On the diophantine equation $n(n+1) \ldots(n+k-1)=b x^{l}$

by
K. GYŐRy (Debrecen)

1. Introduction. In 1975, P. Erdős and J. L. Selfridge [4] proved the following remarkable theorem.

Theorem A (P. Erdős and J. L. Selfridge [4]). The equation

$$
\begin{array}{ll}
n(n+1) \ldots(n+k-1)=x^{l} & \text { in positive integers } n, k, x, l \tag{1}\\
& \text { with } k \geq 2, l \geq 2
\end{array}
$$

has no solution.
For $k \geq 4$, the next theorem (cf. [5], Theorem 2) was established by P. Erdős [3] in 1951. The case $k=2$ is a consequence of a recent result of H. Darmon and L. Merel [1], while the case $k=3$ has recently been proved by the present author [5].

Theorem B (P. Erdős, case $k \geq 4 ;$ H. Darmon and L. Merel, case $k=2$; K. Győry, case $k=3$). Apart from the case $k=l=2$, the equation

$$
\binom{n+k-1}{k}=x^{l} \quad \begin{align*}
& \text { in positive integers } n, k, x, l \tag{2}\\
& \text { with } k \geq 2, n \geq k+1, l \geq 2
\end{align*}
$$

has only the solution $(n, k, x, l)=(48,3,140,2)$.
It is clear that for $k=l=2$ equation (2) has infinitely many solutions. In view of $\binom{n+k-1}{k}=\binom{n+k-1}{n-1}$ Theorem B furnishes the solutions of (2) for $n \leq k$ as well.

Denote by $P(b)$ the greatest prime factor of an integer $b>1$, and write $P(1)=1$. As a common generalization of (1) and (2) consider the equation
(3) $\quad n(n+1) \ldots(n+k-1)=b x^{l} \quad$ in positive integers n, k, b, x, l
with $k \geq 2, l \geq 2, P(b) \leq k$, $b l$ th power free.

[^0]This equation as well as certain further generalizations of it (e.g. with $n(n+d) \ldots(n+(k-1) d)$ in place of $n(n+1) \ldots(n+k-1))$ were extensively studied by T. N. Shorey, R. Tijdeman, N. Saradha and others; see e.g. [15], [13], [17], [14], [11], [12], [18] and the references given there.

For given $k,(3)$ is solvable with $P(x) \leq k$, and all such solutions can be determined. Indeed, a solution of (3) has the property $P(x) \leq k$ if and only if $n \in\left\{1,2, \ldots, p^{(k)}-k\right\}$, where $p^{(k)}$ denotes the least prime satisfying $p^{(k)}>k$. This is a consequence of a theorem of J. J. Sylvester [16] which says that if $P(n(n+1) \ldots(n+k-1)) \leq k$ then $n \leq k$. Hence more interesting are those solutions of (3) for which $P(x)>k$.
N. Saradha [11] has recently established some non-existence results for a more general version of (3) which imply Theorem A and, for $k \geq 4$, Theorem B. For equation (3), her result gives the following.

Theorem C (N. Saradha [11]). For $k \geq 4$, equation (3) has no solution with $P(x)>k$.

The purpose of our paper is to extend Theorem C to the cases $k=2$ and $k=3$. The methods of [3] and [11] cannot be applied to $k=2$ and 3 . Using some recent results of K. A. Ribet [9] and H. Darmon and L. Merel [1] on equations of the form

$$
\begin{equation*}
x^{l}+y^{l}=2^{\alpha} z^{l} \quad \text { in non-zero relatively prime integers } x, y, z \tag{4}
\end{equation*}
$$

where $l \geq 3, \alpha \geq 1$ are given integers, we prove the following.
THEOREM 1. Apart from the case $k=b=l=2$, for $k \leq 3$ equation (3) has only the solution $(n, k, b, x, l)=(48,3,6,140,2)$ with $P(x)>k$.

For $k=b=l=2$ equation (3) has infinitely many solutions. The case $k=3, l=2$ of Theorem 1 is a consequence of some old diophantine results (cf. Section 2). This case has been settled independently by N. Saradha [12].

By using the above remark on the solutions with $P(x) \leq k$ it is easy to verify that, for $k \leq 3,(1,2,2,1, l \geq 2),(1,3,6,1, l \geq 2),(2,3,24,1, l \geq 4)$, $(2,3,6,2,2)$ and $(2,3,3,2,3)$ are the only solutions (n, k, b, x, l) of (3) with $P(x) \leq k$.

Together with Theorem C, Theorem 1 provides a complete solution of equation (3) under the assumption $P(x)>k$.

Theorem 2 (N. Saradha, case $k \geq 4 ;$ K. Győry, case $k \leq 3$). Apart from the case $k=b=l=2$, equation (3) has only the solution $(n, k, b, x, l)=$ $(48,3,6,140,2)$ with $P(x)>k$.

As will be seen in Section 2, Theorems A and B can be easily deduced from Theorem 2.
2. Proofs. For $k=3$ Theorem 1 can be proved by means of the tools applied in [5], in the proof of the case $k=3$ of Theorem B. Our proof in [5] depends among other things on Baker's method concerning linear forms in logarithms. We give here a different proof which involves Lemma 1 below.

Lemma 1 (K. A. Ribet [9]). Let $l \geq 3$ be a prime and α an integer with $2 \leq \alpha<l$. Then equation (4) has no solution.

Proof. This is the first part of Theorem 3 of Ribet [9].
Lemma 2 (H. Darmon and L. Merel [1]). Let $l \geq 3$ be an integer. Then for $\alpha=1$ equation (4) has only trivial solutions for which $x y z= \pm 1$.

Proof. This is the first part of the Main Theorem in [1].
In the proofs of Lemmas 1 and 2 the authors combined various powerful results and methods in number theory, including Wiles' proof of most cases of the Shimura-Taniyama conjecture.

Lemma 3. Let $l \geq 3$ and $\alpha \geq 0$ be integers. The equation

$$
\begin{equation*}
u^{l}+1=2^{\alpha} v^{l} \quad \text { in positive integers } u, v \tag{5a}
\end{equation*}
$$

is solvable only if $\alpha=1$, when $(u, v)=(1,1)$ is the only solution. Further, the equation

$$
\begin{equation*}
u^{l}-1=2^{\alpha} v^{l} \quad \text { in positive integers } u, v \tag{5b}
\end{equation*}
$$

has no solution.
Proof. We may suppose without loss of generality that $0 \leq \alpha<l$. For $\alpha=0$, equations (5a) and (5b) are not solvable. If $\alpha=1$ then Lemma 2 implies that (5a) has the only solution $(u, v)=(1,1)$ and, for l odd, $(5 \mathrm{~b})$ has no solution.

Consider now the case when $\alpha \geq 2$ and l has an odd prime divisor p. If p divides α then neither (5a) nor (5b) is solvable. For $\alpha \equiv 1(\bmod p)$, (5a) and (5b) have no solution by Lemma 2 . In the remaining cases equations (5a) and (5b) are not solvable by Lemma 1.

If $\alpha \geq 2, l$ is even and (u, v) satisfies (5a) then the left-hand side of (5a) is congruent to 1 or $2(\bmod 4)$, while the right-hand side is divisible by 4 . Hence in this case (5a) has no solution.

There remains the case when in equation (5b), $\alpha \geq 1$ and l is even. We prove by induction on α that under this assumption (5b) has no solution. Assume that for some $\alpha \geq 1$ equation (5 b) has a solution (u, v), and that (5b) is not solvable for any $\alpha^{\prime}<\alpha$. Then $l=2 m$ with an integer $m>1$, and (5b) can be written in the form

$$
\left(u^{m}+1\right)\left(u^{m}-1\right)=2^{\alpha} v^{l} .
$$

It follows that there are positive integers u_{1}, v_{1} such that either

$$
\begin{equation*}
u^{m}+1=2 u_{1}^{2 m}, \quad u^{m}-1=2^{\alpha-1} v_{1}^{2 m} \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
u^{m}+1=2^{\alpha-1} v_{1}^{2 m}, \quad u^{m}-1=2 u_{1}^{2 m} . \tag{7}
\end{equation*}
$$

For $\alpha=1$ this cannot hold, hence we assume that $\alpha \geq 2$. From (6) and (7) we obtain

$$
\begin{equation*}
u_{1}^{l}-1=2^{\alpha-2} v_{1}^{l} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{1}^{l}+1=2^{\alpha-2} v_{1}^{l} \tag{9}
\end{equation*}
$$

respectively. Equation (8) is not solvable by the induction hypothesis. Further, our result proved above for (5a) implies that equation (9) is solvable only if $\alpha-2=1$, when $\left(u_{1}, v_{1}\right)=(1,1)$ is the only solution. However, in this case it follows from (7) that $u^{m}=3$, which is impossible.

Proof of Theorem 1. First consider the case $k=2$. Then equation (3) takes the form

$$
\begin{array}{ll}
n(n+1)=b x^{l} & \text { in positive integers } n, b, x, l \tag{3a}\\
& \text { with } l \geq 2, P(b) \leq 2, b l \text { th power free. }
\end{array}
$$

For $l=2, b$ can take only the values 1 and 2 . But the case $b=2$ has been excluded, while for $b=1$ equation (3a) is not solvable.

Suppose now that $l \geq 3$. We determine all solutions of (3a) without any assumption on $P(x)$. This result will be used in the proof of the case $k=3$. Let (n, b, x, l) be a solution of (3a) with $l \geq 3$. Then $b=2^{\alpha}$ for some integer α with $0 \leq \alpha<l$. We deduce from (3a) that $n=u^{l}, n+1=2^{\alpha} v^{l}$ or $n=2^{\alpha} v^{l}, n+1=u^{l}$ with some positive integers u, v. In the second case we infer that $u^{l}-1=2^{\alpha} v^{l}$, which is not possible by Lemma 3 . In the first case we have $u^{l}+1=2^{\alpha} v^{l}$, whence we conclude by Lemma 3 that $\alpha=1$ and $u=v=1$. Then it follows that $(n, b, x, l)=(1,2,1, l \geq 3)$ is the only solution of (3a) with $l \geq 3$. This implies that under the assumption $P(x)>2$ equation (3a) has no solution, which proves Theorem 1 for $k=2$.

Next let $k=3$. In this case equation (3) can be written in the form

$$
\begin{equation*}
n(n+1)(n+2)=b x^{l} \quad \text { in positive integers } n, b, x, l \tag{3b}
\end{equation*}
$$ with $l \geq 2, P(b) \leq 3, b l$ th power free.

First assume that $l=2$. Then $b=1,2,3$ or 6 . It was proved by A. J. J. Meyl [8] and G. N. Watson [19] (see also W. Ljunggren [6]) that for $b=6$ the only solutions (n, x) are $(1,1),(2,2)$ and $(48,140)$. This implies that if $b=6$ then (3b) has only the solution $(n, b, x, l)=(48,6,140,2)$ with $P(x)>3$. We show that for the remaining values of $b,(3 \mathrm{~b})$ is not possible. For $b=1$ this assertion is a special case of a result of P. Erdős [2] and O. Rigge [10].

For $b=2$ and $3,(3 \mathrm{~b})$ can be written as $y\left(y^{2}-1\right)=b x^{2}$ where $y=n+1>1$. Since $y^{2}-1$ cannot be a perfect square, we infer that $y=t^{2}, y^{2}-1=b s^{2}$, whence $b s^{2}=t^{4}-1$ with positive integers s, t. However, for $b=3$ this is impossible by a theorem of W . Ljunggren [7]. If $b=2$, it follows that $t^{2}+1$ or $t^{2}-1$ must be the square of a positive integer, which is also impossible. This proves our claim.

In what follows assume that $l \geq 3$, and let (n, b, x, l) be a solution of $(3 \mathrm{~b})$ with $P(x)>3$. If $3 \mid n+2$ then we infer from (3b) that $n(n+1)=2^{\alpha_{1}} x_{1}^{l}$ with some integers $\alpha_{1} \geq 0, x_{1} \geq 1$. Then our result proved above for equation (3a) implies that $n=1$. It now follows from (3b) that $x=1$, which is excluded.

If $3 \mid n$, then $(3 \mathrm{~b})$ gives $(n+1)(n+2)=2^{\alpha_{2}} x_{2}^{l}$ with some integers $\alpha_{2} \geq 0$, $x_{2} \geq 1$. However, this is impossible by our above result on equation (3a).

Finally, if $3 \mid n+1$, it follows from (3b) that $n(n+2)=2^{\alpha_{3}} x_{3}^{l}$ with integers $\alpha_{3} \geq 0, x_{3} \geq 1$. This can hold only if n is even, when $n=2 u^{l}$, $n+2=2^{\alpha_{4}} v^{l}$ or $n=2^{\alpha_{4}} v^{l}, n+2=2 u^{l}$ for some positive integers α_{4}, u, v with $\alpha_{4} \geq 2$. This implies that (u, v) is a solution of equation (5a) or (5b) with $\alpha=\alpha_{4}-1$. Using Lemma 3, we deduce that $u=1$, $n=2 u^{l}=2$. Now from (3b) we find that $x=1$ or 2 , which is excluded. This completes the proof of Theorem 1.

We now deduce Theorems A and B from Theorem 2.
Proof of Theorem A. For $k=l=2$, equation (1) is not solvable. Further, by Theorem 2 equation (1) has no solution with $P(x)>k$. If (n, k, x, l) is a solution of (1) with $P(x) \leq k$ then, by Sylvester's theorem [16], we have $n \leq k$, whence $n \leq(n+k) / 2$. By Chebyshev's theorem there exists a prime p with $(n+k) / 2 \leq p \leq n+k-1$, and this prime divides $n(n+1) \ldots(n+k-1)$ to the first power only. This proves that (1) has no solution.

Proof of Theorem B. We write equation (2) in the form

$$
n(n+1) \ldots(n+k-1)=k!x^{l}
$$

By assumption $n \geq k+1$ holds, hence Sylvester's theorem implies that $P(x)>k$. Now Theorem B follows immediately from Theorem 2.

Acknowledgements. I am indebted to Professors L. Merel and N. Saradha for putting their papers [1] and [11], [12], respectively, at my disposal prior to their publication.

References

[1] H. Darmon and L. Merel, Winding quotients and some variants of Fermat's Last Theorem, J. Reine Angew. Math., to appear.
[2] P. Erdős, Note on products of consecutive integers, J. London Math. Soc. 14 (1939), 194-198.
[3] -, On a diophantine equation, ibid. 26 (1951), 176-178.
[4] P. Erdős and J. L. Selfridge, The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292-301.
[5] K. Győry, On the diophantine equation $\binom{n}{k}=x^{l}$, Acta Arith. 80 (1997), 289-295.
[6] W. Ljunggren, New solution of a problem proposed by E. Lucas, Norsk. Mat. Tidskr. 34 (1952), 65-72.
[7] -, Some remarks on the diophantine equations $x^{2}-D y^{4}=1$ and $x^{4}-D y^{2}=1$, J. London Math. Soc. 41 (1966), 542-544.
[8] A. J. J. Meyl, Question 1194, Nouv. Ann. Math. (2) 17 (1878), 464-467.
[9] K. A. Ribet, On the equation $a^{p}+2^{\alpha} b^{p}+c^{p}=0$, Acta Arith. 79 (1997), $7-16$.
[10] O. Rigge, Über ein diophantisches Problem, in: 9th Congress Math. Scand., Helsingfors, 1938, Mercator, 1939, 155-160.
[11] N. Saradha, On perfect powers in products with terms from arithmetic progressions, Acta Arith. 82 (1997), 147-172.
[12] -, Squares in products with terms in an arithmetic progression, to appear.
[13] T. N. Shorey, Some exponential diophantine equations, in: New Advances in Transcendence Theory, A. Baker (ed.), Cambridge Univ. Press, 1988, 352-365.
[14] -, Perfect powers in products of arithmetical progressions with fixed initial term, Indag. Math. (N.S.) 7 (1996), 521-525.
[15] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Univ. Press, 1986.
[16] J. J. Sylvester, On arithmetic series, Messenger Math. 21 (1892), 1-19 and 87120.
[17] R. Tijdeman, Diophantine equations and diophantine approximations, in: Number Theory and Applications, R. A. Mollin (ed.), Kluwer Acad. Publ., 1989, 215-243.
[18] -, Exponential diophantine equations 1986-1996, in: Number Theory, K. Györy, A. Pethő and V. T. S/os (eds.), W. de Gruyter, to appear.
[19] G. N. Watson, The problem of the square pyramid, Messenger Math. 48 (1919), 1-22.

Corrections to [5]

P. 294, line 14: For "Satz 8" read "Satz 7", and for "equation (10)" read "equation (13)".

Institute of Mathematics and Informatics
Kossuth Lajos University
4010 Debrecen, Hungary
E-mail: gyory@math.klte.hu

[^0]: 1991 Mathematics Subject Classification: Primary 11D61; Secondary 11D57, 11D41.
 Research supported in part by the Hungarian Academy of Sciences and by Grants 16975 and 16791 from the Hungarian National Foundation for Scientific Research.

