
ACTA ARITHMETICALXXXIII.1 (1998)
On the Barban{Davenport{Halberstam theorem: IXbyC. Hooley (Cardi�)We revisit the topi
 of the third arti
le of this series� III, in whi
h ageneralized theorem of Barban{Davenport{Halberstam type was establishedfor a wide 
lass of sequen
es of essentially positive density. Having on anintermediate o

asion [4℄ derived an improved proof, we now 
onsider thepossibility of an asymptoti
 formula that stands in the same relationship tothe result in III as does the Barban{Montgomery theorem des
ribed in I tothe Barban{Davenport{Halberstam theorem itself. Commen
ing as beforeby letting s denote, generally, a member of a given (stri
tly) in
reasingsequen
e of positive integers and lettingS(x; a; k) = Xs�xs�a;mod k 1for any positive k and any non-negative integer a, we still assume Criterion Uto the e�e
t that, for any positive integer A, the sequen
e s has the propertythat S(x; a; k) = gfk; (a; k)gx +O(x log�A x)as x ! 1, where (a; k) is the highest 
ommon fa
tor of a and k and the
onstant implied by the O-notation depends at most on A. Then, still settingE(x; a; k) = S(x; a; k) � gfk; (a; k)gxand G(x;Q) = Xk�Q X0<a�kE2(x; a; k) (Q � x);we go beyond the previously obtained bound(1) G(x;Q) = O(Qx) +O(x2 log�A x)by demonstrating the asymptoti
 formulae� We refer to these arti
les by the Roman numeral indi
ating their position in theseries; their full parti
ulars are given in the list of referen
es at the end.[17℄



18 C. Hooley(2) G(x;Q) = (D1 + o(1))Qx+O(x2 log�A x)(Q � x; o(1)! 0 as x=Q!1)and(3) G(x;Q) = D2Qx+O(x2 log�A x) (Q = x)when the sequen
es satisfy the further Criterion S that states that the fun
-tion g(k) = g(k; k) in the statement of Criterion U is of the form C (k),where C > 0 and  (k) is a multipli
ative fun
tion. Thus the sequen
es pre-viously 
onsidered are subje
t to a generalized Barban{Montgomery the-orem if the events p j s and q j s for distin
t primes p and q be inherentlystatisti
ally independent. Stemming from these 
riteria, one relation neededlater is derived at on
e be
ause it is the basis of an interesting property ofthe sequen
e that we should not allow to pass unnoti
ed. This arises froma 
omparison, for any divisor Æ of k, of the equation(4) Xs�x(s;k)=Æ 1 = �(k=Æ)g(k; Æ)x +O(kx log�A x)derived from Criterion U with the representation of its left-hand side asXs�xs�0;mod Æ X(s=Æ;k=Æ)=1 1 = Xs�xs�0;mod Æ XdÆjs; djk=Æ�(d)(5) = Xdjk=Æ�(d) Xs�xs�0;mod dÆ 1= x Xdjk=Æ�(d)g(dÆ) +O(d(k=Æ)x log�A x):On equating these two expressions and letting x!1 after a division by x,we 
on
lude that(6) �(k=Æ)g(k; Æ) = Xdjk=Æ�(d)g(dÆ)and �rst re
oup the result of Lemma 15 in [4℄ by substituting this in (5).But, if Criterion S be also assumed, the impa
t of the multipli
ativity ofg(k)=C on the above equation is that g(k; Æ)=C is also multipli
ative in thesense that the sequen
e has the property that , as x!1,S(x; a; k) = C (k; a)x +O(x log�A x);where  (k; a) is a multipli
ative fun
tion of k for ea
h integer a. Equiva-lently, this may be expressed as being the requirement that Criterion S besatis�ed not only by the sequen
e of numbers s but also by ea
h sequen
e ofnumbers s+ b for ea
h positive integer b. Yet in the present work we prefer



Barban{Davenport{Halberstam theorem: IX 19not to avail ourselves of this property, whi
h in itself is weaker than CriteriaU and S taken together.Our treatment of the Barban{Montgomery theorem in I 
ombined anappeal to the Barban{Davenport{Halberstam theorem with a te
hnique thatpartially des
ribed the behaviour ofXk�Q X0<a�k(a;k)=1 �2(x; a; k)for large Q by means of the prime-number theorem for arithmeti
al pro-gressions with small moduli l � x=Q. Here we adopt an initially similarframework based on the generalized Theorem 1 of III together with an anal-ysis of G(x;Q) that depends on Criterion U for small moduli, even thoughour path must then diverge from that taken in I when we 
ome to 
al
ulatethe sums that arrive after the initial analysis. The prin
ipal diÆ
ulty inregard to these sums being the generality of the situation in whi
h theyare estimated, we exploit, inter alia, the positive density C of the given se-quen
e by means of two simple arguments, the se
ond of whi
h depends ona sieve method. Also, not unexpe
tedly, the �nal use of 
ontour integrationinvolves 
ompli
ations not present in its 
ounterpart in I.Throughout the letter A denotes a positive absolute 
onstant that is notne
essarily the same at ea
h o

urren
e and on whi
h the 
onstants impliedby the O-notation at most depend save in one expli
it instan
e. The letters not only denotes a member of the given sequen
e but also a 
omplexvariable � + it, it being 
lear from the 
ontext whi
h meaning is intended;the fun
tion ��1(l) is, as usual, the sum of the re
ipro
als of the divisorsof l.It is enough to treat the 
ase Q > x log�A x for any value of A 
hosenin the statement of (2) and (3) be
ause in the opposite 
ase the proposedresult (2) is 
ontained in the generalized Barban{Davenport{Halberstaminequality (1) proved in III and [4℄. Having thus isolated the situationneeding serious attention, we setG(x;Q1; Q2) = G(x;Q2)�G(x;Q1) = XQ1<k�Q2 X0<a�kE2(x; a; k)for(7) Q1 = x log�A x < Q2 � xso that(8) G(x;Q2) = G(x;Q1; Q2) +O(x2 log�A x)by a further appli
ation of (1), wherein the substitution of Q2 for Q is a



20 C. Hooleynotational 
onvenien
e. Next, by equation (163) in [4℄ in whi
hH(x; k) = X0<a�kE2(x; a; k);we haveH(x; k) = X0<a�k S2(x; a; k)� x2XÆjk �(k=Æ)g2(k; Æ) +O� x2d3(k)k logA+4 x�(9) = X0<a�k S2(x; a; k)� x2P (k)k +O� x2d3(k)k logA+4 x�; say;wherefore, having repla
ed the notation P (k)=k by C2M(k) and set(10) T (u) =Xk�uM(k);we infer thatG(x;Q1; Q2) = XQ1<k�Q2 X0<a�k S2(x; a; k) � C2x2fT (Q2)� T (Q1)g(11) +O(x2 log�A x)= � (x;Q1; Q2)� C2x2fT (Q2)� T (Q1)g+O(x2 log�A x); say:We transform in turn the sum � (x;Q1; Q2), whose inner sum equalsX0<a�k Xs;s0�xs�s0�a;mod k 1 = Xs;s0�xs�s0;mod k 1 =Xs�x 1 + 2 Xs0<s�xs�s0;mod k 1= Cx+ 2 Xs0<s�xs�s0;mod k 1 +O(x log�A x)by Criteria U and S for the spe
ial 
ase k = 1. Thus, by (7),� (x;Q1; Q2) = (Q2 �Q1 +O(1))Cx+ 2 XQ1<k�Q2 Xs0<s�xs�s0;mod k 1(12) +O(x2 log�A x)= CQ2x+ 2J(x;Q1; Q2) +O(x2 log�A x); say;with whi
h equation the preliminary analysis of our problem is 
on
luded.To manage the se
ond term on the �nal line of (12) we 
onsider the sumJ(x;Q) = J(x;Q;x) for(13) x log�A x < Q � x;



Barban{Davenport{Halberstam theorem: IX 21through whi
h J(x;Q1; Q2) is expressed by the equation(14) J(x;Q1; Q2) = J(x;Q1)� J(x;Q2):The 
onditions of summation in this double sum imply that s � s0 = lkfor some positive integer l, by means of whi
h it is seen that the former
onditions are tantamount to the 
ombination of the latter 
ondition withthe requirement that l < x=Q and s0 + lQ < s � x. ThereforeJ(x;Q) = Xl<x=Q Xs0+lQ<s�xs�s0;mod l 1(15) = Xl<x=QXÆjl X0<b�l(b;l)=Æ Xs0<x�lQs0�b;mod l Xs0+lQ<s�xs�b;mod l 1= Xl<x=QXÆjl X0<b�l(b;l)=Æ K(x;Q; b; l) = X0<l<x=QL(x;Q; l); say:Here, sin
e Criterion U and the 
onsequential inequality(16) g(l; Æ) = O(1=l)proved in III imply thatS(y; b; l) = gfl; (b; l)gy +O(x log�2A x)when 0 < y � x, we haveK(x;Q; b; l) = g(l; Æ) Xs0<x�lQs0�b;mod l (x� lQ� s0) +O� xlog2A x Xs0�xs0�b;mod l 1�= g(l; Æ) x�lQ\0 S(t; b; l) dt+O� x2l log2A x�= g(l; Æ)� 12g(l; Æ)(x � lQ)2 +O� x2log2A x��+O� x2l log2A x�= 12g2(l; Æ)(x � lQ)2 +O� x2l log2A x�by another appli
ation of (16). Consequently, by a summation over b and Æ,L(x;Q; l) = 12(x� lQ)2XÆjl �(l=Æ)g2(l; Æ) +O(x2 log�2A x)= 12C2(x� lQ)2M(l) +O(x2 log�2A x)



22 C. Hooleyin the notation of (9), from whi
h, (15), and (13) we obtain the equationJ(x;Q) = 12C2 Xl<x=Q(x� lQ)2M(l) +O(x2 log�A x)(17) = 12C2x2 Xl<x=Q�1� lQx �2M(l) +O(x2 log�A x)= C2x2T �(x=Q) +O(x2 log�A x); say;that 
ontains a sum analogous to T (u) in (10).The time has 
ome to bring Criterion S seriously into play by system-ati
ally expressing g(k) as C (k), where C > 0 and  (k) is multipli
ative.This is used to study the Diri
hlet's series related to the sums T (u) andT �(u), the appropriate properties of whi
h are developed by 
onsidering theimpa
t on  (k) of two simple attributes of the sequen
e. Ea
h propertybeing related to the fa
t that our sequen
e is 
ontained in the sequen
e ofnatural numbers, we restate a spe
ial 
ase of (16) by remarking thatS(x; 0; k) = C (k)x+O(x log�A x) � [x=k℄ = x=k +O(1)for any given k and that hen
e(18) C (k) � 1=kby letting x!1. Se
ondly, we 
onsider the e�e
t of eliminating from oursequen
e all multiples of primes p belonging to a given �nite set S, to whi
hend we let d1 denote, generally, a square-free number (possibly 1) 
omposedentirely of prime fa
tors in S. Then, for any (large) x, Legendre's ex
lusionprin
iple yields Xd1 �(d1)S(x; 0; d1) �Xd1 �(d1)� xd1 �;from whi
h by way of Criteria U and S we infer thatCxXd1 �(d1) (d1) +O(x log�A x) � xXd1 �(d1)d1 +O(1)and then thatCxYp2S(1�  (p)) +O(x log�A x) � xYp2S�1� 1p�+O(1)where here the 
onstant implied by the O-notation depends at most on Aand S. Hen
e, letting x!1, we dedu
e the inequality(19) Yp2S(1�  (p)) � 1C Yp2S�1� 1p�



Barban{Davenport{Halberstam theorem: IX 23that is parallel to the inequality(20) Yp2S p (p) � 1Cstemming from (18). To turn these relations into a

ount let us set(21)  (p) = 1p + �ppand denote by S1, S2, respe
tively, �nite sets S for whi
h �p � 0 and �p < 0throughout, using the symbols S 01, S 02 for the 
orresponding sets of all p forwhi
h these inequalities hold. Then, by (20),Yp2S1(1 + �p) � 1Cso that Yp2S01(1 + �p) and Yp2S01 �pare 
onvergent. Similarly, sin
eYp2S2�1� �pp� 1� = Yp2S2�1 + j�pjp� 1� � 1Cowing to (19), we see thatYp2S02�1� �pp� 1� and Xp2S02 �pp� 1are (absolutely) 
onvergent. Consequently,(22) Yp �1 + �2pp � and Xp �2pp are absolutely 
onvergent,sin
e �p is 
ertainly always O(1); note here that a more symmetri
al proofwould be obtained by repla
ing the use of (20) by that of its 
orollary(23) Yp2S(1 +  (p)) � 1C Yp2S�1 + 1p�that is parallel to (19), although the alternative pro
edure proposed woulddisguise the relative strength of (20) as 
ompared with (22). Nothing moreneed now be extra
ted from this te
hnique of 
omparison, albeit we shall seefrom some 
losing 
omments that its potentialities have been by no meansexhausted.



24 C. HooleyNext, equalling(24) XÆjl 1�(l=Æ)�Xdjl=Æ �(d) (dÆ)�2in virtue of (9), (6), and Criterion S, the sum M(l) is multipli
ative andsubje
t to the boundM(l) = O� 1l2 XÆjl �� lÆ�� = O�1l �that most easily follows dire
tly from (9) and (16). Hen
e, for � > 0, theDiri
hlet's series F (s) = 1Xl=1 M(l)lsis absolutely 
onvergent and is equal toYp �1 + 1X�=1 M(p�)p�s �by Euler's theorem. But, be
auseM(p�) = X0�m<� 1�(p��m)f (pm)�  (pm+1)g2 +  2(p�)by (24),1 + 1X�=1 M(p�)p�s= 1 + 1Xm=0f (pm)�  (pm+1)g2 1X�=1 1�(p�)p(�+m)s + 1X�=1  2(p�)p�s= 1 +�1� 1p��1 1Xm=0 f (pm)�  (pm+1)g2pms 1X�=1 1p�(s+1) + 1X�=1  2(p�)p�s= 1 +�1� 1p��1 1ps+1�1� 1ps+1��1 1Xm=0 f (pm)�  (pm+1)g2pms+ 1Xm=1  2(pm)pms ;when
e�1� 1ps+1��1 + 1X�=1 M(p�)p�s �



Barban{Davenport{Halberstam theorem: IX 25= 1� 1ps+1 +�1� 1p��1 1ps+1 1Xm=0 f (pm)�  (pm+1)g2pms+ 1Xm=1  2(pm)ppms+1 � 1Xm=2  2(pm�1)pms+1= 1 +��1 +�1� 1p��1f1 �  (p)g2 +  2(p)p� 1ps+1+ 1Xm=2��1� 1p��1f (pm�1)�  (pm)g2+  2(pm)p�  2(pm�1)� 1pms+1 :In this, the 
oeÆ
ient of p�s�1 is(25) �1� 1p��1��1 + 1p + 1� 2 (p) +  2(p) + (p� 1) 2(p)�= 1p� 1fp (p) � 1g2 = �2pp� 1in the notation of (21), while, similarly, that of p�ms�1 for m � 2 is(26) 1p� 1fp (pm)�  (pm�1)g2 = O� 1p2m�1�by (16). Therefore, for � > 0 in the �rst instan
e,F (s) = �(s+ 1)Yp �1 + 1p� 1 1Xm=1 fp (pm)�  (pm�1)g2pms+1 �(27) = �(s+ 1)�(s); say;in whi
h the produ
t de�ning �(s) is absolutely 
onvergent for � � �1 invirtue of (25), (22), and (26). Moreover, �(s) is regular for � > �1 and isrepresented by a Diri
hlet's series(28) 1Xn=1 annswith non-negative 
oeÆ
ients that is absolutely 
onvergent for � � �1, theright-hand side of (27) providing the analyti
 
ontinuation of F (s) into thehalf-plane � > �1.The �nal ingredient in the treatment of T �(u) is the following lemma,whi
h is probably familiar and whi
h is easily established by partial sum-mation.



26 C. HooleyLemma. If the series P1n=1 bn with non-negative 
oeÆ
ients be 
onver-gent , then, as u!1,Xn�u bnn1=2�it = o(u1=2) and Xn>u bnn1=2+it = o(u�1=2)uniformly with respe
t to t.Being ready to evaluate T �(u) for u � 1, we �rst dedu
e from (17) and(27) thatT �(u) = 12�i 
+i1\
�i1 �(s+ 1)�(s) uss(s+ 1)(s+ 2) ds (
 > 0)and then use the relation(29) �(s+ 1) = O(jtj1+") (jtj > 1; � � �3=2)to obtainT �(u) = R+ 12�i �1=2+i1\�1=2�i1 �(s+ 1)�(s) uss(s+ 1)(s+ 2) ds(30) = R+ I(u); say;whereR is the residue of the integrand at s = 0. Se
ondly, sin
e the prin
ipalpart of the expansion of �(s+ 1)=s about s = 0 is 1=s2 + 
=s,R = � dds� �(s)us(s+ 1)(s+ 2)�+ 
�(s)us(s+ 1)(s+ 2)�s=0(31) = 12�(0) log u+ 12�(0)��0(0)�(0) � 32 + 
�= 12�(0) log u+ 12B; say:Next we use the lemma and the 
onvergen
e of (28) at s = �1 to express�(s) in the integrand of I(u) asXn�u anns +Xn>u anns = �1(s) + o(u�1=2);the limit pro
ess indi
ated by the o-symbol being still uniform in t. Hen
eI(u) = 12�i �1=2+i1\�1=2�i1 �(s+ 1)�1(s) uss(s+ 1)(s+ 2) ds+ o� 1u�;when
e, moving the line of integration to � = �3=2 with the aid of (29) and



Barban{Davenport{Halberstam theorem: IX 27the equality �(0) = �1=2, we getI(u) = �1(�1)2u + 12�i �3=2+i1\�3=2�i1 �(s+ 1)Xn�u anns � uss(s+ 1)(s+ 2) ds= �1(�1)2u + o� 1u� = �(�1)2u + o� 1u�by another appli
ation of the lemma and then by the 
onvergen
e of theseries de�ning �(�1). In summation, we then extra
t from this, (30), and(31) the 
on
lusion that(32) T �(u) = 12�(0) log u+ 12B + �(�1)2u + o� 1u�as u!1.Similarly, we obtain(33) T (u) = �(0) log u+B1 +O(u�1=3)by a 
ontour integral method that does not involve the �ner properties of�(s) related to (22) and the lemma. Alternatively, sin
e u2T �(u) is these
ond Ces�aro mean of T (u), this result 
an be derived from a fairly 
rudeform of (32) by the use of a well-known Tauberian argument.Our theorem is almost to hand. Letting the o-symbol relate to thepassage of x=Q2 to 1, we dedu
e from (17), (32), (14), and (7) thatJ(x;Q1; Q2) = 12C2�(0)x2 log Q2Q1�12C2�(�1)Q2x+O(x2 log�A x)+o(Q2x)and hen
e from (12) that� (x;Q1; Q2) = C2�(0)x2 log Q2Q1 + fC � C2�(�1)gQ2x+O(x2 log�A x) + o(Q2x):Therefore, sin
eT (Q2)� T (Q1) = �(0) log Q2Q1 +O� 1logA x�by (33) and (7), we 
on
lude from (11) and (8) thatG(x;Q2) = fC �C2�(�1)gQ2x+O(x2 log�A x) + o(Q2x)in the 
ase Q2 > x log�A x that required attention. But, if Q2 = x, thena more helpful result is derived by using J(x;Q1; x) = J(x;Q1) in pla
eof (14), the minor 
hanges in the ensuing 
al
ulations then leading toG(x; x) = (C + C2B)x+O(x2 log�A x)when the notation of (31) is used.



28 C. HooleyWe have thus substantiated our introdu
tory assertions (2) and (3) inthe form of the followingTheorem. For any sequen
e (of stri
tly positive density) satisfying Cri-teria U and S, we haveXk�Q X0<a�k[S(x; a; k) � xgfk; (a; k)g℄2 = (D1 + o(1))Qx+O(x2 log�A x)for Q � x and any given positive 
onstant A, whereD1 = C � C2Yp �1 + 1p� 1 1Xm=1 pm�1fp (pm)�  (pm�1)g2�and where o(1)! 0 as x=Q!1. AlsoXk�x X0<a�k[S(x; a; k) � xgfk; (a; k)g℄2 = D2x2 +O(x2 log�A x);where D2 = C � C2f3�(0) � 
�(0)� �0(0)gin the notation of (27).In interpreting this result, we should �rst mention that, save whenQ = x,we are not supplied with anything substantially better than our previous (1)in situations where Q does not di�er mu
h from x. This la
una, however,
an be �lled in any typi
al instan
e of this s
ene where x=(m + 1) < Q �x=m be
ause a �nite 
ombination of expli
it terms will represent the sumT �(x=Q) = T �(m) that was the sour
e of the unsatisfa
tory o(1) 
onstituent.The insertion of these terms in the formula will then furnish a satisfa
toryout
ome provided that C2x2 log x=Q be subtra
ted in 
ompensation.It is illuminating to refer to some spe
ial 
ases in order to appre
iate thesigni�
an
e of the 
onstant D1 in the �rst formula. For instan
e, if C = 1,the non-negativity of D1 implies that D1 = 0 andD3 =Yp �1 + 1p� 1 1Xm=1 pm�1fp (pm)�  (pm�1)g2� = 1so that  (pm) = 1=pm and  (k) = 1=k for all k, a 
on
lusion that is of 
ourseimmediate from the given supposition that the sequen
e s is derived fromthe sequen
e of natural numbers by removing a sequen
e of density zero. Onthe other hand, D1 
an be zero even when C < 1, as is exempli�ed by thesequen
e of odd numbers for whi
h C = 1=2 and  (k) = 1 or 0 a

ording as kbe odd or even. It being obvious in this 
ase that S(x; a; k)�gfk; (a; k)gx =O(1), the left side of the formula is O(Q2), whi
h value is 
onsistent with



Barban{Davenport{Halberstam theorem: IX 29the determination of D1 as12 � 14�1 + 12� 1� = 0:A more re
ondite example is supplied by the sequen
e of square-free num-bers, for whi
hC = 6�2 ;  (p) = 1p+ 1 ;  (p�) = 0 (� > 1);and thereforeD1 = 6�2 � 36�4 Yp �1 + 1p2 � 1� = 6�2 � 36�4 Yp �1� 1p2��1 = 0;this a

ords with a theorem due to Croft [1℄ that states that in this situationG(x;Q) � B2Q3=2x1=2 (Q > x2=3);a formula of similar type being available by our method through a furtherstudy of the 
orresponding fun
tion F (s) in the half-plane to the left of� > �1. We should emphasize, however, that the last two sequen
es areatypi
al in the 
ontext of our theorem even though expli
it 
ases whereD1 6= 0 are not easy to isolate naturally. We are therefore 
ontent to 
itethe sequen
e that, for 12N(N + 1) < s � 12 (N + 1)(N + 2), 
onsists of allodd or even integers in that interval a

ording as N be odd or even; hereC = 1=2 and D1 = 1=4.A further study of the produ
t D3 would not be without interest|espe
ially in regard to the question of when D1 vanishes. A useful pointof origin might well be an investigation into the size of p (pm) �  (pm�1)for m > 1 whose trivial bound O(1=pm�1) was used when establishing the
onvergen
e of D3. Here there is a relevan
e to the te
hnique of 
ompari-son that was introdu
ed to investigate the entity �p appearing in (21). Forexample, let us now 
ontemplate, for a given set S of primes p, the e�e
t ofeliminating every multiple of ea
h prime p save those divisible by p2, whi
hare to be a�e
ted by the multiplier p, that is to say, the result of a�e
tingea
h member m of a sequen
e by a non-negative multipli
ative weightXd2jm %d2 ;where d2 is a produ
t of primes in S and %d2 is the multipli
ative fun
tionde�ned by %p� = (�1 if � = 1,p if � = 2,0 if � > 2.



30 C. HooleyThen, 
omparing mu
h as before the results of this parti
ular pro
ess onthe two sequen
es in question, we get the inequalityYp2S(1�  (p) + p 2(p)) � 1C Yp2S�1� 1p + 1p� = 1Cthat is analogous to (23) and that forms an important part in the proof thatXp jp 2(p)�  (p)jis 
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