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Determination of all non-quadratic
imaginary cyclic number fields of 2-power

degree with relative class number ≤ 20

by

Young-Ho Park and Soun-Hi Kwon (Seoul)

1. Introduction. Recently, Louboutin [L1] has determined all imag-
inary cyclic number fields of 2-power degree with relative class number 1
and 2. (More precisely, he reduced the determination of all non-quadratic
imaginary cyclic fields of 2-power degree with cyclic ideal class groups of 2-
power orders to the determination of all the non-quadratic imaginary cyclic
fields of 2-power degree with relative class number one or two.) In [L1]
Louboutin has obtained good lower bounds for the relative class number
of non-quadratic imaginary cyclic number fields of 2-power degree. Using
these lower bounds we prove the following:

Theorem 1. There are 204 non-quadratic imaginary cyclic fields of 2-
power degree with relative class number h−N ≤ 20. They all have degrees ≤ 16
and conductors ≤ 2355. Moreover , there are 169 non-quadratic imaginary
cyclic fields of 2-power degree with class number hN ≤ 20. They all have
degrees ≤ 16 and conductors ≤ 1789.

In Section 2, we give lower bounds on the relative class numbers of non-
quadratic imaginary cyclic fields of 2-power degree. These bounds enable us
to get reasonable upper bounds on the conductors of those fields which have
relative class number h−N ≤ 20. In Section 3, we explain how we construct
any imaginary cyclic quartic or octic field. In Section 4, we explain how
we compute the relative class number of any non-quadratic imaginary cyclic
field of 2-power degree. Using Sections 2 and 3 we will be in a position
to determine in Section 4 all the non-quadratic imaginary cyclic fields of
2-power degree with relative class number h−N ≤ 20. Finally, we will explain
how we computed the class numbers of the real subfields N+ of those 204
non-quadratic imaginary cyclic fields of 2-power degree with relative class
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number h−N ≤ 20. All non-quadratic imaginary cyclic number fields of 2-
power degree with relative class number ≤ 20 are given in Tables 1, 2 and 3.

2. Lower bounds for the relative class number. Let N be a
CM-field of degree 2n, N+ its maximal totally real subfield, hN the class
number of N and h−N the relative class number of N . In order to determine
all CM-fields of a given degree and given class number, we begin with a
reasonable lower bound for h−N , which leads us to a feasible computation.
For this purpose we apply the following theorem, due to Louboutin [L1].

Theorem 2. Let N be an imaginary cyclic number field of 2-power degree
2n = 2m ≥ 4, conductor fN and discriminant dN . Then

h−N ≥ 2εN

e(2n− 1)

( √
fN

π(log fN + 0.05)

)n

where

εN = 1− 2πne1/n

d
1/(2n)
N

or
2
5

exp
(
− 2nπ

d
1/(2n)
N

)
.

In particular ,

if n = 2 and fN ≥ 118000 then h−N > 20;

if n = 4 and fN ≥ 14800 then h−N > 20;

if n = 8 and fN ≥ 4900 then h−N > 20;

if n = 16 and fN ≥ 2000 then h−N > 20;

if n = 32 and fN ≥ 1300 then h−N > 20;

if n = 64 and fN ≥ 1000 then h−N > 20;

if n = 128 and fN ≥ 900 then h−N > 20;

if n = 256 and fN ≥ 800 then h−N > 20.

If h−N ≤ 20, then n ≤ 256.

P r o o f. See Theorem 4 of [L1]. For the last statement, it suffices to
notice that fN ≥ 2n + 1.

3. Conductors of cyclic number fields. Let N be a cyclic number
field of degree 2n = 2m, fN the conductor of N , dN the discriminant of
N and hN the class number of N . Let χN be a primitive character of
order 2n such that N is associated with the cyclic group generated by χN ,
{χi

N : 0 ≤ i ≤ 2n − 1}. For any positive integer n and prime q, let vq(n)
denote the exponent of q in the prime factorization of n. The following
properties are very useful in determining all possible conductors smaller
than a fixed constant.
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Proposition 1. Let N be a quartic cyclic number field and k the quadrat-
ic subfield of N .

(i) The conductor fN can be written as

fN =
s∏

i=1

pi

t∏
j=1

qj , fk = 2ε
t∏

j=1

qj , s ≥ 0 and t ≥ 1.

Here, pi’s and qj’s are all distinct , pi is 22, 23 or an odd prime, qj is 24

or odd prime equal to 1 modulo 4, and ε = −1 or 0 according as 16 divides∏
qj or not. In addition, dN = f2

Nfk.
(ii) For a given conductor fN with fN ≡ 0 mod 8, there are 2t−1 imagi-

nary cyclic quartic fields and 2t−1 real fields.
(iii) For a given conductor fN with v2(fN ) = 2, we assume p1 = 22.

Then there are 2t−1 cyclic quartic fields of conductor fN ; all of them are
real if

1 +
s∑

i≥2

pi − 1
2

+
t∑

j=1

qj − 1
4

≡ 0 (mod 2)

and all are imaginary otherwise.
(iv) For a given odd conductor fN , there are 2t−1 cyclic quartic fields of

conductor fN ; all of them are real if
s∑

i=1

pi − 1
2

+
t∑

j=1

qj − 1
4

≡ 0 (mod 2)

and all are imaginary otherwise.

P r o o f. (i) Let χN be a primitive Dirichlet character modulo fN of
order 4 such that the cyclic group 〈χN 〉 is associated with the field N . Let
fN =

∏
pa. Corresponding to the decomposition

(Z/fNZ)∗ =
∏

(Z/paZ)∗,

we may write χN as χN =
∏

χp where χp is a character defined modulo
pa. As χN has order 4, every χp has order 2 or 4 and at least one of the
χp has order 4. If χp has order 2, then pa = 22, 23 or an odd prime, χp is
the Legendre symbol when pi is odd, and χp is one of two primitive non-
conjugate quadratic characters modulo 8 when p = 23. If χp has order 4,
then pa = 24 or an odd prime equal to 1 modulo 4. Moreover, in that case χp

is one of two conjugate primitive quartic characters modulo p when p is odd,
and χp is one of two non-conjugate characters modulo 16 where pa = 16.
Denote by qj the divisor of fN such that the corresponding character χqj

is of order 4, and by pi the divisor of fN such that χpi is of order 2. We
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rewrite fN as

fN =
s∏

i=1

pi

t∏
j=1

qj and χN =
s∏

i=1

χpi

t∏
j=1

χqj ,

with the convention q1 = 24 if v2(fN ) = 4, p1 = 23 if v2(fN ) = 3 and p1 = 22

if v2(fN ) = 2 (we allow s = 0). Then χ2
N =

∏
χ2

qj
is associated with the

quadratic subfield k. If qj is an odd prime then the conductor of χ2
qj

is also
qj and if q1 = 24 then the conductor of χ2

q1
is 23. So we have

fk = 2ε
t∏

j=1

qj and dN = 2ε
∏

p2
i

∏
q3
j

where ε = −1 or 0 according as 16 divides
∏

qj or not.
(ii) (iii) and (iv). It suffices to notice that N is real or imaginary accord-

ing as χN (−1) = 1 or χN (−1) = −1 and that{
χpi(−1) = (−1)(pi−1)/2 if pi is an odd prime,
χqj

(−1) = (−1)(qj−1)/4 if qj is an odd prime equal to 1 mod 4.

Remark 1. If N is an imaginary cyclic quartic field, then 2s4t−1 divides
hN . In fact, let GN be the genus field of N . Then [GN : Q] = 2s4t and
[GN : N ] |hN .

We can prove the similar properties for octic cyclic number fields:

Proposition 2. Let N be an octic cyclic number field , K the quartic
subfield of N , and k the quadratic subfield of N .

(i) The conductor fN can be written as

fN =
s∏

i=1

pi

t∏
j=1

qj

u∏
k=1

rk, s ≥ 0, t ≥ 0 and u ≥ 1,

with

fK = 2ε1

t∏
j=1

qj

u∏
k=1

rk, fk = 22ε2

u∏
k=1

rk.

Moreover ,

dN = f4
Nf2

Kfk = 22(ε1+ε2)
s∏

i=1

p4
i

t∏
j=1

q6
j

u∏
k=1

r7
k.

Here, pi’s, qj’s and rk’s are all distinct , pi is 22, 23 or an odd prime, qj

is 24 or an odd prime equal to 1 modulo 4, rk is 25 or an odd prime equal
to 1 modulo 8, ε1 = −1 or 0 according as 2 divides

∏
qj

∏
rk or not , and

ε2 = −1 or 0 according as 2 divides
∏

rk or not.
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(ii) For a given conductor fN with fN ≡ 0 mod 8, there are 2t4u−1 real
fields and 2t4u−1 imaginary fields.

(iii) For a given conductor fN with v2(fN ) = 2, we assume p1 = 22.
Then there are 2t4u−1 cyclic octic fields of conductor fN ; all of them are
real if

1 +
s∑

i≥2

pi − 1
2

+
t∑

j=1

qj − 1
4

+
u∑

k=1

rk − 1
8

≡ 0 (mod 2)

and all are imaginary otherwise.
(iv) For a given odd conductor fN , there are 2t4u−1 cyclic octic fields of

conductor fN ; all of them are real if
s∑

i=1

pi − 1
2

+
t∑

j=1

qj − 1
4

+
u∑

k=1

rk − 1
8

≡ 0 (mod 2)

and all are imaginary otherwise.

Corollary 1. (i) If N is an imaginary cyclic octic field , then 2s+2t+3u−3

divides hN .
(ii) Let N be a non-quadratic imaginary cyclic number field of degree

2n = 2m ≥ 4. Then N has odd class number if and only if fN is 2m+2 or
an odd prime equal to 2n + 1 mod 4n.

P r o o f. This follows from genus field theory and Theorem 10.4(b) of
[W].

Set

ζN = exp
(

2iπ

fN

)
and ζN+ = exp

(
2iπ

fN+

)
.

From χN and χN+ we can compute numerically two polynomials defining
the number fields N and N+, respectively, for

θN =
fN−1∑
g=1

χN (g)=1

ζg
N and θN+ =

fN+−1∑
g=1

χN+ (g)=1

ζg
N+

are primitive elements of N and N+, respectively. However, if N or N+ is
quartic we use [HHRW1] to get a more convenient primitive element for N
or N+.

4. Main results. We can evaluate precisely the relative class number
by the following formula:

h−N = QwN

∏
χ odd

(
− 1

2B1,χ

)
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where Q is the Hasse unit index of N , wN is the number of roots of unity in
N , fχ is the conductor of χ and B1,χ = (1/fχ)

∑fχ−1
a=1 χ(a)a. The B1,χ are

called the generalized Bernoulli numbers. (See [W], Chapter 4, Theorem 4.)
Now, according to [H] or [Lm] imaginary cyclic fields have the Hasse unit
indices equal to 1, and according to Lemma (b) of [L2] for N an imaginary
cyclic field of degree 2n = 2m ≥ 4 we have wN = 2 except if 2n + 1 =
2m + 1 = p is prime and N = Q(ζp). Therefore, when N is an imaginary
cyclic field of degree 2n = 2m ≥ 4, setting αN =

∑fN−1
a=1 χN (a)a ∈ Z[ζ2m ]

we get

h−N =
wN

(2fN )n

2m−1∏
i=1
i odd

( fN−1∑
a=1

χi
N (a)a

)
=

wN

(2fN )n
NQ(ζ2m )/Q(αN ).

From this relative class number formula we get the following proposition
which explains why our computation did not yield any field with some rel-
ative class numbers:

Proposition 3 (Louboutin). Let N be an imaginary cyclic number field
of degree 2n = 2m ≥ 4 and let q be an odd prime. If q divides h−N then
vq(h−N ), the exponent of q in the factorization of h−N , is divisible by fq, the
order of q in the multiplicative group (Z/2mZ)∗. Therefore,

h−N ≤ 20 and 2n = 4 imply h−N ∈ {1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20},
h−N ≤ 20 and 2n = 8 imply h−N ∈ {1, 2, 4, 8, 9, 16, 17, 18},
h−N ≤ 20 and 2n = 16 imply h−N ∈ {1, 2, 4, 8, 16, 17}.

P r o o f. Use Theorem 2.13 of [W] and the prime ideal factorization of
the principal ideal (αN ) = (

∑fN−1
a=1 aχN (a)) of Q(ζ2m).

To determine all the non-quadratic imaginary cyclic fields of degree 2n =
2m ≥ 4 with relative class number h−N ≤ 20 we proceeded as follows.

First, according to Theorem 2 and using Propositions 1 and 2 we found
all the imaginary cyclic quartic fields with conductor fN ≤ 118000 (there
are 64078 of them) and all the imaginary cyclic octic fields with fN ≤ 14800
(there are 3599 of them).

Second, we computed the relative class numbers of all those 67677 imag-
inary cyclic fields. We found that there are 188 imaginary cyclic quartic
fields with h−N ≤ 20 and 13 imaginary cyclic octic fields with h−N ≤ 20.

Third, for all those 201 quartic and octic fields we computed the class
numbers of their real subfields N+. If N+ is real quadratic, then this compu-
tation was easy. If N+ is cyclic quartic, then we used the table of [M.N.G].
We found that 166 out of those 201 fields have class number hN ≤ 20.

Fourth, for imaginary cyclic fields of degree 2n = 2m ≥ 16 results similar
to those of Propositions 1 and 2 enabled us to make a list of all the imaginary
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cyclic fields of degree 2n = 2m ≥ 16 with fN ≤ 5000 (see Theorem 2). There
are 996 such fields.

Fifth, we computed their relative class numbers and found that 3 out of
them have h−N ≤ 20. Finally, using PARI-GP and polynomials defining N+

for those 3 fields (see Section 3), we found that all have hN ≤ 20.

We list all imaginary cyclic quartic fields with relative class number ≤ 20
in Table 1, all imaginary cyclic octic fields with relative class number ≤ 20
in Table 2, and all imaginary cyclic fields of degree 2n = 2m ≥ 16 with
relative class number ≤ 20 in Table 3. The results of our computation agree
with those of [G], [H], [HHRW1], [HHRW2], [HHRWH], [L1], [L2], [MM],
[M.N.G], [S], [Y], [YH1] and [YH2].

Table 1. The imaginary cyclic quartic fields N = Q(
√

−βN ) with h−
N ≤ 20

h−
N = 1

f hN+ βN f hN+ βN

5 1 5 + 2
√

5 37 1 37 + 6
√

37

13 1 13 + 2
√

13 53 1 53 + 2
√

53

16 1 2 +
√

2 61 1 61 + 6
√

61

29 1 29 + 2
√

29

h−
N = 2

40 1 5 +
√

5 80 2 10 + 3
√

10

48 1 3(2 +
√

2) 85 1 17(5 + 2
√

5)

65 1 13(5 + 2
√

5) 85 2 85 + 6
√

85

65 1 5(13 + 2
√

13) 104 1 13 + 3
√

13

80 1 5(2 +
√

2) 119 1 7(17 + 4
√

17)

h−
N = 4

60 1 3(5 + 2
√

5) 164 1 41 + 4
√

41

68 1 17 + 4
√

17 195 2 3(65 + 8
√

65)

105 1 21(5 + 2
√

5) 205 2 205 + 6
√

205

112 1 7(2 +
√

2) 219 1 3(73 + 8
√

73)

120 1 3(5 +
√

5) 221 1 17(13 + 2
√

13)

136 1 17 +
√

17 221 2 221 + 14
√

221

140 1 7(5 + 2
√

5) 255 1 15(17 + 4
√

17)

145 1 29(5 + 2
√

5) 272 2 34 + 3
√

34

145 1 5(29 + 2
√

29)
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Table 1 (cont.)

h−
N = 5

f hN+ βN f hN+ βN

101 1 101 + 10
√

101 197 1 197 + 14
√

197

157 1 157 + 6
√

157 349 1 349 + 18
√

349

173 1 173 + 2
√

173 373 1 373 + 18
√

373

h−
N = 8

156 1 3(13 + 2
√

13) 285 1 57(5 + 2
√

5)

165 1 33(5 + 2
√

5) 305 1 61(5 + 2
√

5)

205 1 41(5 + 2
√

5) 356 1 89 + 8
√

89

220 1 11(5 + 2
√

5) 377 1 29(13 + 2
√

13)

240 2 3(10 + 3
√

10) 435 4 3(145 + 8
√

145)

260 2 65 + 4
√

65 455 2 7(65 + 4
√

65)

272 1 17(2 +
√

2) 545 1 5(109 + 10
√

109)

273 1 21(13 + 2
√

13)

h−
N = 9

149 1 149 + 10
√

149 661 1 661 + 6
√

661

293 1 293 + 2
√

293

h−
N = 10

51 1 3(17 + 4
√

17) 365 2 365 + 14
√

365

80 2 10 +
√

10 391 1 23(17 + 4
√

17)

85 2 85 + 2
√

85 464 2 58 + 3
√

58

176 1 11(2 +
√

2) 481 1 13(37 + 6
√

37)

185 1 37(5 + 2
√

5) 485 2 485 + 14
√

485

185 1 5(37 + 6
√

37) 493 2 493 + 18
√

493

208 1 13(2 +
√

2) 527 1 31(17 + 4
√

17)

208 2 26 +
√

26 533 1 41(13 + 2
√

13)

208 2 26 + 5
√

26 533 2 533 + 22
√

533

265 1 53(5 + 2
√

5) 565 2 565 + 6
√

565

265 1 5(53 + 2
√

53) 685 2 685 + 18
√

685

267 1 3(89 + 8
√

89) 699 1 3(233 + 8
√

233)

287 1 7(41 + 4
√

41) 771 3 3(257 + 16
√

257)

304 1 19(2 +
√

2) 803 1 11(73 + 8
√

73)

339 1 3(113 + 8
√

113) 1261 2 1261 + 6
√

1261

365 1 73(5 + 2
√

5)
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Table 1 (cont.)

h−
N = 13

f hN+ βN f hN+ βN

269 1 269 + 10
√

269 509 1 509 + 22
√

509

317 1 317 + 14
√

317 557 1 557 + 14
√

557

397 1 397 + 6
√

397 1789 1 1789 + 42
√

1789

h−
N = 16

240 2 3(10 +
√

10) 520 2 65 + 7
√

65

260 2 65 + 8
√

65 580 4 145 + 12
√

145

312 1 3(13 + 3
√

13) 584 1 73 + 3
√

73

336 1 21(2 +
√

2) 609 1 21(29 + 2
√

29)

340 1 5(17 + 4
√

17) 615 1 15(41 + 4
√

41)

380 1 19(5 + 2
√

5) 663 1 39(17 + 4
√

17)

385 1 77(5 + 2
√

5) 689 1 53(13 + 2
√

13)

408 1 3(17 +
√

17) 795 2 3(265 + 16
√

265)

429 1 33(13 + 2
√

13) 799 1 47(17 + 4
√

17)

440 1 11(5 +
√

5) 905 1 5(181 + 10
√

181)

444 1 3(37 + 6
√

37) 979 1 11(89 + 8
√

89)

445 4 445 + 18
√

445 1015 4 7(145 + 12
√

145)

452 1 113 + 8
√

113 1271 1 31(41 + 4
√

41)

465 1 93(5 + 2
√

5) 1351 1 7(193 + 12
√

193)

496 1 31(2 +
√

2) 1595 4 11(145 + 8
√

145)

505 1 101(5 + 2
√

5)

h−
N = 17

109 1 109 + 10
√

109 821 1 821 + 14
√

821

229 3 229 + 2
√

229 853 1 853 + 18
√

853

277 1 277 + 14
√

277

h−
N = 18

424 1 53 + 7
√

53 949 2 949 + 18
√

949

493 1 17(29 + 2
√

29) 1059 1 3(353 + 8
√

353)

592 2 74 + 7
√

74 1165 2 1165 + 18
√

1165

629 2 629 + 2
√

629 1207 1 71(17 + 4
√

17)

848 2 106 + 9
√

106
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Table 1 (cont.)

h−
N = 20

f hN+ βN f hN+ βN

205 2 205 + 14
√

205 728 1 7(13 + 3
√

13)

221 2 221 + 10
√

221 745 1 149(5 + 2
√

5)

240 1 15(2 +
√

2) 772 1 193 + 12
√

193

280 1 7(5 +
√

5) 776 1 97 + 9
√

97

305 1 5(61 + 6
√

61) 805 1 161(5 + 2
√

5)

328 1 41 + 5
√

41 880 2 11(10 +
√

10)

345 1 69(5 + 2
√

5) 935 1 55(17 + 4
√

17)

348 1 3(29 + 2
√

29) 959 1 7(137 + 4
√

137)

368 1 23(2 +
√

2) 1001 1 77(13 + 2
√

13)

377 1 13(29 + 2
√

29) 1011 1 3(337 + 16
√

337)

445 1 89(5 + 2
√

5) 1040 4 130 + 9
√

130

460 1 23(5 + 2
√

5) 1145 3 5(229 + 2
√

229)

520 1 13(5 +
√

5) 1168 2 146 + 11
√

146

528 1 33(2 +
√

2) 1235 2 19(65 + 8
√

65)

545 1 109(5 + 2
√

5) 1243 1 11(113 + 8
√

113)

555 2 3(185 + 8
√

185) 1252 1 313 + 12
√

313

560 2 7(10 + 3
√

10) 1295 2 7(185 + 4
√

185)

572 1 11(13 + 2
√

13) 1313 1 101(13 + 2
√

13)

624 2 3(26 + 5
√

26) 1313 1 13(101 + 10
√

101)

645 1 129(5 + 2
√

5) 1405 2 1405 + 6
√

1405

656 1 41(2 +
√

2) 1495 2 23(65 + 4
√

65)

680 2 85 + 9
√

85 1599 1 39(41 + 4
√

41)

696 1 3(29 + 5
√

29) 1855 2 7(265 + 12
√

265)

715 2 11(65 + 8
√

65) 2355 6 3(785 + 16
√

785)

Table 2. The imaginary cyclic octic fields N with h−
N ≤ 20

h−
N f hN+ f+ quartic subfield N+

polynomial defining N

1 32 1 16 Q(
√

2 +
√

2)

x8 + 8x6 + 20x4 + 16x2 + 2 (N = Q(
√

−(2 +
√

2 +
√

2)))

1 41 1 41 Q(
√

41 + 4
√

41)

x8 + x7 + 3x6 + 11x5 + 44x4 − 53x3 + 153x2 − 160x + 59
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Table 2 (cont.)

h−
N f hN+ f+ quartic subfield N+

polynomial defining N

2 51 1 17 Q(
√

17 + 4
√

17)

x8 − x7 + 10x6 − 11x5 + 15x4 − 61x3 + 58x2 − 47x + 103

2 85 2 85 Q(
√

5(17 + 4
√

17))

x8 − x7 + 10x6 − 79x5 + 134x4 + 41x3 + 245x2 − 846x + 596

4 68 1 17 Q(
√

17 + 4
√

17)

x8 + 17x6 + 68x4 + 85x2 + 17

8 221 2 221 Q(
√

13(17 + 4
√

17))

x8 − x7 + 27x6 − 96x5 + 576x4 − 3512x3 − 1421x2 − 20515x + 139129

17 137 1 137 Q(
√

137 + 4
√

137)

x8 + x7 + 9x6 + 105x5 + 954x4 + 3767x3 + 9149x2 + 12828x + 7607

17 281 1 281 Q(
√

281 + 16
√

281)

x8 + x7 + 18x6 + 145x5 − 794x4 − 4463x3 + 23729x2 − 26540x + 559952

18 96 1 16 Q(
√

2 +
√

2)

x8 + 24x6 + 180x4 + 432x2 + 162 (N = Q(
√

−3(2 +
√

2 +
√

2)))

18 119 1 17 Q(
√

17 + 4
√

17)

x8 − x7 + 27x6 − 28x5 + 151x4 − 350x3 + 500x2 − 846x + 1157

18 160 2 80 Q(
√

5(2 +
√

2))

x8 + 40x6 + 500x4 + 2000x2 + 50

18 365 1 73 Q(
√

73 + 8
√

73)

x8 − x7 + 78x6 + 17x5 + 1706x4 + 3421x3 + 14117x2 + 45478x + 272444

18 485 2 485 Q(
√

5(97 + 4
√

97))

x8 − x7 + 55x6 + 156x5 + 7384x4 + 27896x3 + 179695x2 + 549x + 85941
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Table 3. The imaginary cyclic fields N of degree 16 with h−
N ≤ 20

which are the only ones of degree 2m ≥ 16 with h−
N ≤ 20

f h−
N polynomial defining N

f+ hN+ polynomial defining the real octic subfield N+

fL hL the quartic subfield L

17 1 Q(ζ17)

17 1 Q(cos(2π/17))

17 1 Q(
√

17 + 4
√

17)

64 17 Q(

√
−(2 +

√
2 +

√
2 +

√
2))

32 1 Q(
√

2 +
√

2 +
√

2)

16 1 Q(
√

2 +
√

2)

113 17 x16 + x15 + 4x14 + 20x13 + 110x12 + 525x11 + 325x10 − 425x9

+12062x8 − 21729x7 + 64244x6 − 119403x5 + 154492x4

−132177x3 + 210865x2 − 281708x + 132937

113 1 x8 + x7 − 49x6 + 16x5 + 511x4 − 367x3 − 1499x2 + 798x + 1372

113 1 Q(
√

113 + 8
√

113)

Remark 2. Some of the fields which appear in Tables 2 and 3 could
be given explicitly. In Table 2, the first field of conductor 32 is N =

Q
(√

−(2 +
√

2 +
√

2)
)

and the ninth field of conductor 96 is N =

Q
(√

−3(2 +
√

2 +
√

2)
)
. In Table 3, the first field of conductor 17 is N =

Q(ζ17) and N+ = Q(cos(2π/17)) and the second field of conductor 64 is

N = Q
(√

−(2 +
√

2 +
√

2 +
√

2)
)

and N+ = Q
(√

2 +
√

2 +
√

2
)

(see [L2]).
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