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Determination of all non-quadratic
imaginary cyclic number fields of 2-power
degree with relative class number < 20

by

YouNG-Ho PARkK and SOUN-HI KwoON (Seoul)

1. Introduction. Recently, Louboutin [L1] has determined all imag-
inary cyclic number fields of 2-power degree with relative class number 1
and 2. (More precisely, he reduced the determination of all non-quadratic
imaginary cyclic fields of 2-power degree with cyclic ideal class groups of 2-
power orders to the determination of all the non-quadratic imaginary cyclic
fields of 2-power degree with relative class number one or two.) In [L1]
Louboutin has obtained good lower bounds for the relative class number
of non-quadratic imaginary cyclic number fields of 2-power degree. Using
these lower bounds we prove the following:

THEOREM 1. There are 204 non-quadratic imaginary cyclic fields of 2-
power degree with relative class number hyy < 20. They all have degrees < 16
and conductors < 2355. Moreover, there are 169 non-quadratic imaginary
cyclic fields of 2-power degree with class number hy < 20. They all have
degrees < 16 and conductors < 1789.

In Section 2, we give lower bounds on the relative class numbers of non-
quadratic imaginary cyclic fields of 2-power degree. These bounds enable us
to get reasonable upper bounds on the conductors of those fields which have
relative class number hjy < 20. In Section 3, we explain how we construct
any imaginary cyclic quartic or octic field. In Section 4, we explain how
we compute the relative class number of any non-quadratic imaginary cyclic
field of 2-power degree. Using Sections 2 and 3 we will be in a position
to determine in Section 4 all the non-quadratic imaginary cyclic fields of
2-power degree with relative class number hy < 20. Finally, we will explain
how we computed the class numbers of the real subfields N, of those 204
non-quadratic imaginary cyclic fields of 2-power degree with relative class
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number hy < 20. All non-quadratic imaginary cyclic number fields of 2-
power degree with relative class number < 20 are given in Tables 1, 2 and 3.

2. Lower bounds for the relative class number. Let N be a
CM-field of degree 2n, N, its maximal totally real subfield, hy the class
number of N and hj; the relative class number of N. In order to determine
all CM-fields of a given degree and given class number, we begin with a
reasonable lower bound for h};, which leads us to a feasible computation.
For this purpose we apply the following theorem, due to Louboutin [L1].

THEOREM 2. Let N be an imaginary cyclic number field of 2-power degree
2n = 2™ > 4, conductor fy and discriminant dy. Then

b > 2en VIN "
N = ¢@2n — 1) \ n(log fn + 0.05)
where
. 2rnel/n 2 < 2nm >
eN=1l——— or —-exp| ———%5=].
d%(Qn) 5 d}\f@")

In particular,
if n=2and fny > 118000 then hy > 20;
if n=4and fny > 14800  then hy > 20;
if n=28 and fy > 4900 then hy > 20;
if m=16 and fy > 2000 then hy > 20;
if n=232and fnx >1300 then hy > 20;
if n =264 and fny > 1000 then hy > 20;
if n=128 and fy >900 then hy > 20;
if m =256 and fxy > 800  then hy > 20.

If hiy <20, then n < 256.

Proof. See Theorem 4 of [L1]. For the last statement, it suffices to
notice that fy >2n+1. =

3. Conductors of cyclic number fields. Let N be a cyclic number
field of degree 2n = 2™, fy the conductor of N, dy the discriminant of
N and hy the class number of N. Let yny be a primitive character of
order 2n such that IV is associated with the cyclic group generated by xy,
{x% : 0 <i < 2n—1}. For any positive integer n and prime g, let v,(n)
denote the exponent of ¢ in the prime factorization of n. The following
properties are very useful in determining all possible conductors smaller
than a fixed constant.
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PROPOSITION 1. Let N be a quartic cyclic number field and k the quadrat-
ic subfield of N.

(i) The conductor fn can be written as

s t t
fn=1Irille fHr=2]]e s=0amdt>1.
i=1 j=1 Jj=1
Here, p;’s and q;’s are all distinct, p; is 22.23 or an odd prime, qj s 24
or odd prime equal to 1 modulo 4, and e = —1 or 0 according as 16 divides
[1q; or not. In addition, dy = f3 fk-

(ii) For a given conductor fy with fy =0 mod 8, there are 2!=! imagi-
nary cyclic quartic fields and 2t~ real fields.

(iii) For a given conductor fy with va(fn) = 2, we assume p; = 22.
Then there are 2t~ cyclic quartic fields of conductor fn; all of them are
real if

s t
pi—1 g —1 _
1+Z’T+Z”T:0 (mod 2)
j=1

i>2
and all are imaginary otherwise.

(iv) For a given odd conductor fy, there are 2'=1 cyclic quartic fields of
conductor fn; all of them are real if

S

t
pi—1 g —1 _
E 5 +]E:1 7 =0 (mod 2)

=1

and all are imaginary otherwise.

Proof. (i) Let xny be a primitive Dirichlet character modulo fy of
order 4 such that the cyclic group (xn) is associated with the field N. Let
fn =]]p* Corresponding to the decomposition

(z/fnz) =] ](Z/p"2)",

we may write xn as xy = [[xp where x, is a character defined modulo
p®. As xn has order 4, every x, has order 2 or 4 and at least one of the
Xp has order 4. If x,, has order 2, then p® = 22,23 or an odd prime, Xp 18
the Legendre symbol when p; is odd, and X, is one of two primitive non-
conjugate quadratic characters modulo 8 when p = 23. If y,, has order 4,
then p® = 2 or an odd prime equal to 1 modulo 4. Moreover, in that case x,
is one of two conjugate primitive quartic characters modulo p when p is odd,
and ), is one of two non-conjugate characters modulo 16 where p* = 16.
Denote by ¢; the divisor of fy such that the corresponding character x;
is of order 4, and by p; the divisor of fn such that x,, is of order 2. We



214 Y.-H. Park and S.-H. Kwon

rewrite fy as

s t s t
In=1Iri[le and xv=]]xw [ xa
=1 =1 =1 =1

with the convention q; = 24 if vo(fn) = 4, p1 = 22 if va(fn) = 3 and p; = 22
if va(fn) = 2 (we allow s = 0). Then x3% = ngj is associated with the
quadratic subfield k. If g; is an odd prime then the conductor of ij is also
q; and if ¢; = 2* then the conductor of Xfu is 23. So we have

t
kaQEqu and dNZQSHP?HQ?
j=1

where ¢ = —1 or 0 according as 16 divides [] g; or not.
(ii) (iii) and (iv). It suffices to notice that N is real or imaginary accord-
ing as xn(—1) =1 or xy(—1) = —1 and that
Xp: (—1) = (=1)®:=1/2 if p; is an odd prime,
Xq; (—1) = (=1)(@ =D/ if ¢; is an odd prime equal to 1 mod 4. m

REMARK 1. If N is an imaginary cyclic quartic field, then 2°4/~! divides
hy. In fact, let Gn be the genus field of N. Then [Gy : Q] = 2°4! and
[GN : N} | hN.

We can prove the similar properties for octic cyclic number fields:

PROPOSITION 2. Let N be an octic cyclic number field, K the quartic
subfield of N, and k the quadratic subfield of N.

(i) The conductor fn can be written as

s t u
fN:HpiHQj T, §20,t>0andu>1,
i=1  j=1 k=1

with

t u u
fK:2€1HQjH7“k7 fk:22€2HTk-
=1 k=1 k=1

Moreover,
S
dy = [ ficfe =22+ [ v
1

1=

t u
1L I] 7
j=1 k=1

Here, p;’s, q;’s and 11, ’s are all distinct, p; s 22.23 or an odd prime, q;
is 2% or an odd prime equal to 1 modulo 4, r}, is 2° or an odd prime equal
to 1 modulo 8, e1 = —1 or 0 according as 2 diwvides [[q; [[7x or not, and
gg = —1 or 0 according as 2 divides [[ry or not.
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(ii) For a given conductor fy with fy =0 mod 8, there are 2t4“~1 real
fields and 2t4*~ imaginary fields.

(iii) For a given conductor fy with va(fn) = 2, we assume p; = 22.
Then there are 2t4%~1 cyclic octic fields of conductor fy; all of them are
real if

s t u
p; — 1 q; — 1 r,—1
1+ZT+Z 7 +y° ¢ =0 (mod 2)
1>2 7j=1 k=1
and all are imaginary otherwise.

(iv) For a given odd conductor fy, there are 214%~1 cyclic octic fields of

conductor fn; all of them are real if

- p; —1 tq 1 S 1
i — i — E— L
=0 d2

and all are imaginary otherwise.

COROLLARY 1. (i) If N is an imaginary cyclic octic field, then 25T2t+3u=3
divides hy .

(ii) Let N be a non-quadratic imaginary cyclic number field of degree
2n = 2™ > 4. Then N has odd class number if and only if fn is 212 or
an odd prime equal to 2n 4+ 1 mod 4n.

Proof. This follows from genus field theory and Theorem 10.4(b) of
[W]. m

CNZGXP<%;T> and §N+:exp<;i:i>.

From xny and xn, we can compute numerically two polynomials defining
the number fields N and N, respectively, for

fn—1 fnp -1
on= > (& and On.= Y G
g=1 g=1
xn(g)=1 xn, (9)=1

are primitive elements of N and N, respectively. However, if N or N, is
quartic we use [HHRW1] to get a more convenient primitive element for N
or Ny.

4. Main results. We can evaluate precisely the relative class number
by the following formula:

hy =Qun [[ (-3B1y)

x odd
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where @ is the Hasse unit index of N, wy is the number of roots of unity in
N, fy is the conductor of x and B;, = (1/fy) Za 1 X( Ja. The B, , are
called the generalized Bernoulli numbers. (See [W], Chapter 4, Theorem 4.)
Now, according to [H] or [Lm]| imaginary cyclic fields have the Hasse unit
indices equal to 1, and according to Lemma (b) of [L2] for N an imaginary
cyclic field of degree 2n = 2™ > 4 we have wy = 2 except if 2n + 1 =
2™ +1 = pis prime and N = Q((,). Therefore, when N is an imaginary
cyclic field of degree 2n = 2™ > 4, setting ay = Za 1 xn(a)a € Z[(am]
we get
2m—1  fy—1

hy = (QfN L[ ( Z XN ) 2f ) Q(sz)/@(aN)

i odd
From this relative class number formula we get the following proposition
which explains why our computation did not yield any field with some rel-
ative class numbers:

PROPOSITION 3 (Louboutin). Let N be an imaginary cyclic number field
of degree 2n = 2™ > 4 and let g be an odd prime. If q divides hy then
vg(hy), the exponent of q in the factorization of hyy, is divisible by fq, the
order of q in the multiplicative group (Z/2™Z)*. Therefore,

hy <20 and2n =4  imply hy € {1,2,4,5,8,9,10,13, 16,17, 18, 20},
hy <20 and2n =8 imply hy €{1,2,4,8,9,16,17,18},
hy <20 and2n =16 imply hy € {1,2,4,8,16,17}.
Proof. Use Theorem 2.13 of [W] and the prime ideal factorization of
the principal ideal (ay) = (EfN ! axn(a)) of Q(am). m

To determine all the non-quadratic imaginary cyclic fields of degree 2n =
2™ > 4 with relative class number hy < 20 we proceeded as follows.

First, according to Theorem 2 and using Propositions 1 and 2 we found
all the imaginary cyclic quartic fields with conductor fn < 118000 (there
are 64078 of them) and all the imaginary cyclic octic fields with fy < 14800
(there are 3599 of them).

Second, we computed the relative class numbers of all those 67677 imag-
inary cyclic fields. We found that there are 188 imaginary cyclic quartic
fields with hy < 20 and 13 imaginary cyclic octic fields with hjy < 20.

Third, for all those 201 quartic and octic fields we computed the class
numbers of their real subfields N. If N is real quadratic, then this compu-
tation was easy. If Ny is cyclic quartic, then we used the table of [M.N.G].
We found that 166 out of those 201 fields have class number hy < 20.

Fourth, for imaginary cyclic fields of degree 2n = 2™ > 16 results similar
to those of Propositions 1 and 2 enabled us to make a list of all the imaginary
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cyclic fields of degree 2n = 2™ > 16 with fy < 5000 (see Theorem 2). There
are 996 such fields.

Fifth, we computed their relative class numbers and found that 3 out of
them have hy, < 20. Finally, using PARI-GP and polynomials defining N
for those 3 fields (see Section 3), we found that all have hx < 20.

We list all imaginary cyclic quartic fields with relative class number < 20
in Table 1, all imaginary cyclic octic fields with relative class number < 20
in Table 2, and all imaginary cyclic fields of degree 2n = 2™ > 16 with
relative class number < 20 in Table 3. The results of our computation agree
with those of [G], [H], [HHRW1], [HHRW2|, [HHRWH], [L1], [L2], [MM],
[M.N.G], [S], [Y], [YH1] and [YH2].

Table 1. The imaginary cyclic quartic fields N = Q(v/—8x) with hyy <20

hy =1
I hn, BN I hn, BN
5 1 5425 37 1 37 4+ 64/37
13 1 13+2/13 53 1 53 + 253
16 1 2+/2 61 1 61 + 6v/61
29 1 29 4 21/29

hy =2
40 1 545 80 2 10 + 3v10
48 1 3(24+v2) 85 1 17(5+2V5)
65 1 13(542V5) 85 2 85 + 6185
65 1 5(134+213) | 104 1 13+ 313
80 1  5(24++2) 119 1 7(1744V17)

hy =4
1 3(5+2V5) 164 1
1 17+4V17 195 2
105 1 21(5+2V5) | 205 2 205+ 6+/205
112 1 7(24++V2) 219 1 3(73+8V73)
120 1 3(5+5) 221 1 17(13 +2V/13)
1 2
1 1
1 2
1

60
68

41 + 4v/41
3(65 + 8+/65)

136 174+ V17 221 221 + 14+/221
140 7(54+2v5) | 255 15(17 + 4V/17)
145 29(5+2v/5) | 272 34 4+ 3v/34

145 5(29 + 2v/29)
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Table 1 (cont.)

hy =5
I hn, BN I hn, BN
101 1 101+ 104101 197 1 197 4+ 144/197
157 1 157 +64/157 349 1 349 +18V/349
173 1 173+ 2173 373 1 373 4+ 18v/373

hy =38
156 1 3(13+2/13) 285 1 57(5 + 21/5)
165 1 33(5 + 2v/5) 305 1 61(5 + 2v/5)
205 1 41(5+42V5) 356 1 89 + 81/89
220 1 11(5 + 2v/5) 377 1 29(13 +2/13)
240 2 3(10+3v10) | 435 4  3(145+ 8/145)
260 2 65 + 4/65 455 2 7(65 + 44/65)
272 1 17(2 +V2) 545 1 5(109 + 104/109)
273 1 21(13 4 2/13)

hy =9
149 1 149 +104/149 661 1 661 4 6/661
293 1 293 +2v293

hy = 10
51 1 3(17+4V17) 365 2 3654 144/365
80 2 10 + /10 391 1 23(17 +4V/17)
85 2 85 4 2+/85 464 2 58 + 3+/58
176 1 11(2 +V2) 481 1 13(37+6v/37)
185 1 37(5+2V5) 485 2 4854 144/485
185 1 5(37+6v/37) 493 2 493+ 18493
208 1 13(2 4+ v2) 527 1 31(17+4V/17)
208 2 26 + /26 533 1 41(13 4 2/13)
208 2 26 + 5v/26 533 2 533 4+ 22/533
265 1 53(542v5) 565 2 565 + 6+/565
265 1  5(53+ 2v/53) 685 2 6854 18v/685
267 1  3(89 +8v789) 699 1  3(233 +8v/233)
287 1 7(41 +4/41) 771 3 3(257 + 164/257)
304 1 19(2 + v2) 803 1 11(73+8V73)
339 1 3(113+8V113) | 1261 2 1261 + 61261
365 1 73(5+2V5)
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Table 1 (cont.)

hy =13
[ hny BN f hn, BN

269 1 269410269 | 509 1 509 + 221/509
317 1 317+14V317 | 557 1 557 + 14+/557
397 1 397+6+/397 | 1789 1 1789 4 421789

hy = 16
240 2 3(10 ++/10) 520 2 65 + 765
260 2 65 + 8v/65 580 4 1454 12145
312 1 3(13+3v13) 584 1 73+ 373
336 1 21(2 +v/2) 609 1 21(29 +2v/29)
340 1 5(17+4V17) | 615 1 15(41 + 44/41)
380 1 19(5+2V5) 663 1 39(17 4+ 4V/17)
385 1 77(5+2V5) 689 1 53(1342V13)
408 1 3174+ V17) 795 2 3(265 + 161/265)
429 1 33(13+2v13) | 799 1 47(17 +4V17)
440 1 11(5 + v/5) 905 1  5(181 + 10v/181)
444 1 3(374+6v37) | 979 1 11(89 + 8v/39)
445 4 445+18V445 | 1015 4 7(145 + 121/145)
452 1 11348V/113 | 1271 1 31(41 4 4/41)
465 1 93(5+2v5) | 1351 1  7(193 4 12/193)
496 1 31(2 +V2) 1595 4 11(145 + 84/145)
505 1 101(5 + 2v/5)

hy =17
109 1 109410109 | 821 1 821 + 14/821
229 3 229+ 2v/229 853 1 853 + 181/853
277 1 277+ 14277

hy =18
424 1 53+7V53 949 2 949 +18/949
493 1 17(2942v29) | 1059 1 3(353 4 8v/353)
592 2 T4+ 774 1165 2 1165+ 18v/1165
629 2 629+2v629 | 1207 1 T1(17 4 4V/17)
848 2 106 + 94/106

219
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Table 1 (cont.)

hy =20

f hn, BN I hn, BN
205 2 205+ 144/205 728 1 7(13 + 3v13)
221 2 221+ 10v221 745 1 149(5 + 2v/5)
240 1 15(2 + V2) 721 193 4 121/193
280 1 7(5+/5) 776 1 97 4+ 9v/97
306 1 5(61+6v61) 805 1 161(5 + 2v/5)
328 1 41 + 5V/41 880 2 11(10 + /10)
345 1 69(5+2V5) 935 1 55(17 +417)
348 1 3(29 4 2v/29) 959 1 7(137 + 44/137)
368 1 23(2 +V2) 1001 1 77(13 4 2v/13)
377 1 13(29+2v29) | 1011 1 3(337 + 16+/337)
445 1 89(542V5) 1040 4 130 + 9130
460 1 23(5+2V5) 1145 3 5(229 + 24/229)
520 1 13(5 +/5) 1168 2 146 + 11146
528 1 33(2+V2) 1235 2 19(65 4 8v/65)
545 1 109(5 + 2v/5) 1243 1 11(113 4 8/113)
555 2 3(185+8y/185) | 1252 1 313 + 12313
560 2 7(10 + 31/10) 1295 2 7(185 + 44/185)
572 1 11(13+2v13) | 1313 1 101(13 + 2V/13)
624 2 3(26 + 5v26) 1313 1 13(101 + 104/101)
645 1 129(5 + 2v/5) 1405 2 1405+ 6+/1405
656 1 41(2 +V2) 1495 2 23(65 + 41/65)
680 2 85+ 9/85 1599 1 39(41 + 4/41)
696 1 3(29+ 5v29) 1855 2 7(265 4 121/265)
715 2 11(65+8v65) | 2355 6  3(785 4 164/785)

Table 2. The imaginary cyclic octic fields N with hy < 20

Ry | | vy | fr quartic subfield N4
polynomial defining N
1|32 1 |16 Q(V2++V?2)
28 +82% 4202t + 162 +2 (N =Q(/—(2+ V2+V2)))
1|41 1 |41 Q(V/41 + 4y/41)
a8 + 27 + 325 + 112° + 442* — 532> + 15322 — 160z + 59
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Table 2 (cont.)

hy f hn, | f+ quartic subfield N4

polynomial defining N

2 [ 51| 1 | 17 QW17 4 4V/17)

2% — 27 +102% — 112° + 152% — 6123 + 5822 — 472 + 103

2 | 85 2 85 Q(/5(17 + 4V/17))

28 — 27 + 1028 — 792° + 1342* + 4123 + 24522 — 8462 + 596

4 |68 | 1 | 17 Q(V17 4 4V/17)

23 + 172% + 682* + 8522 + 17

8 | 221 | 2 |221 Q(1/13(17 + 4V17))

28 — 27 + 2728 — 962° + 5762* — 351223 — 142122 — 205152 + 139129

17 | 137 | 1 | 137 Q(V/137 + 41/137)

28 + 27 + 925 4+ 1052° + 9542* + 376723 + 914922 + 12828 + 7607

17 | 281 1 281 Q(v/281 + 16v/281)

2% + 27 + 1820 + 1452° — 7942* — 44632° + 2372922 — 265402 + 559952

18 | 96 1 16 Q(V2+V?2)

a8 + 2425 + 1802 + 43222 +162 (N = Q(\/—3(2 +v24+12)))

18 | 119 | 1 17 Q(V17+ 4V17)

28 — 27 + 2728 — 282° + 1512* — 35022 + 50022 — 846z + 1157

18 | 160 | 2 80 Q(1/5(2+ v2))

28 + 4028 + 5002* + 200022 + 50

18 |365| 1 | 73 Q(V73 + 8V73)

2% — 27 + 7828 + 1725 + 17062 + 342123 + 1411722 + 45478z + 272444

18 | 485 | 2 | 485 Q(4/5(97 + 4V/97))

28 — 27 + 5528 + 1562° + 73842% + 2789623 + 17969522 + 549z + 85941

221
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Table 3. The imaginary cyclic fields N of degree 16 with hjy; < 20

which are the only ones of degree 2™ > 16 with hy <20

f hiy polynomial defining N
f+ | hv, | polynomial defining the real octic subfield N
fr | hr the quartic subfield L
17 |1 Q(¢17)
17 |1 Q(cos(2m/17))
17 |1 Q(V17 + 4V17)
64 | 17 @(\/7(2+\/2+\/2+\/§))
32 |1 Q(V2+ vV2+V2)
16 |1 Q(V2++V?2)
113 | 17 210 4+ 215 4 421 4 20213 4 110212 + 525211 + 325210 — 42547
+120622°% — 2172927 + 642442% — 1194032° + 15449224
—1321772° + 21086522 — 281708z + 132937
113 | 1 28 + 27 — 4928 + 162° + 5112* — 3672% — 149922 + 798z + 1372
113 | 1 Q(V/113 + 8/113)

REMARK 2. Some of the fields which appear in Tables 2 and 3 could

be given explicitly. In Table 2, the first field of conductor 32 is N

@(\/—(2—1—\/2—1—\/5)) and the ninth field of conductor 96 is N

@(\/—3(2 + 12+ v2)). In Table 3, the first field of conductor 17 is N

Q(¢17) and Ny = Q(cos(27/17)) and the second field of conductor 64 is

N:Q(\/—(2+\/2+\/2+\/§))andm:Q( 2+ V2 +V2) (see [L2]).
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