
ACTA ARITHMETICALXXXIII.1 (1998)
On the Barban{Davenport{Halberstam theorem: IXbyC. Hooley (Cardi�)We revisit the topi of the third artile of this series� III, in whih ageneralized theorem of Barban{Davenport{Halberstam type was establishedfor a wide lass of sequenes of essentially positive density. Having on anintermediate oasion [4℄ derived an improved proof, we now onsider thepossibility of an asymptoti formula that stands in the same relationship tothe result in III as does the Barban{Montgomery theorem desribed in I tothe Barban{Davenport{Halberstam theorem itself. Commening as beforeby letting s denote, generally, a member of a given (stritly) inreasingsequene of positive integers and lettingS(x; a; k) = Xs�xs�a;mod k 1for any positive k and any non-negative integer a, we still assume Criterion Uto the e�et that, for any positive integer A, the sequene s has the propertythat S(x; a; k) = gfk; (a; k)gx +O(x log�A x)as x ! 1, where (a; k) is the highest ommon fator of a and k and theonstant implied by the O-notation depends at most on A. Then, still settingE(x; a; k) = S(x; a; k) � gfk; (a; k)gxand G(x;Q) = Xk�Q X0<a�kE2(x; a; k) (Q � x);we go beyond the previously obtained bound(1) G(x;Q) = O(Qx) +O(x2 log�A x)by demonstrating the asymptoti formulae� We refer to these artiles by the Roman numeral indiating their position in theseries; their full partiulars are given in the list of referenes at the end.[17℄



18 C. Hooley(2) G(x;Q) = (D1 + o(1))Qx+O(x2 log�A x)(Q � x; o(1)! 0 as x=Q!1)and(3) G(x;Q) = D2Qx+O(x2 log�A x) (Q = x)when the sequenes satisfy the further Criterion S that states that the fun-tion g(k) = g(k; k) in the statement of Criterion U is of the form C (k),where C > 0 and  (k) is a multipliative funtion. Thus the sequenes pre-viously onsidered are subjet to a generalized Barban{Montgomery the-orem if the events p j s and q j s for distint primes p and q be inherentlystatistially independent. Stemming from these riteria, one relation neededlater is derived at one beause it is the basis of an interesting property ofthe sequene that we should not allow to pass unnotied. This arises froma omparison, for any divisor Æ of k, of the equation(4) Xs�x(s;k)=Æ 1 = �(k=Æ)g(k; Æ)x +O(kx log�A x)derived from Criterion U with the representation of its left-hand side asXs�xs�0;mod Æ X(s=Æ;k=Æ)=1 1 = Xs�xs�0;mod Æ XdÆjs; djk=Æ�(d)(5) = Xdjk=Æ�(d) Xs�xs�0;mod dÆ 1= x Xdjk=Æ�(d)g(dÆ) +O(d(k=Æ)x log�A x):On equating these two expressions and letting x!1 after a division by x,we onlude that(6) �(k=Æ)g(k; Æ) = Xdjk=Æ�(d)g(dÆ)and �rst reoup the result of Lemma 15 in [4℄ by substituting this in (5).But, if Criterion S be also assumed, the impat of the multipliativity ofg(k)=C on the above equation is that g(k; Æ)=C is also multipliative in thesense that the sequene has the property that , as x!1,S(x; a; k) = C (k; a)x +O(x log�A x);where  (k; a) is a multipliative funtion of k for eah integer a. Equiva-lently, this may be expressed as being the requirement that Criterion S besatis�ed not only by the sequene of numbers s but also by eah sequene ofnumbers s+ b for eah positive integer b. Yet in the present work we prefer



Barban{Davenport{Halberstam theorem: IX 19not to avail ourselves of this property, whih in itself is weaker than CriteriaU and S taken together.Our treatment of the Barban{Montgomery theorem in I ombined anappeal to the Barban{Davenport{Halberstam theorem with a tehnique thatpartially desribed the behaviour ofXk�Q X0<a�k(a;k)=1 �2(x; a; k)for large Q by means of the prime-number theorem for arithmetial pro-gressions with small moduli l � x=Q. Here we adopt an initially similarframework based on the generalized Theorem 1 of III together with an anal-ysis of G(x;Q) that depends on Criterion U for small moduli, even thoughour path must then diverge from that taken in I when we ome to alulatethe sums that arrive after the initial analysis. The prinipal diÆulty inregard to these sums being the generality of the situation in whih theyare estimated, we exploit, inter alia, the positive density C of the given se-quene by means of two simple arguments, the seond of whih depends ona sieve method. Also, not unexpetedly, the �nal use of ontour integrationinvolves ompliations not present in its ounterpart in I.Throughout the letter A denotes a positive absolute onstant that is notneessarily the same at eah ourrene and on whih the onstants impliedby the O-notation at most depend save in one expliit instane. The letters not only denotes a member of the given sequene but also a omplexvariable � + it, it being lear from the ontext whih meaning is intended;the funtion ��1(l) is, as usual, the sum of the reiproals of the divisorsof l.It is enough to treat the ase Q > x log�A x for any value of A hosenin the statement of (2) and (3) beause in the opposite ase the proposedresult (2) is ontained in the generalized Barban{Davenport{Halberstaminequality (1) proved in III and [4℄. Having thus isolated the situationneeding serious attention, we setG(x;Q1; Q2) = G(x;Q2)�G(x;Q1) = XQ1<k�Q2 X0<a�kE2(x; a; k)for(7) Q1 = x log�A x < Q2 � xso that(8) G(x;Q2) = G(x;Q1; Q2) +O(x2 log�A x)by a further appliation of (1), wherein the substitution of Q2 for Q is a



20 C. Hooleynotational onveniene. Next, by equation (163) in [4℄ in whihH(x; k) = X0<a�kE2(x; a; k);we haveH(x; k) = X0<a�k S2(x; a; k)� x2XÆjk �(k=Æ)g2(k; Æ) +O� x2d3(k)k logA+4 x�(9) = X0<a�k S2(x; a; k)� x2P (k)k +O� x2d3(k)k logA+4 x�; say;wherefore, having replaed the notation P (k)=k by C2M(k) and set(10) T (u) =Xk�uM(k);we infer thatG(x;Q1; Q2) = XQ1<k�Q2 X0<a�k S2(x; a; k) � C2x2fT (Q2)� T (Q1)g(11) +O(x2 log�A x)= � (x;Q1; Q2)� C2x2fT (Q2)� T (Q1)g+O(x2 log�A x); say:We transform in turn the sum � (x;Q1; Q2), whose inner sum equalsX0<a�k Xs;s0�xs�s0�a;mod k 1 = Xs;s0�xs�s0;mod k 1 =Xs�x 1 + 2 Xs0<s�xs�s0;mod k 1= Cx+ 2 Xs0<s�xs�s0;mod k 1 +O(x log�A x)by Criteria U and S for the speial ase k = 1. Thus, by (7),� (x;Q1; Q2) = (Q2 �Q1 +O(1))Cx+ 2 XQ1<k�Q2 Xs0<s�xs�s0;mod k 1(12) +O(x2 log�A x)= CQ2x+ 2J(x;Q1; Q2) +O(x2 log�A x); say;with whih equation the preliminary analysis of our problem is onluded.To manage the seond term on the �nal line of (12) we onsider the sumJ(x;Q) = J(x;Q;x) for(13) x log�A x < Q � x;



Barban{Davenport{Halberstam theorem: IX 21through whih J(x;Q1; Q2) is expressed by the equation(14) J(x;Q1; Q2) = J(x;Q1)� J(x;Q2):The onditions of summation in this double sum imply that s � s0 = lkfor some positive integer l, by means of whih it is seen that the formeronditions are tantamount to the ombination of the latter ondition withthe requirement that l < x=Q and s0 + lQ < s � x. ThereforeJ(x;Q) = Xl<x=Q Xs0+lQ<s�xs�s0;mod l 1(15) = Xl<x=QXÆjl X0<b�l(b;l)=Æ Xs0<x�lQs0�b;mod l Xs0+lQ<s�xs�b;mod l 1= Xl<x=QXÆjl X0<b�l(b;l)=Æ K(x;Q; b; l) = X0<l<x=QL(x;Q; l); say:Here, sine Criterion U and the onsequential inequality(16) g(l; Æ) = O(1=l)proved in III imply thatS(y; b; l) = gfl; (b; l)gy +O(x log�2A x)when 0 < y � x, we haveK(x;Q; b; l) = g(l; Æ) Xs0<x�lQs0�b;mod l (x� lQ� s0) +O� xlog2A x Xs0�xs0�b;mod l 1�= g(l; Æ) x�lQ\0 S(t; b; l) dt+O� x2l log2A x�= g(l; Æ)� 12g(l; Æ)(x � lQ)2 +O� x2log2A x��+O� x2l log2A x�= 12g2(l; Æ)(x � lQ)2 +O� x2l log2A x�by another appliation of (16). Consequently, by a summation over b and Æ,L(x;Q; l) = 12(x� lQ)2XÆjl �(l=Æ)g2(l; Æ) +O(x2 log�2A x)= 12C2(x� lQ)2M(l) +O(x2 log�2A x)



22 C. Hooleyin the notation of (9), from whih, (15), and (13) we obtain the equationJ(x;Q) = 12C2 Xl<x=Q(x� lQ)2M(l) +O(x2 log�A x)(17) = 12C2x2 Xl<x=Q�1� lQx �2M(l) +O(x2 log�A x)= C2x2T �(x=Q) +O(x2 log�A x); say;that ontains a sum analogous to T (u) in (10).The time has ome to bring Criterion S seriously into play by system-atially expressing g(k) as C (k), where C > 0 and  (k) is multipliative.This is used to study the Dirihlet's series related to the sums T (u) andT �(u), the appropriate properties of whih are developed by onsidering theimpat on  (k) of two simple attributes of the sequene. Eah propertybeing related to the fat that our sequene is ontained in the sequene ofnatural numbers, we restate a speial ase of (16) by remarking thatS(x; 0; k) = C (k)x+O(x log�A x) � [x=k℄ = x=k +O(1)for any given k and that hene(18) C (k) � 1=kby letting x!1. Seondly, we onsider the e�et of eliminating from oursequene all multiples of primes p belonging to a given �nite set S, to whihend we let d1 denote, generally, a square-free number (possibly 1) omposedentirely of prime fators in S. Then, for any (large) x, Legendre's exlusionpriniple yields Xd1 �(d1)S(x; 0; d1) �Xd1 �(d1)� xd1 �;from whih by way of Criteria U and S we infer thatCxXd1 �(d1) (d1) +O(x log�A x) � xXd1 �(d1)d1 +O(1)and then thatCxYp2S(1�  (p)) +O(x log�A x) � xYp2S�1� 1p�+O(1)where here the onstant implied by the O-notation depends at most on Aand S. Hene, letting x!1, we dedue the inequality(19) Yp2S(1�  (p)) � 1C Yp2S�1� 1p�



Barban{Davenport{Halberstam theorem: IX 23that is parallel to the inequality(20) Yp2S p (p) � 1Cstemming from (18). To turn these relations into aount let us set(21)  (p) = 1p + �ppand denote by S1, S2, respetively, �nite sets S for whih �p � 0 and �p < 0throughout, using the symbols S 01, S 02 for the orresponding sets of all p forwhih these inequalities hold. Then, by (20),Yp2S1(1 + �p) � 1Cso that Yp2S01(1 + �p) and Yp2S01 �pare onvergent. Similarly, sineYp2S2�1� �pp� 1� = Yp2S2�1 + j�pjp� 1� � 1Cowing to (19), we see thatYp2S02�1� �pp� 1� and Xp2S02 �pp� 1are (absolutely) onvergent. Consequently,(22) Yp �1 + �2pp � and Xp �2pp are absolutely onvergent,sine �p is ertainly always O(1); note here that a more symmetrial proofwould be obtained by replaing the use of (20) by that of its orollary(23) Yp2S(1 +  (p)) � 1C Yp2S�1 + 1p�that is parallel to (19), although the alternative proedure proposed woulddisguise the relative strength of (20) as ompared with (22). Nothing moreneed now be extrated from this tehnique of omparison, albeit we shall seefrom some losing omments that its potentialities have been by no meansexhausted.



24 C. HooleyNext, equalling(24) XÆjl 1�(l=Æ)�Xdjl=Æ �(d) (dÆ)�2in virtue of (9), (6), and Criterion S, the sum M(l) is multipliative andsubjet to the boundM(l) = O� 1l2 XÆjl �� lÆ�� = O�1l �that most easily follows diretly from (9) and (16). Hene, for � > 0, theDirihlet's series F (s) = 1Xl=1 M(l)lsis absolutely onvergent and is equal toYp �1 + 1X�=1 M(p�)p�s �by Euler's theorem. But, beauseM(p�) = X0�m<� 1�(p��m)f (pm)�  (pm+1)g2 +  2(p�)by (24),1 + 1X�=1 M(p�)p�s= 1 + 1Xm=0f (pm)�  (pm+1)g2 1X�=1 1�(p�)p(�+m)s + 1X�=1  2(p�)p�s= 1 +�1� 1p��1 1Xm=0 f (pm)�  (pm+1)g2pms 1X�=1 1p�(s+1) + 1X�=1  2(p�)p�s= 1 +�1� 1p��1 1ps+1�1� 1ps+1��1 1Xm=0 f (pm)�  (pm+1)g2pms+ 1Xm=1  2(pm)pms ;whene�1� 1ps+1��1 + 1X�=1 M(p�)p�s �



Barban{Davenport{Halberstam theorem: IX 25= 1� 1ps+1 +�1� 1p��1 1ps+1 1Xm=0 f (pm)�  (pm+1)g2pms+ 1Xm=1  2(pm)ppms+1 � 1Xm=2  2(pm�1)pms+1= 1 +��1 +�1� 1p��1f1 �  (p)g2 +  2(p)p� 1ps+1+ 1Xm=2��1� 1p��1f (pm�1)�  (pm)g2+  2(pm)p�  2(pm�1)� 1pms+1 :In this, the oeÆient of p�s�1 is(25) �1� 1p��1��1 + 1p + 1� 2 (p) +  2(p) + (p� 1) 2(p)�= 1p� 1fp (p) � 1g2 = �2pp� 1in the notation of (21), while, similarly, that of p�ms�1 for m � 2 is(26) 1p� 1fp (pm)�  (pm�1)g2 = O� 1p2m�1�by (16). Therefore, for � > 0 in the �rst instane,F (s) = �(s+ 1)Yp �1 + 1p� 1 1Xm=1 fp (pm)�  (pm�1)g2pms+1 �(27) = �(s+ 1)�(s); say;in whih the produt de�ning �(s) is absolutely onvergent for � � �1 invirtue of (25), (22), and (26). Moreover, �(s) is regular for � > �1 and isrepresented by a Dirihlet's series(28) 1Xn=1 annswith non-negative oeÆients that is absolutely onvergent for � � �1, theright-hand side of (27) providing the analyti ontinuation of F (s) into thehalf-plane � > �1.The �nal ingredient in the treatment of T �(u) is the following lemma,whih is probably familiar and whih is easily established by partial sum-mation.



26 C. HooleyLemma. If the series P1n=1 bn with non-negative oeÆients be onver-gent , then, as u!1,Xn�u bnn1=2�it = o(u1=2) and Xn>u bnn1=2+it = o(u�1=2)uniformly with respet to t.Being ready to evaluate T �(u) for u � 1, we �rst dedue from (17) and(27) thatT �(u) = 12�i +i1\�i1 �(s+ 1)�(s) uss(s+ 1)(s+ 2) ds ( > 0)and then use the relation(29) �(s+ 1) = O(jtj1+") (jtj > 1; � � �3=2)to obtainT �(u) = R+ 12�i �1=2+i1\�1=2�i1 �(s+ 1)�(s) uss(s+ 1)(s+ 2) ds(30) = R+ I(u); say;whereR is the residue of the integrand at s = 0. Seondly, sine the prinipalpart of the expansion of �(s+ 1)=s about s = 0 is 1=s2 + =s,R = � dds� �(s)us(s+ 1)(s+ 2)�+ �(s)us(s+ 1)(s+ 2)�s=0(31) = 12�(0) log u+ 12�(0)��0(0)�(0) � 32 + �= 12�(0) log u+ 12B; say:Next we use the lemma and the onvergene of (28) at s = �1 to express�(s) in the integrand of I(u) asXn�u anns +Xn>u anns = �1(s) + o(u�1=2);the limit proess indiated by the o-symbol being still uniform in t. HeneI(u) = 12�i �1=2+i1\�1=2�i1 �(s+ 1)�1(s) uss(s+ 1)(s+ 2) ds+ o� 1u�;whene, moving the line of integration to � = �3=2 with the aid of (29) and



Barban{Davenport{Halberstam theorem: IX 27the equality �(0) = �1=2, we getI(u) = �1(�1)2u + 12�i �3=2+i1\�3=2�i1 �(s+ 1)Xn�u anns � uss(s+ 1)(s+ 2) ds= �1(�1)2u + o� 1u� = �(�1)2u + o� 1u�by another appliation of the lemma and then by the onvergene of theseries de�ning �(�1). In summation, we then extrat from this, (30), and(31) the onlusion that(32) T �(u) = 12�(0) log u+ 12B + �(�1)2u + o� 1u�as u!1.Similarly, we obtain(33) T (u) = �(0) log u+B1 +O(u�1=3)by a ontour integral method that does not involve the �ner properties of�(s) related to (22) and the lemma. Alternatively, sine u2T �(u) is theseond Ces�aro mean of T (u), this result an be derived from a fairly rudeform of (32) by the use of a well-known Tauberian argument.Our theorem is almost to hand. Letting the o-symbol relate to thepassage of x=Q2 to 1, we dedue from (17), (32), (14), and (7) thatJ(x;Q1; Q2) = 12C2�(0)x2 log Q2Q1�12C2�(�1)Q2x+O(x2 log�A x)+o(Q2x)and hene from (12) that� (x;Q1; Q2) = C2�(0)x2 log Q2Q1 + fC � C2�(�1)gQ2x+O(x2 log�A x) + o(Q2x):Therefore, sineT (Q2)� T (Q1) = �(0) log Q2Q1 +O� 1logA x�by (33) and (7), we onlude from (11) and (8) thatG(x;Q2) = fC �C2�(�1)gQ2x+O(x2 log�A x) + o(Q2x)in the ase Q2 > x log�A x that required attention. But, if Q2 = x, thena more helpful result is derived by using J(x;Q1; x) = J(x;Q1) in plaeof (14), the minor hanges in the ensuing alulations then leading toG(x; x) = (C + C2B)x+O(x2 log�A x)when the notation of (31) is used.



28 C. HooleyWe have thus substantiated our introdutory assertions (2) and (3) inthe form of the followingTheorem. For any sequene (of stritly positive density) satisfying Cri-teria U and S, we haveXk�Q X0<a�k[S(x; a; k) � xgfk; (a; k)g℄2 = (D1 + o(1))Qx+O(x2 log�A x)for Q � x and any given positive onstant A, whereD1 = C � C2Yp �1 + 1p� 1 1Xm=1 pm�1fp (pm)�  (pm�1)g2�and where o(1)! 0 as x=Q!1. AlsoXk�x X0<a�k[S(x; a; k) � xgfk; (a; k)g℄2 = D2x2 +O(x2 log�A x);where D2 = C � C2f3�(0) � �(0)� �0(0)gin the notation of (27).In interpreting this result, we should �rst mention that, save whenQ = x,we are not supplied with anything substantially better than our previous (1)in situations where Q does not di�er muh from x. This launa, however,an be �lled in any typial instane of this sene where x=(m + 1) < Q �x=m beause a �nite ombination of expliit terms will represent the sumT �(x=Q) = T �(m) that was the soure of the unsatisfatory o(1) onstituent.The insertion of these terms in the formula will then furnish a satisfatoryoutome provided that C2x2 log x=Q be subtrated in ompensation.It is illuminating to refer to some speial ases in order to appreiate thesigni�ane of the onstant D1 in the �rst formula. For instane, if C = 1,the non-negativity of D1 implies that D1 = 0 andD3 =Yp �1 + 1p� 1 1Xm=1 pm�1fp (pm)�  (pm�1)g2� = 1so that  (pm) = 1=pm and  (k) = 1=k for all k, a onlusion that is of ourseimmediate from the given supposition that the sequene s is derived fromthe sequene of natural numbers by removing a sequene of density zero. Onthe other hand, D1 an be zero even when C < 1, as is exempli�ed by thesequene of odd numbers for whih C = 1=2 and  (k) = 1 or 0 aording as kbe odd or even. It being obvious in this ase that S(x; a; k)�gfk; (a; k)gx =O(1), the left side of the formula is O(Q2), whih value is onsistent with



Barban{Davenport{Halberstam theorem: IX 29the determination of D1 as12 � 14�1 + 12� 1� = 0:A more reondite example is supplied by the sequene of square-free num-bers, for whihC = 6�2 ;  (p) = 1p+ 1 ;  (p�) = 0 (� > 1);and thereforeD1 = 6�2 � 36�4 Yp �1 + 1p2 � 1� = 6�2 � 36�4 Yp �1� 1p2��1 = 0;this aords with a theorem due to Croft [1℄ that states that in this situationG(x;Q) � B2Q3=2x1=2 (Q > x2=3);a formula of similar type being available by our method through a furtherstudy of the orresponding funtion F (s) in the half-plane to the left of� > �1. We should emphasize, however, that the last two sequenes areatypial in the ontext of our theorem even though expliit ases whereD1 6= 0 are not easy to isolate naturally. We are therefore ontent to itethe sequene that, for 12N(N + 1) < s � 12 (N + 1)(N + 2), onsists of allodd or even integers in that interval aording as N be odd or even; hereC = 1=2 and D1 = 1=4.A further study of the produt D3 would not be without interest|espeially in regard to the question of when D1 vanishes. A useful pointof origin might well be an investigation into the size of p (pm) �  (pm�1)for m > 1 whose trivial bound O(1=pm�1) was used when establishing theonvergene of D3. Here there is a relevane to the tehnique of ompari-son that was introdued to investigate the entity �p appearing in (21). Forexample, let us now ontemplate, for a given set S of primes p, the e�et ofeliminating every multiple of eah prime p save those divisible by p2, whihare to be a�eted by the multiplier p, that is to say, the result of a�etingeah member m of a sequene by a non-negative multipliative weightXd2jm %d2 ;where d2 is a produt of primes in S and %d2 is the multipliative funtionde�ned by %p� = (�1 if � = 1,p if � = 2,0 if � > 2.



30 C. HooleyThen, omparing muh as before the results of this partiular proess onthe two sequenes in question, we get the inequalityYp2S(1�  (p) + p 2(p)) � 1C Yp2S�1� 1p + 1p� = 1Cthat is analogous to (23) and that forms an important part in the proof thatXp jp 2(p)�  (p)jis onvergent. Referenes[1℄ M. J. Croft, Square-free numbers in arithmeti progressions, Pro. London Math.So. (3) 30 (1975), 143{159.[2℄ C. Hooley, On the Barban{Davenport{Halberstam Theorem: I , J. Reine Angew.Math. 274/275 (1975), 206{223.[3℄ |, On the Barban{Davenport{Halberstam Theorem: III , J. London Math. So. (2)10 (1975), 249{256.[4℄ |, On a new approah to various problems of Waring's type, in: Reent Progress inAnalyti Number Theory, Vol. 1, Aademi Press, 1981, 127{192.Shool of MathematisUniversity of Wales, Cardi�Senghennydd RoadCardi� CF2 4YHS. Wales, U.K. Reeived on 13.12.1996 (3095)


