O��log+�M2 log TlogX��(K+L�1)=2�:If K 6= L there is nothing to prove, sine B(n;k)B(n; l) = 0 for every n; wean therefore assume K = L � 1 and proeed by indution as in Lemma 6of [1℄.If K = 1, (12) follows immediately from (4). Suppose now that K � 2.Arguing again as in Lemma 6 of [1℄ and using (3.8) of [1℄, we see that theontribution to the left hand side of (12) oming from n's whih are notsquare-free is � �log+�M2 log TlogX��(K+L�1)=2:In order to deal with the remaining part of the sum on the left hand sideof (12) we proeed as on pp. 847{849 of [1℄, with some obvious hanges to



Distint zeros of L-funtions 279take into aount the fator e�ih log n � 1 in our de�nition of the bj(n). Inthis way we see that (12) holds for any K � 1, and Lemma 2 is proved.We remark that we an easily obtain a version of Lemma 2 with h re-plaed by M=log t, provided an additional error termO�T (log logX)K+LM logXlog2 T �is added in the statement of Lemma2. We leave its veri�ation to the reader.3. Proof of theorems. The proof of Theorem 2 follows losely that ofTheorem B of [1℄. Let M !1 as T !1 and hooselogX = log T(logM)1=4 ;so thatlog+�M2 log TlogX� � logM; logXlog T = (logM)�1=4; X = T o(1):Moreover, let Uj(t) = (2�nj logM)�1=2�j(t)and e�T be the assoiated probability measure on CN , de�ned as in (2).Then, assuming that M � (log T )=log log T and arguing exatly as inthe proof of Theorem B of [1℄, from Lemma 2 we see that e�T onverges, asT ! 1, to the gaussian measure e��kzk2 . Also, from Lemma 1 we easilydedue that 1T 2T\T jVj(t)� Uj(t)j dt� (logM)�1=4;and hene �T onverges to the same gaussian measure, ompleting the proof.The proof of Theorem 1 is by ontradition. Let T� be a sequene alongwhih D� := D(2T� ; L1; L2)�D(T� ; L1; L2) = o(T� log T�):We set(13) M� = min� log T�log log T� ;rT� log T�1 +D� �:Then M� ! 1 and M� � (log T�)= log log T� , so that Theorem 2 is appli-able to L1, L2 and the sequene T� , M� .Write h� =M�= log T� ;�N (t; h�) = (N1(t+ h�)�N1(t))� (N2(t+ h�)�N2(t));�S(t; h�) = (S1(t+ h�)� S1(t)) � (S2(t+ h�)� S2(t))



280 E. Bombieri and A. Perell iand observe that (1) and �1 = �2 imply(14) �N (t; h�) = �S(t; h�) +O� M�log T��uniformly for t 2 [T� ; 2T� ℄.For j = 1; 2 and t 2 [T� ; 2T� ℄ we have(15) ImVj(t) = �(2�nj logM�)1=2 (Sj(t+ h�)� Sj(t)):Thus from (14) and (15) we see that if t 2 [T� ; 2T� ℄ is suh that(16) ImV2(t) < 0 and ImV1(t) > 1;then �N (t; h�) = 1� (2�n1 logM�)1=2 ImV1(t)� 1� (2�n2 logM�)1=2 ImV2(t) +O(M�= log T�)� 1� (2�n1 logM�)1=2 +O(M�= log T�):Denote by E� the set of t 2 [T� ; 2T� ℄ for whih (16) holds.In order to get a lower bound for jE� j, we onsider the set
 = f(z1; z2) 2 C 2 : Im z1 > 1 and Im z2 < 0g;so that(17) jE� j = T� �T� (
):From Theorem 2 we obtain(18) lim�!1�T� (
) = \
 e��kzk2 d! � 1:From (15), (17) and (18) we see that jE� j � T� , and hene we deduethe existene of � T�=h� values tr 2 [T� ; 2T� ℄, with jtr � tsj � h� if r 6= s,suh that �N (tr; h�) � 1� (2�n1 logM�)1=2 +O(M�= log T�):Therefore(19) D� �Xr �N (tr; h�)� plogM�M� T� log T� :Now reall that(13) M� = min� log T�log log T� ;rT� log T�1 +D� �:
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