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A singular series average
and Goldbach numbers in short intervals
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1. Introduction. The Goldbach conjecture asserts that every even
integer greater than two can be written as a sum of two primes. We will
call the even numbers satisfying Goldbach’s conjecture G-numbers.

Let X be a sufficiently large parameter. Our aim here is to study G-
numbers in short intervals. The first unconditional result of this kind was
obtained by Ramachandra [8] who proved that there is a positive proportion
of G-numbers in every interval [X, X + H] for H > X7/72*¢_ The best known
result is now H > X0935/20+¢ (gee Baker-Harman-Pintz [1]).

From a conditional viewpoint, we recall that, assuming the Riemann
Hypothesis (RH), Goldston [3] proved that there is a positive proportion
of G-numbers in every interval of length H > log? X. The existence of
G-numbers in such intervals was established independently by Katai [5] and
Montgomery—Vaughan [7]. Assuming further Montgomery’s pair correlation
conjecture (MC), Goldston [3] was also able to restrict the length of the
interval to H > log'™® X, for every fixed ¢ > 0. If we only ask about the
existence of a G-number in short interval, we recall that Goldston [3] (see
also Languasco [6]) proved, again under RH and MC, that in every interval of
length H > log X there exists a G-number. The loss of a factor (log X)° in
the result on the positive proportion compared with the one on the existence
is due to some problems connected with averages of the singular series of
the Goldbach problem.

We introduce the following notation. Let

R(n)= Y logpilogp

p1+p2=n

be the weighted counting function of Goldbach numbers and
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1 p—1
2H <1 — 72> H <—> if n is even,
p>2
0 if n is odd,
the singular series of the Goldbach problem.

The main result of this paper is

THEOREM. Let v € R, v > 1, be fized. Then

D 8(n)” =X +ea(log X)” + O((log X)* /%),
n<X

where c1,co and the implicit constant depend on v.

The exponent v — 1/3 in the error term comes from an appeal to Vino-
gradov’s estimate for exponential sums. In particular, we will use the Walfisz
[10] estimate

Lo(X 2/3
1) by 2r () < o )7,
where P(u) =u — [u] — 1/2.

We remark that the proof of the Theorem is based on the argument
in Friedlander—Goldston [2]. We also remark that the case v = 1 of our
Theorem is proved in Friedlander Goldston [2] (see (1.13) there), and that
the case v = 2 is proved in Languasco [6].

The link between the average of the singular series and the positive
proportion of G-numbers is given by the following

COROLLARY. Let € > 0 be fized. Assume, for X sufficiently large, that
H
(2) Z(H —n)R(n+ X)> H?X  for some (log X)?/3+* < H < X.
n=0

Then there are >. H G-numbers in the interval [ X, X + H].

We remark that (2) is essentially the condition that all papers concerning
the existence of G-numbers in short intervals check. From the proof of the
Corollary it is easy to note that we could assume Zf:)? R(n) > HX
instead of (2).

Inserting the Corollary in the body of the proof of Languasco [6], we
can fill the gap between the result on the existence and on the positive pro-
portion of G-numbers, i.e., we can prove, assuming RH and a weak form
of MC, that every interval of length H > log X contains a positive pro-
portion of G-numbers. Moreover, inserting our Corollary at the end of the
proof of the Friedlander—Goldston [2] result, we are able to obtain, under
the assumption of RH, MC and the Elliott Halberstam conjecture of level
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Q = X exp(—(log X)?/3), that every interval of length H > (log X)?/3+¢
contains a positive proportion of G-numbers. This seems to be the limit of
the method.

We finally recall that Friedlander and Goldston [2] were able to prove the
existence of G-numbers in intervals shorter than (log X)2/3%¢ by assuming
a larger level @ in the Elliott Halberstam conjecture.

2. A generalization of the Walfisz estimate. Let v € R, v > 1,
and s = o + it. We define the general divisor function d,(n) by

Z dy,(n)n=* =((s)" foro > 1.
n=1

From the definition it is clear that d,(n) is a multiplicative function which
extends the well known function dg(n), where k is an integer. Under this
notation, the usual divisor function d(n) is denoted by dy(n). Our result is

LEMMA. Let v € R, v > 1. Then

(3) > 4, (n) P(%) <, (log X)"~1/3,

n
n<X

We remark that for » € N the above Lemma is stated at the end of
Section 2 of Friedlander-Goldston [2].

Proof. First of all suppose that v is an integer. The case v = 1 is
exactly (1). If v = 2, using the hyperbola principle and (1) we get

dn) (X 1 1p(X/m 23 3™ L
(4) KZX - P<n> < mgxmm;mnp< - ) < (log X) mgxm
< (log X)573.
Suppose now that v > 3. Then
dy(n) = (dy—1 % 1)(n)
and so, using the definition of convolution, we get

I RN Cr

n<X m<X n<X/m

Hence, arguing by induction and using (4)—(5), we obtain

d,(n) (X _
(6) > (W)P<;> <, (log X)*~ 3 forveN

n

Now take v € R\N, v > 1. It is easy to see that d, (n) = (dj,)*dy,y)(n),
where [z] and {z} are, respectively, the integer part and the fractional part
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of z. Using (6), we can write

oy Ee(F)« ¥t ()

n<X m<X T n<X/m
dyg,y(m)
5 1 X [v]—1/3 {v} .
<y (log X) §<X7m

Using

S dy(m) <, X (log X) 1,

which follows from (I1.5.32) of Tenenbaum [9], we obtain, by partial sum-
mation,

d{u}(m) {v}
(8) Z — < (log X)1¥i.
m<X
From (7) and (8) we have the Lemma.

3. Proof of the Theorem. We follow the argument in Friedlander
Goldston [2]. Let

We have

=(26)" > Y L),

n<X/2 jln
where
1 v
2 . . P
Tt (e 5) )
fU(J): H p_2

0 if 5 is even.

Then, changing the order of summation in (9), we obtain
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1) Y ew =08 Y L [ }

n<X j<X/2
fuli) 26 fu
Sy ) 2Oy 5
j=1 - i>X/2 J
(4) — (26)" > ful ( )
J<X/2 §<X/2

where P(u) = u — [u] — 1/2.

By straightforward computations we get

w2 i £.)

I ) () )

since the infinite product is convergent.

Now we will proceed to prove that

(12) Z > £l ( ) <, (log X)»"13  forv > 1.

ji<X/2

If v = 1 we have, for 5 odd,

i P ~ 02()

where p3(p) = p — 2 and 5 is extended to square-free numbers by multi-
plicativity. Hence

(13) Zl = 52813(‘;) < (log X)2/3,

where the last inequality follows using (2.9) (2.13) of Friedlander Goldston
[2] and the Lemma.

Let now v > 1. For 5 odd, we have

s =w ) I (14 25) 1)

pli

and hence, using the Taylor expansion of (1 +1/(p — 2))¥, we get
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1y -0l (Z ity 1)

plj
Yy v = [Tho1(v = h)
M(])Hpg(l—i_;(k—:l)!(p?)k)
2, du(j) 2
oy S

where

00 k
(v —h)
9v(p) = Z LL. 1| %
2 e+ 1)(p —2)
and g, is extended to square-free numbers by multiplicativity.
We remark that

-2 ”p,Q

and hence, for § square-free, we have g, (§) <, (¢2(8))7 L.
Hence, inserting (14) into )  and interchanging the order of summation,

we obtain

1> (6)dy, (8) pP(k)dy (k) | ( X/(20)
2, 2 e (,ﬁ}/}m o ()
(6,2)=1 (k,2)=1

Using the argument in (2.9) (2.13) of Friedlander Goldston [2], we can es-
timate the inner sum by

n
n<X

which is < (log X)*~!/3 by the Lemma. Using this estimate we have

(15) Z <, (log X)v—1/3 Z %«u (log X)V~1/3,
G

where the last inequality follows from the convergence of the series

S #10d,(0)

Combining (13) and (15) we obtain (12).
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Next, we will show
(16) Y. fuli) = e2(v)(log X)” + O, ((log X)),
J<X/2
By partial summation this implies

(17) Z fu](j) <, (IOgX)y_ll

ji>X/2 X

Now we prove (16). If v € N we can argue as in the proof of the Propo-
sition of Languasco [6]. The only difference is that we use the function

Hy(s) = > fulm)ym™ = (1 - 2511

o[-t (o 5) )

p>2

)Vc(s+ "G (s),

where

converges absolutely and is analytic for o > —1/2. Moreover, H,(s)(X/2)*/s
has a pole of order v + 1 at s = 0 with residue

c2(v)(log X)” + O, ((log X)),

and so, using the Perron formula, we find that (16) holds for v € N.

Now let v € R\ N, v > 1. In this case H,(s) has a singularity at s =0
that is not a pole, so we cannot use the previous argument.

Let

1 v
FU(S) = HU(S - 1) = (1 - 2_s> C(S)UGU(S - 1)

We apply the Selberg Delange method to study the contribution of the
non-polar singularity at s = 1 of F,(s). By Theorem I1.5.3 of Tenenbaum
[9] we obtain

S(Y) =" mf(m) = k()Y (logY)" !+ 0,(Y(log¥)"?),
m<Y

where k(r) and the implicit constant depend on v. Equation (16) now
follows since

X/2 X/2
> R = %dS(u)—QS(Xﬂ+ S

i<X/2

S(u)

2

du

u

= —(log X)” + 0, ((log X)r 1.

The Theorem now follows upon inserting (11) (12) and (16) (17) in (10).
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4. Proof of the Corollary. We give a sketch of the proof, which
follows the usual pattern (see, e.g., Goldston [3]).
Let v = 14 ¢/2. Using the Holder inequality and (2), we obtain

= /-1
ST (S mE@ X))
R(n)>1
(H2X)u/(y—1)
> BNVIC=E
(Xn—o((H —=n)R(n+ X))")
Since
H X+H
> ((H -~ n)R(n+ X)) < H" Y R(n)”
n=0 n=X
and, by the well known sieve upper bound (see Halberstam Richert [4],

Theorem 3.11),

R(n) < nG&(n),

we get, using also the Theorem,

(19)

H X+H

> ((H ~n)R(n+ X)) < H'X" > &(n)”

n=0 n=X
= HYX"(c1(v)H + O-((log X)*/3+</%))
<. gvtixv.

Hence by (18) (19) we obtain

(HQX)U/(V*I) B
Z 1> (HV+1XV)1/(U71) =H

RT(Ln)Zl

and the Corollary follows.
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