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On the diophantine equation n(n+1)...(n+k — 1) = bz
by

K. GYORy (Debrecen)

1. Introduction. In 1975, P. Erdés and J. L. Selfridge [4] proved the
following remarkable theorem.

THEOREM A (P. Erdds and J. L. Selfridge [4]). The equation
(1) nin+1)...(n+k—1)=2a" in positive integers n, k, z,1
withk > 2, 1> 2
has no solution.
For k > 4, the next theorem (cf. [5], Theorem 2) was established by
P. Erdés [3] in 1951. The case k = 2 is a consequence of a recent result of

H. Darmon and L. Merel [1], while the case k = 3 has recently been proved
by the present author [5].

THEOREM B (P. Erdés, case k > 4; H. Darmon and L. Merel, case k = 2;
K. Gyéry, case k = 3). Apart from the case k =1 = 2, the equation

k—1
(2) (n + f ) =a!  in positive integers n, k, x,1
withk>2, n>k+1, 1>2

has only the solution (n,k,x,l) = (48, 3,140, 2).

It is clear that for k£ = [ = 2 equation (2) has infinitely many solutions.
In view of ("+,’:_1) = (”:ﬁ;l) Theorem B furnishes the solutions of (2) for
n < k as well.

Denote by P(b) the greatest prime factor of an integer b > 1, and write
P(1) = 1. As a common generalization of (1) and (2) consider the equation

(3) n(n+1)...(n+k—1)=>bz' in positive integers n, k, b, x, 1
with k> 2, [ > 2, P(b) < k,
b Ith power free.
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This equation as well as certain further generalizations of it (e.g. with
nn+d)...(n+ (k— 1)d) in place of n(n +1)...(n + k — 1)) were ex-
tensively studied by T. N. Shorey, R. Tijdeman, N. Saradha and others; see
e.g. [15], [13], [17], [14], [11], [12], [18] and the references given there.

For given k, (3) is solvable with P(z) < k, and all such solutions can
be determined. Indeed, a solution of (3) has the property P(z) < k if and
only if n € {1,2,...,p"*) —k}, where p(*) denotes the least prime satisfying
p™) > k. This is a consequence of a theorem of J. J. Sylvester [16] which says
that if P(n(n+1)...(n+ k — 1)) < k then n < k. Hence more interesting
are those solutions of (3) for which P(z) > k.

N. Saradha [11] has recently established some non-existence results for
a more general version of (3) which imply Theorem A and, for k > 4,
Theorem B. For equation (3), her result gives the following.

THEOREM C (N. Saradha [11]). For k > 4, equation (3) has no solution
with P(x) > k.

The purpose of our paper is to extend Theorem C to the cases k = 2
and k = 3. The methods of [3] and [11] cannot be applied to £ = 2 and 3.
Using some recent results of K. A. Ribet [9] and H. Darmon and L. Merel
[1] on equations of the form

(4) '+ 9y =2%2'  in non-zero relatively prime integers z, v, z
where [ > 3, a > 1 are given integers, we prove the following.

THEOREM 1. Apart from the case k =b=1=2, for k < 3 equation (3)
has only the solution (n,k,b,z,l) = (48, 3,6,140,2) with P(x) > k.

For k = b = 1 = 2 equation (3) has infinitely many solutions. The case
k =3, 1 =2 of Theorem 1 is a consequence of some old diophantine results
(cf. Section 2). This case has been settled independently by N. Saradha [12].

By using the above remark on the solutions with P(z) < k it is easy to
verify that, for £ < 3, (1,2,2,1,1 > 2), (1,3,6,1,1 > 2), (2,3,24,1,1 > 4),
(2,3,6,2,2) and (2,3,3,2,3) are the only solutions (n, k,b, z,l) of (3) with
P(x) <k.

Together with Theorem C, Theorem 1 provides a complete solution of
equation (3) under the assumption P(z) > k.

THEOREM 2 (N. Saradha, case k > 4; K. Gy6ry, case k < 3). Apart from
the case k = b =1 = 2, equation (3) has only the solution (n,k,b,z,l) =
(48,3, 6,140, 2) with P(x) > k.

As will be seen in Section 2, Theorems A and B can be easily deduced
from Theorem 2.
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2. Proofs. For k = 3 Theorem 1 can be proved by means of the tools
applied in [5], in the proof of the case k = 3 of Theorem B. Our proof in [5]
depends among other things on Baker’s method concerning linear forms in
logarithms. We give here a different proof which involves Lemma 1 below.

LEMMA 1 (K. A. Ribet [9]). Let | > 3 be a prime and o an integer with
2 < a <. Then equation (4) has no solution.

Proof. This is the first part of Theorem 3 of Ribet [9]. m

LEMMA 2 (H. Darmon and L. Merel [1]). Let | > 3 be an integer. Then
for a =1 equation (4) has only trivial solutions for which ryz = +1.

Proof. This is the first part of the Main Theorem in [1]. m

In the proofs of Lemmas 1 and 2 the authors combined various powerful
results and methods in number theory, including Wiles’ proof of most cases
of the Shimura—Taniyama conjecture.

LEMMA 3. Let | > 3 and o > 0 be integers. The equation
(5a) ut +1=2%"' in positive integers u,v

is solvable only if & = 1, when (u,v) = (1,1) is the only solution. Further,
the equation

(5b) ut —1=2%" in positive integers u,v
has no solution.

Proof. We may suppose without loss of generality that 0 < « < [. For
a = 0, equations (5a) and (5b) are not solvable. If @ = 1 then Lemma 2
implies that (5a) has the only solution (u,v) = (1,1) and, for ! odd, (5b)
has no solution.

Consider now the case when a > 2 and [ has an odd prime divisor p. If
p divides « then neither (5a) nor (5b) is solvable. For o =1 (mod p), (5a)
and (5b) have no solution by Lemma 2. In the remaining cases equations
(5a) and (5b) are not solvable by Lemma 1.

If > 2, [ is even and (u,v) satisfies (5a) then the left-hand side of (5a)
is congruent to 1 or 2 (mod 4), while the right-hand side is divisible by 4.
Hence in this case (5a) has no solution.

There remains the case when in equation (5b), & > 1 and [ is even. We
prove by induction on « that under this assumption (5b) has no solution.
Assume that for some o > 1 equation (5b) has a solution (u,v), and that
(5b) is not solvable for any o < «. Then | = 2m with an integer m > 1,
and (5b) can be written in the form

(u™ + 1) (u™ — 1) = 2%,
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It follows that there are positive integers ui, v1 such that either

(6) u™ + 1= 2ui", u™ —1=2"toim,
or
(7 u™ 1 =22t ™ 1 = 2™,

For av = 1 this cannot hold, hence we assume that o > 2. From (6) and (7)
we obtain

(8) uf —1 =22}
and
(9) ull +1= 20&72’0!17

respectively. Equation (8) is not solvable by the induction hypothesis. Fur-
ther, our result proved above for (5a) implies that equation (9) is solvable
only if « —2 = 1, when (uy,v1) = (1,1) is the only solution. However, in
this case it follows from (7) that «™ = 3, which is impossible. =

Proof of Theorem 1. First consider the case k = 2. Then equation
(3) takes the form

(3a) n(n+1) =bz!  in positive integers n, b, z, 1
with [ > 2, P(b) <2, b lth power free.

For | = 2, b can take only the values 1 and 2. But the case b = 2 has been
excluded, while for b = 1 equation (3a) is not solvable.

Suppose now that [ > 3. We determine all solutions of (3a) without
any assumption on P(z). This result will be used in the proof of the case
k = 3. Let (n,b,z,1) be a solution of (3a) with { > 3. Then b = 2% for some
integer o with 0 < a < I. We deduce from (3a) that n = u!, n + 1 = 2%!
or n = 2%, n 4+ 1 = u! with some positive integers u, v. In the second
case we infer that u! — 1 = 2%v!, which is not possible by Lemma 3. In
the first case we have u! + 1 = 2%, whence we conclude by Lemma 3 that
a=1and u = v = 1. Then it follows that (n,b,z,l) = (1,2,1,1 > 3) is the
only solution of (3a) with [ > 3. This implies that under the assumption
P(x) > 2 equation (3a) has no solution, which proves Theorem 1 for k = 2.

Next let k = 3. In this case equation (3) can be written in the form

(3b) n(n+1)(n+2) =bx' in positive integers n, b, z,1
with [ > 2, P(b) < 3, b lth power free.

First assume that [ = 2. Then b = 1,2,3 or 6. It was proved by A. J. J.
Meyl [8] and G. N. Watson [19] (see also W. Ljunggren [6]) that for b = 6 the
only solutions (n, z) are (1,1), (2,2) and (48, 140). This implies that if b = 6
then (3b) has only the solution (n,b,z,l) = (48,6,140,2) with P(x) > 3.
We show that for the remaining values of b, (3b) is not possible. For b = 1
this assertion is a special case of a result of P. Erdés [2] and O. Rigge [10].



The equation n(n+1)...(n+k —1) = ba! 91

For b = 2 and 3, (3b) can be written as y(y? —1) = bz? where y = n+1 > 1.
Since y? — 1 cannot be a perfect square, we infer that y = 2, y> — 1 = bs?,
whence bs? = t* — 1 with positive integers s, t. However, for b = 3 this is
impossible by a theorem of W. Ljunggren [7]. If b = 2, it follows that t? + 1
or t? — 1 must be the square of a positive integer, which is also impossible.
This proves our claim.

In what follows assume that [ > 3, and let (n, b, z, 1) be a solution of (3b)
with P(z) > 3. If 3| n+2 then we infer from (3b) that n(n+1) = 2*12} with
some integers oy > 0, 1 > 1. Then our result proved above for equation
(3a) implies that n = 1. It now follows from (3b) that = 1, which is
excluded.

If 3| n, then (3b) gives (n+1)(n+2) = 2222} with some integers ap > 0,
x9 > 1. However, this is impossible by our above result on equation (3a).

Finally, if 3|n + 1, it follows from (3b) that n(n + 2) = 2%z} with
integers a3 > 0, 3 > 1. This can hold only if n is even, when n = 2u!,
n+ 2= 2%l or n = 20!, n 4+ 2 = 2u! for some positive integers oy, u, v
with ay > 2. This implies that (u,v) is a solution of equation (5a) or (5b)
with a = oy — 1. Using Lemma 3, we deduce that © = 1, n = 2u! = 2. Now
from (3b) we find that x = 1 or 2, which is excluded. This completes the
proof of Theorem 1. m

We now deduce Theorems A and B from Theorem 2.

Proof of Theorem A. For k =1[=2, equation (1) is not solvable.
Further, by Theorem 2 equation (1) has no solution with P(z) > k. If
(n, k,x,1) is a solution of (1) with P(z) < k then, by Sylvester’s theorem [16],
we have n < k, whence n < (n + k)/2. By Chebyshev’s theorem there
exists a prime p with (n +k)/2 < p < n+ k — 1, and this prime divides
n(n+1)...(n+k —1) to the first power only. This proves that (1) has no
solution. m

Proof of Theorem B. We write equation (2) in the form
nn+1)...(n+k—1)=klz".

By assumption n > k 4+ 1 holds, hence Sylvester’s theorem implies that
P(z) > k. Now Theorem B follows immediately from Theorem 2. m
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Corrections to [5]

P. 294, line 14: For “Satz 8” read “Satz 77, and for “equation (10)” read “equation (13)”.
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