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On the diophantine equation n(n + 1) . . . (n + k − 1) = bxl

by

K. Győry (Debrecen)

1. Introduction. In 1975, P. Erdős and J. L. Selfridge [4] proved the
following remarkable theorem.

Theorem A (P. Erdős and J. L. Selfridge [4]). The equation

n(n + 1) . . . (n + k − 1) = xl in positive integers n, k, x, l(1)
with k ≥ 2, l ≥ 2

has no solution.

For k ≥ 4, the next theorem (cf. [5], Theorem 2) was established by
P. Erdős [3] in 1951. The case k = 2 is a consequence of a recent result of
H. Darmon and L. Merel [1], while the case k = 3 has recently been proved
by the present author [5].

Theorem B (P. Erdős, case k ≥ 4; H. Darmon and L. Merel, case k = 2;
K. Győry, case k = 3). Apart from the case k = l = 2, the equation(

n + k − 1
k

)
= xl in positive integers n, k, x, l(2)

with k ≥ 2, n ≥ k + 1, l ≥ 2

has only the solution (n, k, x, l) = (48, 3, 140, 2).

It is clear that for k = l = 2 equation (2) has infinitely many solutions.
In view of

(
n+k−1

k

)
=

(
n+k−1

n−1

)
Theorem B furnishes the solutions of (2) for

n ≤ k as well.
Denote by P (b) the greatest prime factor of an integer b > 1, and write

P (1) = 1. As a common generalization of (1) and (2) consider the equation

n(n + 1) . . . (n + k − 1) = bxl in positive integers n, k, b, x, l(3)
with k ≥ 2, l ≥ 2, P (b) ≤ k,
b lth power free.
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This equation as well as certain further generalizations of it (e.g. with
n(n + d) . . . (n + (k − 1)d) in place of n(n + 1) . . . (n + k − 1)) were ex-
tensively studied by T. N. Shorey, R. Tijdeman, N. Saradha and others; see
e.g. [15], [13], [17], [14], [11], [12], [18] and the references given there.

For given k, (3) is solvable with P (x) ≤ k, and all such solutions can
be determined. Indeed, a solution of (3) has the property P (x) ≤ k if and
only if n ∈ {1, 2, . . . , p(k) − k}, where p(k) denotes the least prime satisfying
p(k) > k. This is a consequence of a theorem of J. J. Sylvester [16] which says
that if P (n(n + 1) . . . (n + k − 1)) ≤ k then n ≤ k. Hence more interesting
are those solutions of (3) for which P (x) > k.

N. Saradha [11] has recently established some non-existence results for
a more general version of (3) which imply Theorem A and, for k ≥ 4,
Theorem B. For equation (3), her result gives the following.

Theorem C (N. Saradha [11]). For k ≥ 4, equation (3) has no solution
with P (x) > k.

The purpose of our paper is to extend Theorem C to the cases k = 2
and k = 3. The methods of [3] and [11] cannot be applied to k = 2 and 3.
Using some recent results of K. A. Ribet [9] and H. Darmon and L. Merel
[1] on equations of the form

(4) xl + yl = 2αzl in non-zero relatively prime integers x, y, z

where l ≥ 3, α ≥ 1 are given integers, we prove the following.

Theorem 1. Apart from the case k = b = l = 2, for k ≤ 3 equation (3)
has only the solution (n, k, b, x, l) = (48, 3, 6, 140, 2) with P (x) > k.

For k = b = l = 2 equation (3) has infinitely many solutions. The case
k = 3, l = 2 of Theorem 1 is a consequence of some old diophantine results
(cf. Section 2). This case has been settled independently by N. Saradha [12].

By using the above remark on the solutions with P (x) ≤ k it is easy to
verify that, for k ≤ 3, (1, 2, 2, 1, l ≥ 2), (1, 3, 6, 1, l ≥ 2), (2, 3, 24, 1, l ≥ 4),
(2, 3, 6, 2, 2) and (2, 3, 3, 2, 3) are the only solutions (n, k, b, x, l) of (3) with
P (x) ≤ k.

Together with Theorem C, Theorem 1 provides a complete solution of
equation (3) under the assumption P (x) > k.

Theorem 2 (N. Saradha, case k ≥ 4; K. Győry, case k ≤ 3). Apart from
the case k = b = l = 2, equation (3) has only the solution (n, k, b, x, l) =
(48, 3, 6, 140, 2) with P (x) > k.

As will be seen in Section 2, Theorems A and B can be easily deduced
from Theorem 2.
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2. Proofs. For k = 3 Theorem 1 can be proved by means of the tools
applied in [5], in the proof of the case k = 3 of Theorem B. Our proof in [5]
depends among other things on Baker’s method concerning linear forms in
logarithms. We give here a different proof which involves Lemma 1 below.

Lemma 1 (K. A. Ribet [9]). Let l ≥ 3 be a prime and α an integer with
2 ≤ α < l. Then equation (4) has no solution.

P r o o f. This is the first part of Theorem 3 of Ribet [9].

Lemma 2 (H. Darmon and L. Merel [1]). Let l ≥ 3 be an integer. Then
for α = 1 equation (4) has only trivial solutions for which xyz = ±1.

P r o o f. This is the first part of the Main Theorem in [1].

In the proofs of Lemmas 1 and 2 the authors combined various powerful
results and methods in number theory, including Wiles’ proof of most cases
of the Shimura–Taniyama conjecture.

Lemma 3. Let l ≥ 3 and α ≥ 0 be integers. The equation

(5a) ul + 1 = 2αvl in positive integers u, v

is solvable only if α = 1, when (u, v) = (1, 1) is the only solution. Further ,
the equation

(5b) ul − 1 = 2αvl in positive integers u, v

has no solution.

P r o o f. We may suppose without loss of generality that 0 ≤ α < l. For
α = 0, equations (5a) and (5b) are not solvable. If α = 1 then Lemma 2
implies that (5a) has the only solution (u, v) = (1, 1) and, for l odd, (5b)
has no solution.

Consider now the case when α ≥ 2 and l has an odd prime divisor p. If
p divides α then neither (5a) nor (5b) is solvable. For α ≡ 1 (mod p), (5a)
and (5b) have no solution by Lemma 2. In the remaining cases equations
(5a) and (5b) are not solvable by Lemma 1.

If α ≥ 2, l is even and (u, v) satisfies (5a) then the left-hand side of (5a)
is congruent to 1 or 2 (mod 4), while the right-hand side is divisible by 4.
Hence in this case (5a) has no solution.

There remains the case when in equation (5b), α ≥ 1 and l is even. We
prove by induction on α that under this assumption (5b) has no solution.
Assume that for some α ≥ 1 equation (5b) has a solution (u, v), and that
(5b) is not solvable for any α′ < α. Then l = 2m with an integer m > 1,
and (5b) can be written in the form

(um + 1)(um − 1) = 2αvl.
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It follows that there are positive integers u1, v1 such that either

um + 1 = 2u2m
1 , um − 1 = 2α−1v2m

1 ,(6)
or

um + 1 = 2α−1v2m
1 , um − 1 = 2u2m

1 .(7)

For α = 1 this cannot hold, hence we assume that α ≥ 2. From (6) and (7)
we obtain

ul
1 − 1 = 2α−2vl

1(8)
and

ul
1 + 1 = 2α−2vl

1,(9)

respectively. Equation (8) is not solvable by the induction hypothesis. Fur-
ther, our result proved above for (5a) implies that equation (9) is solvable
only if α − 2 = 1, when (u1, v1) = (1, 1) is the only solution. However, in
this case it follows from (7) that um = 3, which is impossible.

P r o o f o f T h e o r e m 1. First consider the case k = 2. Then equation
(3) takes the form

n(n + 1) = bxl in positive integers n, b, x, l(3a)
with l ≥ 2, P (b) ≤ 2, b lth power free.

For l = 2, b can take only the values 1 and 2. But the case b = 2 has been
excluded, while for b = 1 equation (3a) is not solvable.

Suppose now that l ≥ 3. We determine all solutions of (3a) without
any assumption on P (x). This result will be used in the proof of the case
k = 3. Let (n, b, x, l) be a solution of (3a) with l ≥ 3. Then b = 2α for some
integer α with 0 ≤ α < l. We deduce from (3a) that n = ul, n + 1 = 2αvl

or n = 2αvl, n + 1 = ul with some positive integers u, v. In the second
case we infer that ul − 1 = 2αvl, which is not possible by Lemma 3. In
the first case we have ul + 1 = 2αvl, whence we conclude by Lemma 3 that
α = 1 and u = v = 1. Then it follows that (n, b, x, l) = (1, 2, 1, l ≥ 3) is the
only solution of (3a) with l ≥ 3. This implies that under the assumption
P (x) > 2 equation (3a) has no solution, which proves Theorem 1 for k = 2.

Next let k = 3. In this case equation (3) can be written in the form

n(n + 1)(n + 2) = bxl in positive integers n, b, x, l(3b)
with l ≥ 2, P (b) ≤ 3, b lth power free.

First assume that l = 2. Then b = 1, 2, 3 or 6. It was proved by A. J. J.
Meyl [8] and G. N. Watson [19] (see also W. Ljunggren [6]) that for b = 6 the
only solutions (n, x) are (1, 1), (2, 2) and (48, 140). This implies that if b = 6
then (3b) has only the solution (n, b, x, l) = (48, 6, 140, 2) with P (x) > 3.
We show that for the remaining values of b, (3b) is not possible. For b = 1
this assertion is a special case of a result of P. Erdős [2] and O. Rigge [10].
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For b = 2 and 3, (3b) can be written as y(y2−1) = bx2 where y = n+1 > 1.
Since y2 − 1 cannot be a perfect square, we infer that y = t2, y2 − 1 = bs2,
whence bs2 = t4 − 1 with positive integers s, t. However, for b = 3 this is
impossible by a theorem of W. Ljunggren [7]. If b = 2, it follows that t2 + 1
or t2 − 1 must be the square of a positive integer, which is also impossible.
This proves our claim.

In what follows assume that l ≥ 3, and let (n, b, x, l) be a solution of (3b)
with P (x) > 3. If 3 |n+2 then we infer from (3b) that n(n+1) = 2α1xl

1 with
some integers α1 ≥ 0, x1 ≥ 1. Then our result proved above for equation
(3a) implies that n = 1. It now follows from (3b) that x = 1, which is
excluded.

If 3 |n, then (3b) gives (n+1)(n+2) = 2α2xl
2 with some integers α2 ≥ 0,

x2 ≥ 1. However, this is impossible by our above result on equation (3a).
Finally, if 3 |n + 1, it follows from (3b) that n(n + 2) = 2α3xl

3 with
integers α3 ≥ 0, x3 ≥ 1. This can hold only if n is even, when n = 2ul,
n + 2 = 2α4vl or n = 2α4vl, n + 2 = 2ul for some positive integers α4, u, v
with α4 ≥ 2. This implies that (u, v) is a solution of equation (5a) or (5b)
with α = α4 − 1. Using Lemma 3, we deduce that u = 1, n = 2ul = 2. Now
from (3b) we find that x = 1 or 2, which is excluded. This completes the
proof of Theorem 1.

We now deduce Theorems A and B from Theorem 2.

P r o o f o f T h e o r e m A. For k = l = 2, equation (1) is not solvable.
Further, by Theorem 2 equation (1) has no solution with P (x) > k. If
(n, k, x, l) is a solution of (1) with P (x) ≤ k then, by Sylvester’s theorem [16],
we have n ≤ k, whence n ≤ (n + k)/2. By Chebyshev’s theorem there
exists a prime p with (n + k)/2 ≤ p ≤ n + k − 1, and this prime divides
n(n + 1) . . . (n + k − 1) to the first power only. This proves that (1) has no
solution.

P r o o f o f T h e o r e m B. We write equation (2) in the form

n(n + 1) . . . (n + k − 1) = k!xl.

By assumption n ≥ k + 1 holds, hence Sylvester’s theorem implies that
P (x) > k. Now Theorem B follows immediately from Theorem 2.

Acknowledgements. I am indebted to Professors L. Merel and
N. Saradha for putting their papers [1] and [11], [12], respectively, at my
disposal prior to their publication.
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Corrections to [5]

P. 294, line 14: For “Satz 8” read “Satz 7”, and for “equation (10)” read “equation (13)”.
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