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On the Barban—Davenport—Halberstam theorem: IX
by

C. HooLEY (Cardiff)

We revisit the topic of the third article of this series* III, in which a
generalized theorem of Barban—-Davenport—Halberstam type was established
for a wide class of sequences of essentially positive density. Having on an
intermediate occasion [4] derived an improved proof, we now consider the
possibility of an asymptotic formula that stands in the same relationship to
the result in IIT as does the Barban—Montgomery theorem described in I to
the Barban Davenport Halberstam theorem itself. Commencing as before
by letting s denote, generally, a member of a given (strictly) increasing
sequence of positive integers and letting

S(z;a,k) = Z 1

s<zx
s=a, mod k

for any positive k£ and any non-negative integer a, we still assume Criterion U
to the effect that, for any positive integer A, the sequence s has the property
that

S(z;a,k) = g{k, (a.k)}z + O(zlog ™" )
as © — oo, where (a, k) is the highest common factor of a and k and the
constant implied by the O-notation depends at most on A. Then, still setting

E(z;a,k) = S(z;a,k) — g{k, (a, k) }x

and
Gz,Q) =) Y, Ezak) (Q<u),
E<Q 0<a<k
we go beyond the previously obtained bound
(1) G(z,Q) = 0(Qz) + O(z” log™ " z)

by demonstrating the asymptotic formulae

* We refer to these articles by the Roman numeral indicating their position in the
series; their full particulars are given in the list of references at the end.
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() G(z.Q) = (D1 +0(1))Qz + O(z”log™ " z)

(Q <z; o(l) > 0as z/Q — )
and
(3) G(z,Q) = D2Qz + O(alog™ " z)  (Q =)
when the sequences satisfy the further Criterion S that states that the func-
tion g(k) = g(k,k) in the statement of Criterion U is of the form Cy(k),
where C > 0 and (k) is a multiplicative function. Thus the sequences pre-
viously considered are subject to a generalized Barban Montgomery the-
orem if the events p|s and ¢|s for distinct primes p and ¢ be inherently
statistically independent. Stemming from these criteria, one relation needed
later is derived at once because it is the basis of an interesting property of

the sequence that we should not allow to pass unnoticed. This arises from
a comparison, for any divisor  of k, of the equation

(4) > 1= ¢(k/6)g(k, 6)z + O(kzlog™* x)
s<z
(s.k)=0

derived from Criterion U with the representation of its left-hand side as

O SHEED SHE T SRR SR

s<z (s/d,k/6)=1 s<z dd|s,d|k/é
s=0,mod § $s=0,mod §
= > ud D> 1
d\k/s s<z
s=0, mod dd

=z Z 1(d)g(dd) + O(d(k/8)xlog ™ ).
dlk/$
On equating these two expressions and letting z — oo after a division by x,
we conclude that

(6) $(k/0)g(k,6) = > u(d)g(ds)

d|k/s

and first recoup the result of Lemma 15 in [4] by substituting this in (5).
But, if Criterion S be also assumed, the impact of the multiplicativity of
g(k)/C on the above equation is that g(k,d)/C is also multiplicative in the
sense that the sequence has the property that, as x — oo,

S(z;a,k) = Cp(k,a)z + O(zlog * z),
where (k,a) is a multiplicative function of k for each integer a. Equiva-
lently, this may be expressed as being the requirement that Criterion S be

satisfied not only by the sequence of numbers s but also by each sequence of
numbers s + b for each positive integer b. Yet in the present work we prefer
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not to avail ourselves of this property, which in itself is weaker than Criteria
U and S taken together.

Our treatment of the Barban Montgomery theorem in I combined an
appeal to the Barban—Davenport—Halberstam theorem with a technique that
partially described the behaviour of

Z Z 6% (x;a,k)

k<Q 0<a<k
(a,k)=1
for large @ by means of the prime-number theorem for arithmetical pro-
gressions with small moduli I < 2/Q. Here we adopt an initially similar
framework based on the generalized Theorem 1 of III together with an anal-
ysis of G(z, Q) that depends on Criterion U for small moduli, even though
our path must then diverge from that taken in I when we come to calculate
the sums that arrive after the initial analysis. The principal difficulty in
regard to these sums being the generality of the situation in which they
are estimated, we exploit, inter alia, the positive density C' of the given se-
quence by means of two simple arguments, the second of which depends on
a sieve method. Also, not unexpectedly, the final use of contour integration
involves complications not present in its counterpart in I.

Throughout the letter A denotes a positive absolute constant that is not
necessarily the same at each occurrence and on which the constants implied
by the O-notation at most depend save in one explicit instance. The letter
s not only denotes a member of the given sequence but also a complex
variable o + it, it being clear from the context which meaning is intended;
the function o_;(l) is, as usual, the sum of the reciprocals of the divisors
of I.

It is enough to treat the case Q > zlog™* z for any value of A chosen
in the statement of (2) and (3) because in the opposite case the proposed
result (2) is contained in the generalized Barban Davenport Halberstam
inequality (1) proved in IIT and [4]. Having thus isolated the situation
needing serious attention, we set

G(z;Q1,Q2) = G(z,Q2) — G(z,Q1) = Z Z E*(z;a,k)

Q1<k<Qs 0<a<k

for

(7) Qi=zlog ™ z2<Qy<z

so that

(8) G(z,Q2) = G(z;Q1,Q2) + O(a” log™* z)

by a further application of (1), wherein the substitution of Qs for @ is a
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notational convenience. Next, by equation (163) in [4] in which

H(z,k) = Y E*(z;0,k),

0<a<lk
we have
2 2 2 w2 ds (k)
(9) H(z, k)= Z S%(zia.k) —z Z¢(k/5)9 (k,0) + O EloaAt
0<a<k S|k 0T
P(k 22ds(k
= Z S%(z;a,k) — xQ# + O(Tii’é‘)), say,
0Zash ; klog z
wherefore, having replaced the notation P(k)/k by C?M (k) and set
(10) T(u) = M(k),
k<u

we infer that
(11) G(z:Q1,Q2) = Z Z S?(5a,k) — C*2*{T(Q2) — T(Q1)}
Q1<k<Q, 0<a<k
+ O(z%log™* )
= I'(2;Q1,Q2) — C?2*{T(Qs) — T(Q1)}
+O(z?log™* z), say.

We transform in turn the sum I'(z; @1, Q2), whose inner sum equals

> o= > 1=Y1+42 Y 1

0<a<k s,slgq: S,S’S.’L‘ s<z SI<SS'7"
s=s'=a,mod k s=s',mod k s=s’,mod k
=Cx+2 E 14+ O(zlog * z)
s'<s<z

s=s’',mod k

by Criteria U and S for the special case kK = 1. Thus, by (7),
(12)  I'(%;Q1,Q2) = (Q2 — Q1+ O(1))Cxz + 2 Z Z 1

Q1<k<Q2 s'<s<z
s=s’, mod k
+ O(z2log™* 1)
= CQax +2J(2;Q1,Q2) + Oz’ log ™" x),  say,

with which equation the preliminary analysis of our problem is concluded.
To manage the second term on the final line of (12) we consider the sum

J(‘/‘Cu Q) = J(x7 qu) fOI‘
(13) zlog 2 <Q<u,
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through which J(z; Q1,Q>) is expressed by the equation
(14) J(2;Q1,Q2) = J(2,Q1) — J(7,Q2).

The conditions of summation in this double sum imply that s — s’ = [k
for some positive integer [, by means of which it is seen that the former
conditions are tantamount to the combination of the latter condition with
the requirement that I < 2/Q and s’ +1Q < s < x. Therefore

(15) J(z,Q) = Y oo

I<z/Q s'+1Q<s<z

s=s’,mod!l

=22 > > 2

I<z/Q |l (0<b§l s'<r—I1Q s'+1Q<s<«x

b,1)=3 ¢'=p,modl s=b,modl

= > > > K@@bh= Y L#Ql). sy
I<z/Q 5|l 0<b<I 0<i<z/Q
(b,1)=6
Here, since Criterion U and the consequential inequality
(16) g(l,6) = O(1/1)
proved in IIT imply that
S(y:b.1) = g{L. (b, )}y + O(zlog™** x)

when 0 < y < x, we have

K(z,Q,b1) =g(,6) > (z—-1Q—s)+ O(IngA > 1)

s'<z—1Q x s'<z
s'=b, mod s'=b, mod1
r—1Q LEQ
— (1,6 S(t:b,1 dt+()<7>
9(l,9) (S) (t;0,1) o 2

= g(l 5){l (1, ) —zQ)2+o<i)}+o(L>
— o g9\ O log?# z llog?* z
1

2
= —g2(1,8)(z — 1 2+0<‘T7>
39740 ~1Q)* +0(
by another application of (16). Consequently, by a summation over b and 0,
1 -
L(z,Q.1) = 5@ = 1Q)* Y 4(1/8)9°(1,0) + Oz log *" )

8|1

_ %c?(m _1Q)’M() + O(22 log > )
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in the notation of (9), from which, (15), and (13) we obtain the equation

(17) J(z,Q) = %CQ > (z - 1Q)°M (1) + O(z” log™* )

I<z/Q
1 5 o 1Q\’ -
= 5% l;Q (1 - —) M) +0(z"log™" x)

= C%2T*(2/Q) + O(z?log™* z), say,

that contains a sum analogous to T'(u) in (10).

The time has come to bring Criterion S seriously into play by system-
atically expressing g(k) as C(k), where C' > 0 and (k) is multiplicative.
This is used to study the Dirichlet’s series related to the sums T'(u) and
T*(u), the appropriate properties of which are developed by considering the
impact on (k) of two simple attributes of the sequence. Each property
being related to the fact that our sequence is contained in the sequence of
natural numbers, we restate a special case of (16) by remarking that

S(x:0,k) = Cyp(k)z + O(zlog™ * z) < [2/k] = 2/k + O(1)
for any given k and that hence
(18) Cap(k) < 1/k

by letting x — oc. Secondly, we consider the effect of eliminating from our
sequence all multiples of primes p belonging to a given finite set S, to which
end we let d; denote, generally, a square-free number (possibly 1) composed
entirely of prime factors in S. Then, for any (large) z, Legendre’s exclusion
principle yields

5 u(d)S(ai0.d) < Y ute) | 5.
dq dy

from which by way of Criteria U and S we infer that
—A p(dy)
CdeM(dl)¢(d1)+O(~7f'10g z) S-’Edzd—1+0(1)

and then that

Cz H(l —1(p)) + O(zlog “z) <= H (1 — l) +0(1)

PES pES p

where here the constant implied by the O-notation depends at most on A
and S. Hence, letting © — oo, we deduce the inequality

(19) [T -4 < % <1 - 1)

pES pES p



Barban-Davenport-Halberstam theorem: IX 23

that is parallel to the inequality

1
(20) HPTP(p) < c

pES
stemming from (18). To turn these relations into account let us set
L n
(21) h(p) =—+ "
p p

and denote by Si, S, respectively, finite sets & for which 7, > 0 and n, < 0
throughout, using the symbols S, S} for the corresponding sets of all p for
which these inequalities hold. Then, by (20),

1
[T +m) < e
pES
so that
I[T@+n) and ]
pES; pES]

are convergent. Similarly, since

ESEER

PES> PESs

owing to (19), we see that

lp Mlp
11 <1_p_1) md Y T
pES; PES,

are (absolutely) convergent. Consequently,

2 2
(22) H <1 + 77_p> and E T are absolutely convergent,
p p
)

p

since 7, is certainly always O(1); note here that a more symmetrical proof
would be obtained by replacing the use of (20) by that of its corollary

(23) [Ta+ven < s I (1+3)

PES PES p

that is parallel to (19), although the alternative procedure proposed would
disguise the relative strength of (20) as compared with (22). Nothing more
need now be extracted from this technique of comparison, albeit we shall see
from some closing comments that its potentialities have been by no means
exhausted.
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Next, equalling
1 2
(24) > Sy (2 mawtas)
Il dli/s

in virtue of (9), (6), and Criterion S, the sum M () is multiplicative and

subject to the bound
1 l 1
o{mTe(3)}-o(7)

that most easily follows directly from (9) and (16). Hence, for o > 0, the

Dirichlet’s series
o0

is absolutely convergent and is equal t
M «
I+ 3 2e)
p a=1 p

by Euler’s theorem. But, because

M(p®) = 0<§<a ey V™) - P(p™ )P + 42 (p)
by (24),
ta o MO
a=1 p
=1+ Z{w(Pm)—w(pmH)}QZW Zw P
1 -1 oo my\ _ m+1\12 X 1 o 2/ «
:1+<15> Z_U{iﬁ(p )pnii(p ) lefl(f*“) +2%
1\ 1 1\ ' {9(p m+1)y2
”*(“5) W(l_ﬁ) Z{ V)
o
whence

(-5 (-2 55)
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1 1Y 'L {Bm) — gt
=1- ps+1 + <1 - 5) ps-l-l mz_o & pmsp

P2 (p™)p P2
ms+1 Z ms+1
1

_l’_

Z
_1+{_
+ i {(1 - l>_1{¢(10’"1) — (™)}’

p

+ <1 - %)1{1 —1p(p)}? + 1/12(10)17}1051_H

m=2

(™ w2(pm—1)}pmi+1-

In this, the coefficient of p~*~ 1! is

(25) (11)1{1+%+12w<p>+w2<p>+(p1)¢2<p>}

p
1 2 "Ip
= ﬁ{mb(p) — 1} = o1
in the notation of (21), while, similarly, that of p~™*~1 for m > 2 is
(26 Lt~ 6 ) = 0 )
by (16). Therefore, for o > 0 in the first instance,

(27) F(s)zc(s+1)H<1+ _1Z{pw pm;_{(lm )})

=((s+1)®(s), say,

in which the product defining ®(s) is absolutely convergent for o > —1 in
virtue of (25), (22), and (26). Moreover, ®(s) is regular for 0 > —1 and is
represented by a Dirichlet’s series

(28) o
nS

n=1
with non-negative coefficients that is absolutely convergent for o > —1, the
right-hand side of (27) providing the analytic continuation of F(s) into the
half-plane o > —1.

The final ingredient in the treatment of 7(u) is the following lemma,
which is probably familiar and which is easily established by partial sum-

mation.
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LEMMA. If the series Y .., b, with non-negative coefficients be conver-
gent, then, as u — o0,

i bn -
Z bnn1/2 t_ 0(u1/2) and Z e = o(u 1/2)
n<u n>u

uniformly with respect to t.

Being ready to evaluate T*(u) for u > 1, we first deduce from (17) and
(27) that

c+i00 s
T (u) = 5 Cémg(s + 1)@(3)m ds (c>0)

and then use the relation

(29) C(s+1) =0(t'*")  (t] > 1; 0 > =3/2)
to obtain
1 —1/2+ioc0 u
(30) T (U) = R + 2—7'("L _1/28_100 C(S + I)Q(QQ)W dS

where R is the residue of the integrand at s = (0. Secondly, since the principal
part of the expansion of ((s + 1)/s about s =0 is 1/s% + /s,

(31) R = {di ((S +¢1()2+ 2)> TG 1@1()()+ 2) }—
o'(0) 3 )

1 1
5@2’5(0) logu + 5@(0)(45(0) 5

1 1
= 545(0) logu + EB’ say.

Next we use the lemma and the convergence of (28) at s = —1 to express
&(s) in the integrand of I(u) as

a a ~1/2
Do D = Bals) +olu ),
n<u n>u
the limit process indicated by the o-symbol being still uniform in ¢. Hence

—1/2+ic0
Iw)=-— | ((s+1)1(s)

271
—1/2—ioo

u®

1
I -
s(s+1)(s+2) g+0<u>’

whence, moving the line of integration to 0 = —3/2 with the aid of (29) and
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the equality ((0) = —1/2, we get

—3/2+i00
¢y(-1) 1 an u®
I(u) = _— 1 U
(W) ==t 2 3/28, Cls+1) o s+ D)(s+2)
_ —ioco n<u

=2 o4 ) = 25 o)

by another application of the lemma and then by the convergence of the
series defining ¢(—1). In summation, we then extract from this, (30), and
(31) the conclusion that

1 1 D(—1 1
(32) () = 20 logu + 1B+ ZED (1
as u — 00.
Similarly, we obtain

by a contour integral method that does not involve the finer properties of
@(s) related to (22) and the lemma. Alternatively, since u?T*(u) is the
second Cesaro mean of T'(u), this result can be derived from a fairly crude
form of (32) by the use of a well-known Tauberian argument.

Our theorem is almost to hand. Letting the o-symbol relate to the
passage of £/Q2 to oo, we deduce from (17), (32), (14), and (7) that

J(:Q1.@2) = 5 C°B(0)a” og %—%C%(—l)QzHO(wQ log ™ 2) +0(Qux)

and hence from (12) that

(21 Q1, Q) = C23(0)2” log % (O~ CPB(-1)}Qus

+ 0(22log™* 2) + 0(Qax).
Therefore, since
_ Q2 1
T(Q2) — T(Q1) = ®(0) log == + O<—A>
Q1 log” =
by (33) and (7), we conclude from (11) and (8) that
G(z,Qs) = {C = C*(=1)}Qoz + O(z® log ™ 2) + 0(Q2x)

in the case Q2 > f[;longm that required attention. But, if Q2 = z, then
a more helpful result is derived by using J(z;Q1,2) = J(x,Q;) in place
of (14), the minor changes in the ensuing calculations then leading to

G(z,z) = (C + C?B)z + O(z?log™* z)

when the notation of (31) is used.
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We have thus substantiated our introductory assertions (2) and (3) in
the form of the following

THEOREM. For any sequence (of strictly positive density) satisfying Cri-
teria U and S, we have

Z Z (z;0,k) — zg{k, (a,k)}]* = (D1 + 0(1))Qx + O(z* log™* 1)

k<Q 0<a<k

for Q < x and any given positive constant A, where

L | [P W IR Tty

p

and where o(1) — 0 as z/Q — oo. Also

Z Z (z:a,k) — zg{k, (a,k)}]? = Doz + O(xlog™* z),

k<z 0<a<k
where
2 =C — C*{38(0) — 79(0) — #'(0)}
in the notation of (27).

In interpreting this result, we should first mention that, save when Q) = =z,
we are not supplied with anything substantially better than our previous (1)
in situations where ) does not differ much from z. This lacuna, however,
can be filled in any typical instance of this scene where z/(m + 1) < Q <
x/m because a finite combination of explicit terms will represent the sum
T*(z/Q) = T*(m) that was the source of the unsatisfactory o(1) constituent.
The insertion of these terms in the formula will then furnish a satisfactory
outcome provided that C22%logz/Q be subtracted in compensation.

It is illuminating to refer to some special cases in order to appreciate the
significance of the constant D; in the first formula. For instance, if C' =1,
the non-negativity of D; implies that D; = 0 and

Dy = ];[ (1 + ﬁ mz_lpm_l{pw(pm) - w(pm—l)}2) =1
so that ¢(p™) = 1/p™ and ¢ (k) = 1/k for all k, a conclusion that is of course
immediate from the given supposition that the sequence s is derived from
the sequence of natural numbers by removing a sequence of density zero. On
the other hand, D; can be zero even when C' < 1, as is exemplified by the
sequence of odd numbers for which C = 1/2 and ¢(k) = 1 or 0 according as k
be odd or even. It being obvious in this case that S(z;a, k) —g{k, (a, k) }z =
O(1), the left side of the formula is O(Q?), which value is consistent with
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the determination of D; as

111+1 =0
2 4 2-1)

A more recondite example is supplied by the sequence of square-free num-
bers, for which

6 1 o
C:ﬁv T:b(p):—v 1/1(10):0 (Oé>1),
and therefore
6 36 1 6 36 1\ '
D= — — — 1 - _ = 1 - — —0:
S <+p2—1> LS ( p2) ’

p p

this accords with a theorem due to Croft [1] that states that in this situation
G(z.Q) ~ BQ*?a'? (Q > 2*%),

a formula of similar type being available by our method through a further
study of the corresponding function F(s) in the half-plane to the left of
o > —1. We should emphasize, however, that the last two sequences are
atypical in the context of our theorem even though explicit cases where
D, # 0 are not easy to isolate naturally. We are therefore content to cite
the sequence that, for N(N 4+ 1) < s < 3(N + 1)(N + 2), consists of all
odd or even integers in that interval according as N be odd or even; here
C =1/2and D; = 1/4.

A further study of the product D3 would not be without interest
especially in regard to the question of when D; vanishes. A useful point
of origin might well be an investigation into the size of pi)(p™) — 1h(p™~1)
for m > 1 whose trivial bound O(1/p™ ') was used when establishing the
convergence of D3. Here there is a relevance to the technique of compari-
son that was introduced to investigate the entity 7, appearing in (21). For
example, let us now contemplate, for a given set S of primes p, the effect of
eliminating every multiple of each prime p save those divisible by p?, which
are to be affected by the multiplier p, that is to say, the result of affecting
each member m of a sequence by a non-negative multiplicative weight

> 0

d2|m

where dj is a product of primes in § and pg4, is the multiplicative function

defined by
-1 ifa=1,
Op> = {p if a = 2,

0 if o > 2.
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Then, comparing much as before the results of this particular process on
the two sequences in question, we get the inequality

1 11 1
[Ho-v@+p2e) < T[(1--+-) =5
¢ p P C

pes PES
that is analogous to (23) and that forms an important part in the proof that

> e (p) — ¢(p)]

P
is convergent.
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