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On finite pseudorandom binary sequences I:
Measure of pseudorandomness, the Legendre symbol
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1. Introduction. In the last 60 years numerous papers have been
written on pseudorandom sequences (we shall also write PR for pseudoran-
domness). In these papers a wide range of goals, approaches, and tools is
presented; even the concept of “pseudorandomness” is interpreted in differ-
ent ways (depending mostly on the applications in mind). In the majority
of the papers constructions of pseudorandom sequences are given and/or
tested for pseudorandomness. In several other papers, inspired mostly by
cryptography, methods of mathematical logic, probability theory and com-
binatorics are used to study pseudorandomness (see e.g., [C-T], [Ko], [ML];
further references are given in [Kn]). These latter papers do a very valuable
work in analysing and explaining the concept of pseudorandomness but,
on the other hand, they are of not much use when it gets to constructing
and testing special pseudorandom sequences. In this series we will focus on
problems of the first type, i.e., on constructing and testing, more exactly,
on apriori or, as Knuth calls it, “theoretical” testing.

The concept of “pseudorandom sequence” can be interpreted in three
different ways:

1) [0, 1) sequences,
2) pseudorandom sequences of integers selected from {1, . . . , N},
3) pseudorandom binary, or more generally, b-ary sequences.

Another related concept is that of the pseudorandom subset.
(Here we shall study only the case when the target distribution is uni-

form, i.e., the case of “uniform PR-sequence”.)
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Knuth [Kn] gives an excellent survey of these concepts. He does not
distinguish sharply between the three concepts, which is completely justi-
fied by the fact that the three concepts are closely related, and there are
simple transition algorithms as described in [Kn]. Indeed, recently several
papers [Ge], [F-M1], [F-M2], [M-S1], [M-S2] have been written on arithmetic
properties of integers characterized by digit properties, and all these papers
point to the direction that the arithmetic properties and digit properties are
independent. This independence can be utilized by using the principle of
“double twist”: if we want to construct, say, a PR-sequence of type 2, then
first we may use a number theoretic principle to construct a PR-sequence
of type 3 (“first twist”) and then we apply a transition algorithm (“second
twist”), which destroys the original arithmetic structure, in order to get a
PR-sequence of type 2.

In spite of the close connection between the three types of PR-sequences,
there are also certain differences and, in particular, the study of the different
PR-concepts may inspire different approaches and construction principles.
So far mostly PR-sequences of type 1 and 2 have been studied; excellent
surveys of the theory of uniform PR-sequences are given by Niederreiter
in [Ni1], [Ni2] (see also the monograph [Ni3] and the more recent papers
[EH-N1], [EH-N2], [EH-N3], [E-L-T]). In these papers Niederreiter gives
a brief description and analysis of the methods of PR-sequence generation,
starting from the most classical and widely used linear congruential method,
and ending with the most promising, recently introduced method studied
mostly by Eichenauer-Herrmann, Lehn, Niederreiter and Topuzoğlu which
is based on the concept of the multiplicative inverse. A common feature of
all these methods is that the construction of the PR-sequence

(1.1) X = (x1, x2, . . . , xN )

is given by a recursion

(1.2) xn = f(xn−1, xn−2, . . . , xn−k).

An important advantage of this sort of constructions is that the elements
of the PR-sequence (1.1) can be computed by a (usually) simple algorithm.
On the other hand, there are disadvantages as well; later we shall return to
such a difficulty.

Niederreiter (later with coauthors) did a work of basic importance in
justifying the use of these construction methods by carrying out the “serial
test” in all these cases, i.e., he showed that the [0, 1) PR-sequences (1.1)
constructed by these methods are such that the discrepancy of the sequence

(x1, x2, . . . , xs), . . . , (xn, xn+1, . . . , xn+s−1), . . . , (xN−s+1, xN−s+2, . . . , XN )

of s-dimensional vectors is “small” (for fixed s).
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Other advantages and deficiencies of these constructions have been stud-
ied as well. In particular, as Niederreiter [Ni1] writes, a deficiency of the
most often used linear congruential method is: “Other known regularities
in sequences of linear congruential pseudorandom numbers are certain long-
range correlations. These regularities can be disruptive in simulations where
random irregularities are desired”. In general, this analysis of the known
constructions leads to the conclusion that, although the new constructions
are superior to the previous ones from many points of view, there is a price
paid for this (e.g., better structure but more complicated generating algo-
rithm) so that there is no perfect construction. Thus the selection of the
construction method to be applied must depend on the application in mind;
the construction which is superior in a certain situation may fail in another
one. This also means that the search for new approaches and new construc-
tions should be continued.

Less attention has been paid to PR-sequences of type 3 (see, e.g.,
[MW-S]); here the most intensively studied construction is the shift-register
method.

Based on the observations above, in this series we will focus on the
least intensively studied type of PR-sequences, i.e., on pseudorandom binary
sequences. Our goal is first to analyse the random properties of several
known important binary sequences and also to give further constructions. In
order to analyse and compare all these constructions and to try to eliminate
certain deficiencies of the previous methods, first we shall have to introduce
a new measure (or measures) of pseudorandomness.

We emphasize that our goal is not the search for new constructions su-
perior to all previous ones; this clearly would be too optimistic. Instead, we
are aiming at constructions superior to the previous ones at least in certain
special situations; besides we will gather new information on random-type
properties of special binary sequences playing an important role in number
theory and in other fields of mathematics.

2. Measures of pseudorandomness of binary sequences. Before
proposing a measure for pseudorandomness of binary sequences, we formu-
late and discuss the most important requirements to be fulfilled by such a
measure.

First, we expect that this measure should reflect the most important and
intensively studied random properties such as

1. normality;
2. well-distribution relative to arithmetic progressions;
3. small multiple correlations.

Indeed, in the case of infinite sequences E = (e1, e2, . . .) ∈ {−1, 1}∞ these
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random properties can be defined in the following way:
For k ∈ N, M ∈ N, X = (x1, . . . , xk) ∈ {−1, 1}k, a ∈ Z, b ∈ N,

D = (d1, . . . , dk) ∈ Nk, d1 < . . . < dk, write

(2.1) T (E,M,X) = |{n : 0 ≤ n < M, (en+1, en+2, . . . , en+k) = X}|,

(2.2) U(E,M, a, b) =
M∑

j=1

ea+jb

and

(2.3) V (E,M,D) =
M−1∑
n=0

en+d1en+d2 . . . en+dk
.

Then E is said to be normal (Knuth uses the term “∞-distributed”) if

(2.4) |T (E,M,X)−M/2k| = o(M)

for all fixed k and X, as M → ∞, while the second and third random
property above can be expressed as

(2.5) U(E,M, a, b) = o(M),

resp.

(2.6) V (E,M,D) = o(M)

for all fixed a, b and D, as M → ∞. (Note that the “serial test” in [Kn]
corresponds to proving (2.4).) It is easy to see that the two requirements
(2.4) and (2.6) are equivalent . Moreover, by an important theorem of Niven
and Zuckerman [N-Z] (see also [C]) the normality of E implies that E pos-
sesses random property 2 in the strong sense that for all k, m ∈ N, E must
be “(m, k)-distributed” (see [Kn, p. 148]), i.e., roughly speaking, E is nor-
mal with respect to arithmetic progressions of difference m and strings of
length k.

In view of these facts, in the case of infinite binary sequences it suffices
to require normality.

Before trying to formulate finite analogues of these random properties,
first we will pose two further requirements of different nature.

To explain the next requirement, as an illustration first consider the
following definition of pseudorandomness of finite binary sequences given by
Knuth [Kn, p. 162]:

Definition 1. A finite sequence EN = (e1, . . . , eN ) ∈ {−1, 1}N is said
to be PR if for all k ∈ N with

(2.7) k ≤ log N

log 2
,

and for all X ∈ {−1, 1}k we have
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(2.8)
∣∣∣∣T (EN , N + 1− k,X)− N + 1− k

2k

∣∣∣∣ ≤ 1√
N

.

(On the left hand side the frequency of the string X in EN is compared
with the expectation for it.)

Note that condition (2.7) expresses the fact that strings of length much
greater than (log N)/ log 2 occur only with “small” probability.

The definition above allows two possibilities only: a sequence is either
“good” or “bad”, i.e., it is either PR or not. Instead, we would like to
introduce a more flexible measure of pseudorandomness. Namely, it may
occur that, say, a sequence does not satisfy (2.8) but (2.8) holds in the
slightly weaker form, with 2/

√
N on the right hand side; however, this

slight deficiency can be more than compensated by the fact that certain
other random-type properties (playing an especially important role in our
application) hold optimally. In such a case, of course, we would like to accept
the sequence as a “good” one. Correspondingly, the fourth requirement is:

4. The pseudorandomness of binary sequences should be characterized
by a real-valued function defined on the set of all finite binary sequences (so
that one should be able to compare two sequences of the same length).

A further natural requirement is that:

5. One should be able to estimate this PR-measure at least for certain
“nice” sequences.

Since it is practically hopeless to define a measure which can be estimated
reasonably well for the majority of sequences, the last requirement is:

6. This PR-measure should have different levels, and one should be able
to estimate at least low level measures, to interpret the result obtained as a
“trend”, a “partial result” towards pseudorandomness.

In order to define such a PR-measure, first we will introduce
PR-measures characterizing the random properties 1, 2, 3 above. Indeed,
for each of these properties, there is a quite natural way to assign a measure
of pseudorandomness to any given EN = (e1, . . . , eN ) ∈ {−1, 1}N :

1. Normality measure of order k:

Nk(EN ) = max
X∈{−1,1}k

max
0<M≤N+1−k

|T (EN ,M,X)−M/2k|.

(See (2.1) and (2.4).)

2. Normality measure:

N(EN ) = max
k≤(log N)/ log 2

Nk(EN ).

(See condition (2.7) in Definition 1.)
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3. Well-distribution measure:

W (EN ) = max
a,b,t

|U(EN , t, a, b)| = max
a,b,t

∣∣∣ t∑
j=1

ea+jb

∣∣∣
where the maximum is taken over all a, b, t such that a ∈ Z, b, t ∈ N and
1 ≤ a + b ≤ a + tb ≤ N . (See (2.2) and (2.5).)

4. Correlation measure of order k:

Ck(EN ) = max
M,D

|V (EN ,M,D)| = max
M,D

∣∣∣ M−1∑
n=0

en+d1en+d2 . . . en+dk

∣∣∣
where the maximum is taken over all D = (d1, . . . , dk) and M such that
M + dk ≤ N . (See (2.3) and (2.6).)

5. Correlation measure: Here one wants a bound for Ck(EN ) for k “not
very large” (for large k the estimate of Ck(EN ) can be extremely difficult).
In view of condition (2.7) in Definition 1, one may introduce the correlation
measure as

C(EN ) = max
k≤(log N)/ log 2

Ck(EN ).

(Another option could be C∗(EN ) =
∑∞

k=1 Ck(EN )/2k.)
In the finite case, the connection between normality, well-distribution in

arithmetic progressions and correlation is much more complicated than in
the infinite case. While in the infinite case normality and small correlation
((2.4) and (2.6)) are equivalent, here the connection is one way:

Proposition 1. For all N , EN and k < N we have

(2.9) Nk(EN ) ≤ max
1≤t≤k

|Ct(EN )|.

P r o o f. For all k,N ∈ N, X = (x1, . . . , xk) ∈ {−1, 1}k and 1 ≤ M ≤
N + 1− k we have

|T (EN ,M,X)−M/2k|

=
∣∣∣∣|{n : 0 ≤ n < M, (en+1, en+2, . . . , en+k) = X}| − M

2k

∣∣∣∣
=

∣∣∣∣ M−1∑
n=0

x1 . . . xk

2k

k∏
j=1

(en+j + xj)−
M

2k

∣∣∣∣
=

∣∣∣∣x1 . . . xk

2k

∑
1≤d1<...<dt≤k

( ∏
j∈{1,...,k}\{d1,...,dt}

xj

) M−1∑
n=0

en+d1 . . . en+dt

∣∣∣∣
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≤ 1
2k

∑
D⊂{1,2,...,k}

D 6=∅

|V (EN ,M,D)| ≤ 1
2k

k∑
t=1

(
k

t

)
Ct(EN )

≤ max
1≤t≤k

|Ct(EN )|,

which proves (2.9).

The connection between the well-distribution measure and the correla-
tion measures is less direct. The smallness of the quantities |Ck(EN )| implies
a “weak tendency” towards well-distribution, but W (EN ) can be quite large;
problems 28, 29 and 30 in [Kn, p. 168] show the difficulties.

In the opposite direction, nothing can be said; indeed, it may occur
that both the normality measure and the well-distribution measure are very
small, but the correlation measure is very large:

Example 1. Consider a sequence EN = (e1, . . . , eN ) ∈ {−1, 1}N such
that both the normality measure and well-distribution measure of it are
possibly small, and define E′

2N = (e′1, e
′
2, . . . , e

′
2N ) ∈ {−1, 1}2N by

e′n =
{

en for 1 ≤ n ≤ N ,
en−N for N < n ≤ 2N .

Then the normality measure and well-distribution measure of E′
2N are less

than a constant times the corresponding measure of EN , but

C2(E′
N ) ≥

∣∣∣ N∑
n=1

e′ne′n+N

∣∣∣ = N.

These considerations lead to the conclusion that in order to show that a
finite binary sequence can be considered as a PR-sequence in the sense that
it possesses each of the random properties 1, 2 and 3, it suffices to show
that both the well-distribution measure and correlation measure are small ;
moreover, both these measures must be checked. These two measures can
be combined, and this way we end up with the “combined PR-measures”
that we propose to use:

6. Combined (well-distribution-correlation) PR-measure of order k:

Qk(EN ) = max
a,b,t,D

∣∣∣ t∑
j=0

ea+jb+d1ea+jb+d2 . . . ea+jb+dk

∣∣∣(2.10)

= max
a,b,t,D

|Z(a, b, t,D)|

where

(2.11) |Z(a, b, t,D)| =
t∑

j=0

ea+jb+d1ea+jb+d2 . . . ea+jb+dk
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is defined for all a, b, t, D = (d1, d2, . . . , dk) such that all the subscripts
a + jb + dl belong to {1, . . . , N} (and the maximum in (2.10) is taken over
D’s of dimension k). (Roughly speaking: Qk(EN ) measures the “correlation
of order k along arithmetic progressions”.)

7. Combined PR-measure:

(2.12) Q(EN ) = max
k≤(log N)/ log 2

Qk(EN )

(another option: Q∗(EN ) =
∑∞

k=1 Qk(EN )/2k).
Finally, consider the following example:

Example 2. Consider a sequence EN = (e1, . . . , eN ) ∈ {−1, 1}N such
that both the correlation measure and well-distribution measure (or even
the combined measure) of it are small, and define E′

2N = (e′1, . . . , e
′
2N ) ∈

{−1, 1}2N by

e′n =
{

en for 1 ≤ n ≤ N ,
e2N−n for N ≤ n ≤ 2N .

Then it is easy to see that the correlation measure and the well-distribution
measure of E′

2N are less than a constant times the corresponding measure
of EN so that in terms of our PR-measures the sequence E′

2N must be
considered as a PR-sequence, although a “truly random” sequence certainly
cannot be as symmetric as E′

2N .

This example illustrates that there is no perfect universal measure of
pseudorandomness; one may pose further and further criteria for pseudo-
randomness (and in certain applications, one can be forced to do this),
and correspondingly, one may introduce further PR-measures. However, it
would be more and more difficult to handle these measures; besides posing
too many PR-requirements, it may occur that there is no PR-sequence of
a given size at all. This difficulty is discussed in [Kn] in details and, in-
deed, it is well described in terms of the theory of Kolmogorov complexity.
Thus one has to draw the limit somewhere and to focus on certain ba-
sic PR-criteria playing the most important role in applications and studied
most intensively; we drew this limit by restricting ourselves to normality,
well-distribution and correlation.

3. The pseudorandomness of the Legendre symbol. It follows
from the discussion above that the combined PR measures Qk and Q have
the desired properties 1–4 and 6. It remains to show that they also have
property 5, i.e., they can be used for testing “nice” sequences for pseudo-
randomness. This can be shown by an example, and indeed, we will test
the Legendre symbol, which seems to be the most natural candidate, for
pseudorandomness:



Finite pseudorandom binary sequences I 373

Theorem 1. There is a number p0 such that if p > p0 is a prime number ,
k ∈ N, k < p and if we write

Ep−1 =
((

1
p

)
,

(
2
p

)
, . . . ,

(
p− 1

p

))
,

then

(3.1) Qk(Ep−1) ≤ 9kp1/2 log p

so that , writing N = p− 1,

(3.2) Q(EN ) = max
k≤(log N)/ log 2

Qk(EN ) ≤ 27N1/2(log N)2

and also

(3.3) Q∗(EN ) =
∞∑

k=1

Qk(EN )/2k ≤ 33N1/2 log N.

(We will estimate the minimum of these PR-measures over {−1, 1}N in
a subsequent paper.)

The crucial tool in the proof of Theorem 1 will be the following result
(which follows from A. Weil’s theorem [We]):

Theorem 2. Suppose that p is a prime number , χ is a non-principal
character modulo p of order d (so that d | p− 1), f(x) ∈ Fp[x] (Fp being the
field of modulo p residue classes) has degree k and a factorization f(x) =
b(x − x1)d1 . . . (x − xs)ds (where xi 6= xj for i 6= j) in F p (the algebraic
closure of Fp) with

(3.4) (d, d1, . . . , ds) = 1.

Let X, Y be real numbers with 0 < Y ≤ p. Then

(3.5)
∣∣∣ ∑

X<n≤X+Y

χ(f(n))
∣∣∣ < 9kp1/2 log p.

Note that similar results appear in [B] and [B-L]. However, in [B] no
proof is given, while in [B-L] both the statement and proof are false due to
the incorrect use of A. Weil’s inequality (although the basic idea is right).
Thus for the sake of completeness we shall present the proof here.

We shall need the following consequence of Theorem 2:

Corollary 1. If p is a prime number , f(x) ∈ Fp[x] is a polynomial
of degree k such that it is not of the form f(x) ∈ b(g(x))2 with b ∈ Fp,
g(x) ∈ Fp[x] (in other words, in the factorization of f in F p as in Theorem 2,
there is at least one odd exponent di), and X, Y are real numbers with
0 < Y ≤ p, then writing

χ∗p(n) =
{ (

n
p

)
for (n, p) = 1,

0 for p |n,
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we have ∣∣∣ ∑
X<n≤X+Y

χ∗p(f(n))
∣∣∣ < 9kp1/2 log p.

4. Four lemmas. To give an upper bound for the incomplete character
sum in (3.5), first we need upper bound for complete hybrid character sums.
(A hybrid character sum is one involving both multiplicative and additive
characters.)

Lemma 1. If p, χ, d are defined as in Theorem 2, a ∈ Z, f(x) ∈ Fp[x]
is a polynomial which has precisely s distinct ones among its roots, and the
polynomials yd − f(x) and zp − z − x are absolutely irreducible, then

(4.1)
∣∣∣∣ ∑

x∈Fp

χ(f(x))e
(

ax

p

)∣∣∣∣ ≤ sp1/2.

P r o o f. This is a part of Theorem 2G in [Sch, p. 45] and, indeed, it is a
consequence of Andre Weil’s theorem on curves over finite fields [We] (while
in [Sch] it is proved in a more elementary way).

Lemma 2. If d ∈ N, K is a field , and yd − f(x) ∈ K[x, y], then the
following two conditions are equivalent :

(i) yd − f(x) is absolutely irreducible;
(ii) if f(x) = b(x − x1)d1 . . . (x − xs)ds is the factorization of f in K,

with xi 6= xj for i 6= j, then (d, d1, . . . , ds) = 1.

P r o o f. This is a part of Lemma 2C in [Sch].

Lemma 3. If p, χ, d, f(x) and k are defined as in Theorem 2 and a ∈ Z,
then

(4.2)
∣∣∣ ∑

x∈Fp

χ(f(x))e(ax/p)
∣∣∣ ≤ kp1/2.

P r o o f. Since (3.4) is assumed, (ii) of Lemma 2 holds with Fp in place
of K, so that by Lemma 2, yd − f(x) is absolutely irreducible.

Next, we apply Lemma 2 with Fp, x and zp − z in place of K, yd and
f(x), respectively. Since now d = 1 we find that (ii) of Lemma 2 holds so
that by Lemma 2 the polynomial x − (zp − z) (and thus also its negative)
is absolutely irreducible.

Thus Lemma 1 can be applied. Since clearly we have s ≤ k, (4.2) follows
from (4.1) and this completes the proof of Lemma 3.

To switch from complete character sums to incomplete character sums,
one may use the Vinogradov [Vin] principle extended and generalized in
the form of the Erdős–Turán inequality. Here we use this inequality in the
following form:
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Lemma 4. If m ∈ N, the function g(x) : Z → C is periodic with period m,
and X, Y are real numbers with Y > 0 then

(4.3)
∣∣∣ ∑

X<n≤X+Y

g(n)
∣∣∣

≤ Y + 1
m

∣∣∣ m∑
n=1

g(n)
∣∣∣ +

∑
1≤|h|≤m/2

|h|−1

∣∣∣∣ m∑
n=1

g(n)e
(

hn

m

)∣∣∣∣.
P r o o f. This form of the Erdős–Turán inequality is presented in a pre-

print written by Friedlander and Iwaniec [F-I] where the authors write: “In
this form (4.3) follows for instance from two applications of (3.4) of [Iw]”.

5. Completion of the proof of Theorem 2. Applying first Lemma 4
with p and χ(f(n)) in place of m and g(n), respectively, and then using
Lemma 3 we obtain∣∣∣ ∑

X<n≤X+Y

χ(f(n))
∣∣∣ ≤ Y + 1

p

∣∣∣ p∑
n=1

χ(f(n))
∣∣∣

+
∑

1≤|h|≤p/2

|h|−1
∣∣∣ p∑

n=1

χ(f(n))e(hn/p)
∣∣∣

< 2kp1/2 + 2
∑

1≤h≤p/2

h−1kp1/2

< 2kp1/2(1 + (1 + log(p/2))) < 2kp1/2(2 + log p)

≤ 2kp1/2

(
2
log p

log 2
+ log p

)
< 9kp1/2 log p.

P r o o f o f C o r o l l a r y 1. Choosing χ(n) = χ∗p(n) in Theorem 2, we
have d = 2 so that (3.4) in Theorem 2 holds if (and only if) one of the
exponents d1, . . . , ds is odd, i.e., f(x) is not of the form f(x) = b(g(x))2.

6. Proof of Theorem 1. Defining Z(a, b, t,D) by (2.11) (with en =(
n
p

)
), for k < p we have

(6.1) |Z(a, b, t,D)|

=
∣∣∣∣ t∑

n=0

(
a + nb + d1

p

)(
a + nb + d2

p

)
. . .

(
a + nb + dk

p

)∣∣∣∣
for all a, b, t, D = (d1, . . . , dk) such that

(6.2) a + nb + dl ∈ {1, . . . , p− 1} for n = 0, 1, . . . , t and l = 1, . . . , k.

Clearly, we may assume that (b, p) = 1. Then let b̄ be an integer with
bb̄ ≡ 1 (mod p) and for j = 1, . . . , k, let hj denote an integer with
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hj ≡ (a + dj)b̄ (mod p)

so that

(6.3) hi 6≡ hj (mod p) for 1 ≤ i < j ≤ k.

Write f(n) = (n + h1)(n + h2) . . . (n + hk). Then it follows from (6.1) that

|Z(a, b, t,D)| =
∣∣∣∣ t∑

n=0

(
ab̄ + n + d1b̄

p

)(
ab̄ + n + d2b̄

p

)
. . .

(
ab̄ + n + dk b̄

p

)∣∣∣∣
=

∣∣∣∣ t∑
n=0

(
n + h1

p

)(
n + h2

p

)
. . .

(
n + hk

p

)∣∣∣∣
=

∣∣∣∣ t∑
n=0

(
f(n)

p

)∣∣∣∣ =
∣∣∣ t∑

n=0

χ∗p(f(n))
∣∣∣

with the character χ∗p defined in Corollary 1.
Writing X = −1, Y = t+1, clearly we may assume that 0 < Y = t+1 ≤

N + 1 = p. Moreover, since f(x) has no multiple zero by (6.3), Corollary 1
can be applied. We obtain

|Z(a, b, t,D)| < 9kp1/2 log p,

which proves (3.1). Now, (3.2) and (3.3) follow from (3.1) and this completes
the proof of Theorem 1.
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dorandom generator with power of two modulus, Math. Comp. 51 (1988), 757–
759.

[EH-N1] J. Eichenauer -Herrmann and H. Niederre i ter, Lower bounds for the
discrepancy of inversive congruential pseudorandom numbers with power of two
modulus, ibid. 58 (1992), 775–779.

[EH-N2] —, —, Kloosterman-type sums and the discrepancy of nonoverlapping pairs of
inversive congruential pseudorandom numbers, Acta Arith. 65 (1993), 185–194.



Finite pseudorandom binary sequences I 377

[EH-N3] J. Eichenauer -Herrmann and H. Niederre i ter, Bounds for exponential
sums and their applications to pseudorandom numbers, ibid. 67 (1994), 269–
281.

[F-I] J. Fr ied lander and H. Iwaniec, preprint.
[F-M1] E. Fouvry et C. Mauduit, Sommes des chiffres et nombres presque premiers,

Math. Ann. 305 (1996), 571–599.
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Institut de Mathématiques de Luminy Department of Algebra and Number Theory
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