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New integral representations for thesquare of the Riemann zeta-funtionbyAndreas Guthmann (Kaiserslautern)Introdution. The reent disovery of an analogue of the Riemann{Siegel integral formula for Dirihlet series assoiated with usp forms [2℄naturally raises the question whether similar formulas might exist for othertypes of zeta funtions. The proof of these formulas depends on the fun-tional equation for the underlying Dirihlet series. In both ases, for �(s)and for the usp form zeta funtions, only a simple gamma fator is involved.The next simplest ase arises when two suh fators our in the funtionalequation. The prototype of these Dirihlet series is �2(s), and so any inves-tigation might well begin with this example. In the present study we showthat, indeed, a formula of Riemann{Siegel type an be found for �2(s).The numerous appliations of the ordinary Riemann{Siegel integral for-mula [3℄ suggest similar ones for our formula too. For instane, it seems veryprobable to derive an asymptoti expansion for �2(s), giving a generalizationof Siegel's result [9℄. Originally, this expansion is due to Motohashi [6, 7℄,and it depends on the orresponding formula for �(s). Consequently, our ap-proah might lead to an independent proof of Motohashi's expansion. Thiswould be of onsiderable value, sine our method applies as well to otherDirihlet series satisfying similar funtional equations, like Heke L series ofquadrati �elds. As a �rst step in this diretion we give a simple proof ofthe approximate funtional equation for �2(s) at the end of the paper.The author is very muh indebted to Professor Aleksandar Ivi� (Bel-grade) who read a preliminary version of this work. His suggestions andritiism led to numerous improvements. Thanks are also due to the refereefor pointing out some misprints and unlear passages.1. Basi formulas. Let s= �+it, �; t real, andR(s)=��s=2� (s=2)�(s).From well known properties of the zeta funtion [3℄ it follows that R has1991 Mathematis Subjet Classi�ation: 11M06.[309℄



310 A. Guthmannsimple poles at s = 1 and s = 0 with residues 1 and 2�(0) = �1 respe-tively, and otherwise is regular. Moreover, R satis�es the funtional equationR(s) = R(1� s). For  > 1, x > 0 onsider(1:1)  (x) = 12�i \()R2(s)x�s ds = 12�i \() ��s� 2� s2��2(s)x�s ds:Inserting the series P1n=1 d(n)n�s for �2(s) and interhanging the order ofintegration and summation, whih is permitted by absolute onvergene,yields  (x) = 1Xn=1 d(n) 12�i \()� 2�s2�(�nx)�s ds:The integral is equal to 8�iK0(2�nx), where K0 denotes the usual modi�edBessel funtion, in view of the Mellin transform [5, p. 14℄12�i \()� 2� s2��y2��sds = 4K0(y):Hene(1:2)  (x) = 4 1Xn=1 d(n)K0(2�nx):The asymptoti relation K0(y) = O(y�1=2e�y), valid for y ! 1 in thesetor jarg(y)j < 3�=2, shows that the series (1.2) onverges absolutely anduniformly in any half plane Re(x) � Æ > 0. It follows that (1.2) de�nes afuntion  holomorphi in the right half plane Re(x) > 0. The imaginaryaxis is a natural boundary for  . This fat an be, for instane, easilydedued from Lemma 2 below. In the sequel it will turn out that  isthe basi funtion on whose properties most of our results depend. It istherefore neessary to investigate it more losely. Obviously,  is relatedto the Eisenstein series E0(z) [4℄. Contrary to the usual use of this non-analyti funtion, where E0 is onsidered as a funtion of the real variablesx; y (where z = x+ iy), it is here the behaviour for omplex values of y thatmatters.Next we derive a funtional equation for  . To this end the line Re(s) = > 1 of integration in (1.1) is shifted to Re(s) = 1=2. The integrand has apole of order 2 at s = 1 with residue(1:3) r(x) = 1x log 1x + 1x ( � log � � 2 log 2);using (� 0=� )(1=2) = � � 2 log 2, where  denotes Euler's onstant. Thus



Square of the Riemann zeta-funtion 311 (x) = r(x) + 12�i \(1=2)R2(s)x�s ds = r(x) + 12�i \(1=2)R2(1� s)x�s ds:The last integral is easily transformed into12�i \(1=2)R2(w)xw�1 dw = � 1xr�1x�+ 12�ix \(3=2)R2(w)xw dw= � 1xr�1x�+ 1x � 1x�:Therefore we have the funtional equation for  ,(1:4)  (x) = r(x)� 1xr� 1x�+ 1x � 1x�;valid throughout the half plane Re(x) > 0.We are now going to derive new integral formulas for �2(s). Our startingpoint is the representation(1:5) R2(s) = 1\0  (x)xs�1 dx; � > 1;obtained by inverting (1.1).Lemma 1. In the plane ut from 0 to �1 we haveK0(z) = � �2z�1=2e�z[1 +H(z)℄;where H is holomorphi and the prinipal branh of the square root is taken.If Re(z) � 0, z 6= 0, we have jH(z)j � 2, and if in addition jzj � 1, thenjH(z)j � jzj�1.P r o o f. We apply the formula [5, p. 119℄K0(z) = 1\1 e�zt(t2 � 1)�1=2 dt; Re(z) > 0:The substitution t = 1 + x=z givesK0(z) = (2z)�1=2e�z 1\0 e�xx�1=2�1 + x2z��1=2 dx:By analyti ontinuation, this formula extends to the entire z plane utfrom 0 to �1. With the prinipal branh of the argument we have �� <arg(z) < �. Write the above formula in the formK0(z) = (2z)�1=2e�z�1\0 e�xx�1=2 dx+1\0 e�xx�1=2h� x2z� dx�;



312 A. Guthmannwhere h(w) = (1 + w)�1=2 � 1. Sineh(w) = 1�p1 + wp1 + w = �wp1 + w + 1 +w ;we get immediately jh(w)j � (1=2)jwj and jh(w)j � 2, provided Re(w) � 0.Thus, de�ningH(z) = ��1=21\0 e�xx�1=2h� x2z� dx= ��1=21\0 e�xx�1=2��1 + x2z��1=2 � 1�dx;we see that the �rst assertion is true. Let z 6= 0, Re(z) � 0. Splitting thelast integral at jzj and applying the above inequalities to h(x=(2z)) leads to�1=2jH(z)j � 14 jzj�1 jzj\0 e�xx1=2 dx+ 21\jzj e�xx�1=2 dx< 14 jzj�1��32�+ 2jzj�1=2e�jzj = jzj�1�18p� + 2jzj1=2e�jzj�:The expression in parantheses is less than 1 if jzj � 1, thereby proving thelast assertion. Conerning the seond one, we simply use����h� x2z����� � 2 for Re(z) � 0; z 6= 0:Then jH(z)j � 2��1=21\0 e�xx�1=2 dx = 2��1=2� (1=2) = 2:This onludes the proof of Lemma 1.Lemma 2. Let Re(x) > 0. Then the funtion (x) = 4 1Xn=1 d(n)K0(2�nx)admits a deomposition (x) = 2x�1=2[F (x) + F1(x)℄;where F; F1 are analyti in the half plane Re(x) > 0, and where the prinipalbranh of the square root is taken. Moreover , F1 is ontinuous in Re(x) � 0,x 6= 0, and F is expliitly given by(1:6) F (x) = 1Xn=1 d(n)n�1=2e�2�nx; Re(x) > 0:



Square of the Riemann zeta-funtion 313P r o o f. Using Lemma 1 with z = 2�nx gives for Re(x) > 0(1:7)  (x) = 2x�1=2 1Xn=1 d(n)n�1=2e�2�nx[1 +H(2�nx)℄= 2x�1=2[F (x) + F1(x)℄;F1(x) = 1Xn=1 d(n)n�1=2e�2�nxH(2�nx):The in�nite series de�ning F (x) and F1(x) for Re(x) > 0 are absolutelyand uniformly onvergent in any half plane Re(x) � Æ > 0. Hene F; F1 areanalyti in Re(x) > 0.It remains to prove that F1 is ontinuous for Re(x) � 0, x 6= 0. Let" be given, 0 < " � 1=2, and assume jxj � ". We show that the series(1.7) onverges uniformly. De�ne an integer N by N = 1 + [(2�")�1℄. Ifn > N then j2�nxj > 2�N jxj � 2�N" > 1. Thus jH(2�nx)j � j2�nxj�1 byLemma 1. Sine jH(2�nx)j � 2 always, we get��� 1Xn=1 d(n)n�1=2e�2�nxH(2�nx)���� 2 Xn�N d(n)n�1=2 + j2�xj�1 Xn>N d(n)n�3=2� N1=2 logN + jxj�1 � "�1=2jlog "j+ "�1 � "�1;using well known estimates for the divisor funtion. This ompletes theproof of the lemma.Next we want to study the behaviour of  (x) as Re(x) ! 0, whih isruial to our investigation. It will turn out that we an obtain very preiseapproximations for  (x) if x approahes the \usps" ip=q, p; q integers, q >0, on the imaginary axis. In this way  (x) resembles properties of modularfuntions, despite the fat that it is not a modular funtion. Lemma 2 showsthat we are redued to an investigation of F (x) = P1n=1 d(n)n�1=2e�2�nxas Re(x)! 0+, sine F1(x) is ontinuous on the imaginary axis (x 6= 0). Toaomplish the desired task, we need to introdue the Dirihlet series(1:8) D(s; �pq ) = 1Xn=1 d(n)�npq n�s; �q = e2�i=q; � > 1:These funtions were already studied by Estermann [1℄ in a lassial work,from whih we borrow results relevant to our problem. Thus let p; q beintegers, q > 0 and (p; q) = 1. Clearly, D(s; �pq ) as given by (1.8), is analytifor � > 1. Moreover, as Estermann showed [1, Setions 3, 4℄, D an beanalytially ontinued to the entire plane where it is holomorphi, exept



314 A. Guthmannfor a double pole at s = 1 with residue 2q ( � log q). More preisely, forjÆj < 1,(1:9) D(1 + Æ; �pq ) = 1q [Æ�2 + 2( � log q)Æ�1 +O(1)℄:The signi�ane of the parameters p and q an best be seen from the ap-proximate funtional equation for �2(s). When p = q = 1, the \symmetri"form is obtained, while other hoies lead to an \unsymmetri" form, asgiven by Motohashi [6, III℄. Compare also the remarks at the end of thepaper.We now proveLemma 3. Let p; q be �xed integers, q > 0, (p; q) = 1, x omplex withRe(x) > 0, and let Æ0 be a real number , 0 � Æ0 < �=2. ThenF�ipq + x� = (2x)�1=2q�1( � 2 log 2� 2 log q � log 2�x)+D(1=2; ��pq ) +O(jxj1=2)for x! 0 uniformly in the setor jarg(x)j � Æ0.P r o o f. We haveF�ipq + x� = 1Xn=1 d(n)��npq n�1=2e�2�nx:Using Mellin's integral for e�2�nx we �nd, for any  > 1=2,F�ipq + x� = 12�i \()� (w)D(w + 1=2; ��pq )(2�x)�w dw:Shifting the integral to the left to the line Re(w) = �1=2 and allowing forthe poles at w = 1=2 and w = 0 showsF�ipq + x� = 1qp2x ( � 2 log 2� 2 log q � log 2�x) +D(1=2; ��pq )+ (2�x)1=22�i \(0)� (s� 1=2)D(s; ��pq )(2�x)�s ds:The residue at w = 1=2 is easily alulated using (1.9). Sine D(it; ��pq )�tA for some onstant A, it follows from Stirling's formula and jx�sj =jx�itj = et arg(x) � eÆ0jtj that the last integral is absolutely and uniformlyonvergent. This ompletes the proof of Lemma 3.Our last preparatory result is



Square of the Riemann zeta-funtion 315Lemma 4. Let � be a omplex number suh that 0 � arg(�) < �=2. Thenfor all omplex s 6= 0; 1,R2(s) = �+1\�  (x)xs�1 dx+ ��1+1\��1  (x)x�s dx+H(s; �);with the meromorphi funtionH(s; �) = �s�1s� 1�� log � + 1s� 1 +  � 2 log 2� log ��� �ss � log � � 1s +  � 2 log 2� log ��:P r o o f. Assume � > 1 and let Æ = arg(�). Then 0 � Æ < �=2 by assump-tion. Sine  (x) is holomorphi in Re(x) > 0 and vanishes exponentially asx ! 1 in the setor jarg(x)j � Æ, we may turn the line of integration in(1.5) about the origin. HeneR2(s) = eiÆ1\0  (x)xs�1 dx; � > 1:The restrition � > 1 will be maintained for the time being. Now split theintegral at x = � and apply the funtional equation (1.4) to the path from0 to �. This leads, after a substitution x! x�1, to the formulaR2(s) = �1\�  (x)xs�1 dx+ ��11\��1  (x)x�s dx+H(s; �);where H(s; �) = �\0 �r(x)� 1xr� 1x��xs�1 dx:Here H(s; �) an be alulated expliitly usingr(x) = 1x log 1x + 1x ( � log � � 2 log 2)and �\0xw�1 log x dx = ddw �\0 xw�1 dx = �ww � log � � 1w�:This yields the stated formula for H(s; �) if � > 1. Analyti ontinuationprovides the validity of our assertion for all omplex s 6= 0; 1 (whih arepoles of H). Finally, we note that the integrals above an be turned about�Æ and Æ, respetively, so as to run parallel to the positive real axis. Thisonludes the proof of the lemma.



316 A. GuthmannWe an now state our �rst main theorem:Theorem 1. Let p; q be positive integers, (p; q) = 1, and Æ be real ,0 � Æ < �=2, � = (p=q)eiÆ. For omplex s de�neT0(s; �) = �+1\�  (x)xs�1 dx:Then limÆ!�=2 T0(s; �) exists, i.e.T0�s; ipq� = ip=q+1\ip=q  (x)xs�1 dx:P r o o f. Let Æ = �=2 � ", so that 0 < " � �=2 and � = (p=q)ei(�=2�") =i(p=q)e�i". Then Æ ! �=2 is equivalent to " ! 0 and � ! ip=q. Moreover,we de�ne w by � = ip=q+w. Then w = (p=q)(sin "+ i(os "� 1)). Thus for"! 0,(1:10) jwj = pq "+O("2); arg(w) = �"=2 +O("2):Now onsider the integral de�ning T0(s; �), whih we may write as(1:11) T0(s; �) = w+1\w  �ipq + x��ipq + x�s�1 dx:We apply the deomposition of  (x) as given by Lemma 2. We getT0(s; �) = 2w+1\w F�ipq + x��ipq + x�s�3=2 dx+ 2w+1\w F1�ipq + x��ipq + x�s�3=2 dx:Sine F1 is ontinuous for Re(x) � 0, x 6= 0, the seond integral exists ifw ! 0. As to the �rst, it suÆes to onsiderw+1\w F�ipq + x��ipq + x�s�3=2 dx for w ! 0:Write x = w + u, 0 � u � 1. If " is small enough, jarg(w)j � �=4 (say) by(1.10). Hene Lemma 3 applies. Aordingly there exist omplex numbersa; b, suh that F�ipq + x� = x�1=2(a log x+ b) +O(1):



Square of the Riemann zeta-funtion 317Thereforew+1\w F�ipq + x��ipq + x�s�3=2 dx= w+1\w [x�1=2(a log x+ b) +O(1)℄�ipq + x�s�3=2 dx:The last integral onverges as w ! 0. Thus the limit w ! 0 (� ! ip=q) in(1.11) also exists and the proof of the theorem is omplete.It is now easy to express �2(s) in terms of T0(s; ip=q):Theorem 2. Let p; q be positive integers, (p; q) = 1. Then for s 6= 0; 1,�2(s) = T�s; pq�+X(s)T�1� s; qp�+ �s��2� s2�H�s; ipq�;where T�s; pq� = �s��2�s2� ip=q+1\ip=q  (x)xs�1 dx;X(s) = �2s�1� 2((1� s)=2)� 2(s=2) ;andH�s; ipq� = �pq�s�1 e�i(s�1)=2s� 1 �� �i2 � log pq + 1s� 1 +  � 2 log 2� log ����pq�s e�is=2s ��i2 + log pq � 1s +  � 2 log 2� log ��:P r o o f. Let � = (p=q)eiÆ , where 0 � Æ < �=2. By Lemma 4 andTheorem 1, R2(s) = T0(s; �) + T0(1� s; ��1) +H(s; �):From T0(s; �) = T0(s; �) we getT0(1� s; ��1) = T0(1� s; ��1):Sine ��1 = (q=p)eiÆ we may let tend Æ ! �=2 by Theorem 1. HeneR2(s) = T0�s; ipq�+ T0�1� s; i qp�+H�s; ipq�;from whih our assertion is obvious.This result shows that the study of �2(s) is redued to that of T (s; p=q)for positive, oprime integers p; q. Obviously, T (s; p=q) is an integral fun-tion of s if p and q are �xed. Our �nal goal will be to derive an analogue



318 A. Guthmannof the Riemann{Siegel integral formula for T (s; p=q). The formulas to beestablished depend on the properties of ertain integral transforms of  (x),whih we are going to investigate next.2. Integral transforms involving  (x). Let p; q be integers, q 6= 0,and onsider for z 2 C with Re(z) > 0 the integral(2:1) K(p; q; z) = ip=q+1\ip=q K0(2�xz)x (x) dx:Sine K0(2�xz) = O(j(xz)�1=2e�2�xz j) and  (x) = O(e�2�Re(x)) asRe(x) ! 1 by (1.2), it is seen that the integral onverges absolutely atits upper bound sine Re(z) > 0. In the viinity of ip=q, Theorems 1 and 2imply  (x + ip=q) = O(x�1=2jlog xj) as x ! 0, while K0(2�(ip=q + x)z) isregular (if p 6= 0) or has a logarithmi singularity (if p = 0). This shows thatK(p; q; �) de�nes a funtion holomorphi in the right half plane Re(z) > 0.This funtion is fundamental in our subsequent analysis and in thepresent setion we proeed to derive its basi properties.Lemma 5. Let p; q be integers, p 6=0, q 6= 0. Then for non-integral z2C ,K(p; q; z) = 2ip�q 1Xn=1 d(n)n2 � z2� �zK0�2�inpq�K 00�2�iz pq�� nK 00�2�inpq�K0�2�iz pq��:The series onverges absolutely and uniformly for z ontained in any om-pat subset of the omplex plane exluding the integers.P r o o f. Let Re(z) > 0. In the above de�nition of K(p; q; z) we insert theseries (1.2) for  (x) and invert the order of integration and summation. Thisis permitted, for instane, by Lebesgue's theorem on dominated onvergene.Hene K(p; q; z) = ��2 1Xn=1 d(n)n�2 2�inp=q+1\2�inp=q uK0(u)K0� znu� du:Now observe that integrals of the type\uK0(u)K0(�u) duan be expliitly omputed. To show this, onsider the funtion f(u) =K 00(u)K0(�u) � �K0(u)K 00(�u), where � is a omplex number. Using thedi�erential equation uK 000 (u) = uK0(u)�K 00(u), we have[uf(u)℄0 = uf 0(u) + f(u) = (1� �2)uK0(u)K0(�u):



Square of the Riemann zeta-funtion 319Thus \uK0(u)K0(�u) du = (1� �2)�1uf(u):With � = z=n and � := 2�ip=q, we getn�+1\n� uK0(u)K0� znu� du = � n2n2 � z2 [zK0(�n)K 00(�z) � nK 00(�n)K0(�z)℄:From this formula the assertions follow at one sine K0(�n) = O(n�1=2),K 00(�n) = O(n�1=2).Sine the Bessel funtion K0(u) has a logarithmi singularity at u = 0,it is onvenient to introdue a ut along the positive imaginary axis. Then�3�=2 < arg(z) < �=2 in the ut plane, or, equivalently, �� < arg(iz) < �.The main analyti properties of K(p; q; z) follow diretly from the previouslemma. We have �rstTheorem 3. Let p; q be positive integers. Then K(p; q; �) extends to ameromorphi funtion in the plane ut from 0 to i1. It has simple polesat the negative integers z = �n = e��in with residue �d(n)=(4�in), and isregular elsewhere.P r o o f. We use Lemma 5. Write x = 2�p=q > 0 andfn(z) = zK0(inx)K 00(izx)� nK 00(inx)K0(izx);so that K(p; q; z) = 2ip�q 1Xn=1 d(n)n2 � z2 fn(z):Sine fn(z) is analyti in the ut plane, exept for possible poles at z = �n,the �rst assertion follows from absolute and uniform onvergene of theseries in ompat subsets of the plane, exluding the integers. Noting thatfn(n) = 0, it follows moreover that K(p; q; z) is regular at z = n. Its valueis easily omputed to beK(p; q; n) = ��2 Xm6=n d(m)m2 � n2 [nK0(�m)K 00(�n)�mK 00(�m)K0(�n)℄� �2�2n;where � = 2�ip=q. This proves the assertions on the analytial harater ofK(p; q; z), and it remains to ompute the residue at z = �n = e��in. Thetask is failitated by introduing the Hankel funtions H(a)� with � 2 f0; 1g,a 2 f1; 2g. Let x > 0. Then, as is well known ([5, p. 109℄, [10, p. 78℄)(2:2) K�(ix) = ��i2 e��i�=2H(2)� (x); K�(�ix) = �i2 e�i�=2H(1)� (x):



320 A. GuthmannUsing also K 00 = �K1, we an write, with x = 2�p=q,fn(e��in) = nK0(inx)K1(�inx) + nK1(inx)K0(�inx)= �2i4 n[H(2)0 (nx)H(1)1 (nx)�H(1)0 (nx)H(2)1 (nx)℄:Sine ddzH(a)0 = �H(a)1 , it is seen that the braketed term is nothing butthe Wro/nskian of the pair H(1)0 ;H(2)0 at nx, whih equals �4i=(�nx). Thusfn(�n) = q=(2p), and this onludes the proof of Theorem 3.We next show how to ontinue K(p; q; z) aross the ut from 0 to i1.To this end we use the formulae [10, p. 80℄(2:3) K�(ze�im) = (�1)m� [K�(z)� (�1)��imI�(z)℄;valid for all integers � and m. Henefn(ze�im) = �(�1)mzK0(�n)K1(�ze�im) + nK1(�n)K0(�ze�im)= fn(z)� �imgn(z);where(2:4) gn(z) = zK0(�n)I1(�z) + nK1(�n)I0(�z)and � = 2�ip=q. We have therefore proved part ofTheorem 4. Let p; q be positive integers, m be any integer , and z om-plex but not an integer. Then K(p; q; ze�im) = K(p; q; z) +mG(p; q; z) withG(p; q; z) = 2pq 1Xn=1 d(n)n2 � z2 [zK0(�n)I1(�z) + nK1(�n)I0(�z)℄; � = 2�ipq :The funtion G(p; q; �) is an even meromorphi funtion in the entire plane.Its only singularities are simple poles at z = �n (n positive integer) withresidue �d(n)=(2�in).P r o o f. The equations for K(p; q; ze�im) and G(p; q; z) follow immedi-ately from the formula for fn(ze�im) derived above. Sine K�(2�inp=q) =O(n�1=2) for n ! 1 and I� is an entire funtion, the analyti haraterof G(p; q; �) is also obvious. Its evenness follows from I�(�z) = (�1)�I�(z),provided � is an integer. To ompute the residues, observe thatgn(n) = nK0(�n)I1(�n) + nK1(�n)I0(�n)= �n[I0(�n)K 00(�n)� I 00(�n)K0(�n)℄= �n�� 1�n� = 1� = q2�ip ;and this ompletes the proof of the theorem.



Square of the Riemann zeta-funtion 321Another method to derive the formula of Theorem 4 is to use the de�-nition K(p; q; z) = 1+ip=q\ip=q K0(2�xz)x (x) dx:Assume temporarily �1 < Re(z) < 1. Then by (2.3),K(p; q; ze�im) = 1+ip=q\ip=q [K0(2�xz) � �imI0(2�xz)℄x (x) dx= K(p; q; z) � �im1+ip=q\ip=q I0(2�xz)x (x) dx:The last integral onverges absolutely in view of I0(w) = O(ejRe(w)j) and (x) = O(e�2�x). Now1+ip=q\ip=q I0(2�xz)x (x) dx = 1�2 1Xn=1 d(n)n�21+2�inp=q\2�inp=q uK0(u)I0� znu� du:These integrals an be omputed in muh the same way as those above, theresult being\uK0(u)I0(�u) du = (1� �2)�1u[K 00(u)I0(�u)� �K0(u)I 00(�u)℄:Hene (with � = 2�ip=q)1+ip=q\ip=q I0(2�xz)x (x) dx= 2ip�q 1Xn=1 d(n)n2 � z2 [zK0(�n)I 00(�z)� nK 00(�n)I0(�z)℄:Inserting this into the above representation for K(p; q; ze�im), we getK(p; q; ze�im) = K(p; q; z) +mG(p; q; z), whereG(p; q; z) = ��i1+ip=q\ip=q I0(2�xz)x (x) dx(2:5) = 2pq 1Xn=1 d(n)n2 � z2 [zK0(�n)I 00(�z) � nK 00(�n)I0(�z)℄;(2:6)whih oinides with the result of Theorem 4. In the last formula the re-strition �1 < Re(z) < 1 an be removed by absolute onvergene if z isnot equal to any integer.



322 A. GuthmannIn later appliations it will prove onvenient to introdue two furtherfuntions onneted with G(p; q; z). For this purpose we use the relations[10, pp. 74, 77℄ I0(z) = J0(z=i) = (1=2)[H(1)0 (z=i) +H(2)0 (z=i)℄. Then with(2:7) G(a)(p; q; z) = ��i2 ip=q+1\ip=q H(a)0 (2�xz=i)x (x) dx; a 2 f1; 2g;we learly have the deomposition(2:8) G(p; q; z) = ��i2 [G(1)(p; q; z) + G(2)(p; q; z)℄:Expliit formulas for G(a) an be obtained as usual. Inserting the de�nitionof  (x) yieldsG(a)(p; q; z) = 1�2 1Xn=1 d(n)n2 2�inp=q+1\2�inp=q uK0(u)H(a)0 �zuin� du:From the di�erential equation H(a)000 (z) + z�1H(a)00 (z) +H(a)0 (z) = 0 we get\uK0(u)H(a)0 (�u) du = (1 + �2)�1u[K 00(u)H(a)0 (�u)� �K0(u)H(a)00 (�u)℄:Therefore with � = 2�p=q,in�+1\in� uK0(u)H(a)0 �zuin� du= �i�n22(n2 � z2) [zH(2)0 (�n)H(a)1 (�z)� nH(2)1 (�n)H(a)0 (�z)℄;where again the relations (2.2) and K 00 = �K1, H(a)00 = �H(a)1 have beenemployed. This leads to the following representation:(2:9) G(a)(p; q; z) = ipq 1Xn=1 d(n)n2 � z2� [zH(2)0 (�n)H(a)1 (�z)� nH(2)1 (�n)H(a)0 (�z)℄; � = 2�pq :From H(a)0 (�n) = O(n�1=2) as n ! 1, it is easily dedued that bothfuntions are regular in the omplex plane ut along the negative real axis,exept for possible poles at z = n or z = e��in.In order to determine the behaviour at these points we de�nef (a)n (z) = zH(2)0 (�n)H(a)1 (�z)� nH(2)1 (�n)H(a)0 (�z):



Square of the Riemann zeta-funtion 323Then f (1)n (n) = n[H(2)0 (�n)H(1)1 (�n)�H(2)1 (�n)H(1)0 (�n)℄= n[H(1)0 (�n)H(2)00 (�n)�H(1)00 (�n)H(2)0 (�n)℄ = � 2iq�2p ;on using the Wro/nski determinant for H(1)0 ;H(2)0 ([5, p. 113℄, [10, p. 76℄).Conerning z = e��in we have [10, p. 75℄H(1)0 (e��iz) = 2H(1)0 (z) +H(2)0 (z); H(2)0 (e��iz) = �H(1)0 (z);and H(1)1 (e��iz) = �2H(1)1 (z) �H(2)1 (z); H(2)1 (e��iz) = H(1)1 (z):Consequently,f (1)n (e��in) = �n[�2H(2)0 (�n)H(1)1 (�n) + 2H(2)1 (�n)H(1)0 (�n)℄ = � 4iq�2p:Turning to f (2)n we learly have f (2)n (n) = 0. Moreover,f (2)n (e��in) = �n[H(2)0 (�n)H(1)1 (�n)�H(2)1 (�n)H(1)0 (�n)℄ = 2iq�2p :Colleting all these results we haveTheorem 5. The funtions G(a)(p; q; �) as de�ned in (2:7) are mero-morphi in the plane ut from 0 to �1. G(1) has a simple pole at z = nwith residue �d(n)=(�2n), and a simple pole at z = e��in with residue2d(n)=(�2n). The funtion G(2) is regular for �� < arg(z) < � and has asimple pole at z = e��in with residue �d(n)=(�2n).For many purposes it is neessary to have asymptoti estimates on thegrowth of the fundamental funtions K(p; q; z) and G(a)(p; q; z) as z ! 1.The most basi one is given byTheorem 6. Let p; q be positive integers, and Æ, A be positive real num-bers suh that p=q � A. Let z be omplex , r = jzj � 2, M = minfjz�nj;n 2Zg and assume M 6= 0. Then K(p; q; z) = e�2�izp=qK0(p; q; z), whereK0(p; q; �) is meromorphi in the plane ut from 0 to i1 and satis�esK0(p; q; z)� (1 +M�1)r�1=2 log r; �2� + Æ � arg(z) � � � Æ;uniformly in p; q; z. Similarly ,G(1)(p; q; z) = e2�izp=qG(1)0 (p; q; z); G(2)(p; q; z) = e�2�izp=qG(2)0 (p; q; z);whereG(1)0 (p; q; z)� (1 +M�1)r�1=2 log r; �� + Æ � arg(z) � 2� � Æ;G(2)0 (p; q; z)� (1 +M�1)r�1=2 log r; �2� + Æ � arg(z) � � � Æ;uniformly in p; q; z.



324 A. GuthmannP r o o f. Consider �rst K(p; q; z). WriteK�(z) = � �2z�1=2e�zK�� (z):ThenK�� is holomorphi in the plane ut from 0 to �1. Moreover, if jzj � 1,jarg(z)j � 3�2 �Æ, then, by the asymptoti expansion for the modi�ed Besselfuntion ([8, p. 250℄, [10, p. 202℄), K�� is bounded. This remains true ifwe assume jzj � A for some positive onstant A. This follows easily fromK0(z) = O(log z), K�(z) = O(z��) (� � 1) as z ! 0. Hene we an writeK��2�iz pq� = �4iz pq��1=2e�2�izp=qK���2�iz pq�;�2� + Æ � arg(z) � � � Æ; 2�jzjpq � 1:With the abbreviation � = 2�ip=q, Lemma 5 givesK(p; q; z) = � e�i=4� �pq�1=2z�1=2e�2�izp=q(2:10) � 1Xn=1 d(n)n2 � z2 [zK0(�n)K�1 (�z) + nK 00(�n)K�0 (�z)℄:Now we use K�(�n) = O((�n)�1=2). By the asymptoti formula above, thisis true for j�nj � 1 and, more generally, for all n � 1, sine j�nj � j�j �2�A > 0. Thus with 1n2 � z2 = 12z� 1n� z � 1n+ z�we get(2:11) 1Xn=1 d(n)n2 � z2 zK0(�n)K�1 (�z)� �pq��1=2 1Xn=1 d(n)n�1=2(jn� zj�1 + jn+ zj�1):Similarly, with 1n2 � z2 = 12n� 1n� z + 1n+ z�;we get(2:12) 1Xn=1 d(n)n2 � z2nK 00(�n)K�0 (�z)� �pq��1=2 1Xn=1 d(n)n�1=2(jn� zj�1 + jn+ zj�1):



Square of the Riemann zeta-funtion 325We are therefore redued to estimating the last in�nite series. It suÆeslearly to assume Re(z) � 0. Then jn+ zj � n, whih yieldsP d(n)n�1=2�jn+ zj � �2(3=2) = O(1). It remains to onsiderS(z) =X d(n)n�1=2jn� zj�1:With r = jzj we split the summation into three parts.For n � r �pr we have jn� zj � r � n � pr. ThusXn�r�pr d(n)n�1=2jn� zj�1 � r�1=2 Xn�r�pr d(n)n�1=2 � log r:Now onsider the interval r �pr < n � r +pr. Sine jn� zj �M always,we get Xr�pr<n�r+pr d(n)n�1=2jn� zj�1�M�1r�1=2 Xr�pr<n�r+pr d(n)�M�1 log r:Finally, onsider those n satisfying n > r+pr. Note �rst that the inequalityimplies r=n < (1 + r�1=2)�1 and thusjn� zj � n� r = n�1� rn� > n(1 + r1=2)�1 � n2pr :Consequently,Xn>r+pr d(n)n�1=2jn� zj�1 � r1=2 Xn>r+pr d(n)n�3=2 � log r:Thus we have shown S(z) � log r +M�1 log r, provided r � 2. Inserting(2.11) and (2.12) into (2.10) yields the desired assertion.Similar reasoning applies to G(1) and G(2) using the expliit formula (2.9).This proves the theorem.For ertain purposes [2℄ it is onvenient to use another representation ofthe funtions G(a)(p; q; �), whih is essentially a Laplae transform. To thisend de�ne(2:13)  �(x) = 1Xn=1 d(n)H(2)� (�n)e��nx; � = 2�pq ; Re(x) > 0;and(2:14) L�(z) = �1\0 e�zx �(x) dx; Re(z) < 1:It is easily seen that  �(x) = O(x�1=2 log x) as x! 0 and  �(x) = O(e��x)as x ! 1. Hene the integral onverges absolutely and uniformly forRe(z)� 1� ", where "> 0 is �xed. This implies that L� is holomorphi in



326 A. Guthmannthe left half plane Re(z) < 1. Its analyti ontinuation is found by insertingthe series (2.13) into (2.14) and integrating term by term, the result being(2:15) L�(z) = 1Xn=1 d(n)H(2)� (�n) 1n� z :From this expliit representation we onlude that L� extends to a mero-morphi funtion. The only singularities are simple poles at the positiveintegers z = n with residue �d(n)H(2)� (�n). We then haveTheorem 7. Let p; q be positive integers and de�ne  � and L� as in(2:13) and (2:14), respetively. Then for a 2 f1; 2g,G(a)(p; q; z) = ip2qH(a)1 (�z)[L0(z)� L0(�z)℄� ip2qH(a)0 (�z)[L1(z)� L1(�z)℄;where � = 2�p=q.P r o o f. Write (2.9) in the formG(a)(p; q; z) = ipq 1Xn=1 d(n)n2 � z2 zanH(a)1 (�z)� ipq 1Xn=1 d(n)n2 � z2nbnH(a)0 (�z);with an = H(2)0 (�n), bn = H(2)1 (�n). Note that an = O(n�1=2) and bn =O(n�1=2), provided � is �xed. Using1n2 � z2 = 12n� 1n� z + 1n+ z� = 12z� 1n� z � 1n+ z�;we obtainG(a)(p; q; z) = ipq H(a)1 (�z) 1Xn=1 d(n)an� 1n� z � 1n+ z�� ipq H(a)0 (�z) 1Xn=1 d(n)bn� 1n� z + 1n+ z�:Assuming �1 < Re(z) < 1, we an write1n� z = 1\0 e�u(n�z) du; 1n+ z = 1\0 e�u(n+z) du:HeneG(a)(p; q; z) = ip2qH(a)1 (�z) 1Xn=1 d(n)an�1\0 e�un+uz du�1\0 e�un�uz du�� ip2qH(a)0 (�z) 1Xn=1 d(n)bn�1\0 e�un+uz du+1\0 e�un�uz du�:Interhanging the order of integration and summation, whih is permitted byabsolute onvergene, immediately yields the laim. This proves Theorem 7.



Square of the Riemann zeta-funtion 3273. The Riemann{Siegel integral formula. From our previous in-vestigations we an now derive some new integral representations for �2(s).Thus assume � < 2, 0 < ' < �, and let p; q be positive integers. Using thereetion formula for the gamma funtion we obtain��s2��2 = 1� os �s2�2 ��2� s2 �2 = 2s�1��2(1� os �s)1\0 K0(z)z1�s dz:Let Re(�) > 0. Then substitute z = �u and turn the line of integrationabout the origin to get��s2��2 = 2s�1��2(1� os �s)�2�s1e�i'\0 K0(�u)u1�s du;provided jarg(�) � 'j < �=2. In partiular, let � = 2�x, where Re(x) � 0and Im(x) = p=q. Consequently, if 0 � ' � �=2,�s��s2��2 = 2(1 � os �s)x2�s1e�i'\0 K0(2�xu)u1�s du:Multiplying by  (x)xs�1 and integrating from ip=q to ip=q +1 yieldsT (s) = �s��s2��2 ip=q+1\ip=q  (x)xs�1 dx= 2(1� os �s) ip=q+1\ip=q x (x)1e�i'\0 K0(2�xu)u1�s du dx= 2(1� os �s)1e�i'\0 u1�s ip=q+1\ip=q xK0(2�xu) (x) dx du;where the interhange of the order of integration is permitted by absoluteonvergene of the double integral. Hene(3:1) T (s) = 2(1� os �s)1e�i'\0 K(p; q; u)u1�s du:In this equation even ' < � is allowed, sine K(p; q; u) = O(e�2�Re(iu)p=q)as u!1 (Theorem 6). Together with Theorem 2 this onstitutes our �rstanalogue of the Riemann{Siegel integral formula for �2(s).It is also possible to obtain formulas involving the funtions G(a) intro-dued in Setion 2. It will be seen that these representations are even moreelegant. First assume 3=2 < � < 2, and let L denote the path onsisting ofthe straight line segments from 0 to �1� i and from �1� i to �i�1. By



328 A. GuthmannTheorem 6 and (3.1) aboveT (s) = 2(1 � os �s)\LK(p; q; u)u1�s du:If we set z = e�iw, we obtainT (s) = 2(1� os �s)e�is \e�iLK(p; q; e��iz)z1�s dz= 2(1� os �s)e�is \e�iL[K(p; q; z) � G(p; q; z)℄z1�s dz:Sine K(p; q; �) is regular for �� < arg(z) < �=2 and deays suÆientlyfast as jzj ! 1 (Theorem 6), the integral involving K(p; q; �) an be turnedaround the origin, so that\e�iLK(p; q; z)z1�s dz = \LK(p; q; z)z1�s dz:This givesT (s) = 2(1� os �s)e�isn\LK(p; q; z)z1�s dz � \e�iLG(p; q; z)z1�s dzo= e�isT (s)� 2(1� os �s)e�is \e�iLG(p; q; z)z1�s dz;or, equivalently,(3:2) (e�is � 1)T (s) = 2(1� os �s)\LG(p; q; z)z1�s dz:Now onsider the integral I = \�G(p; q; z)z1�s dz;where � denotes the path from �1� i to e�3�i=4Æ (0 < Æ < 1), then alongthe irle of radius Æ around the origin from e�3�i=4Æ to e�i=2Æ, and �nallyfrom e�i=2Æ to 1 + i. By assumption 3=2 < � < 2. This implies thatthe integral onverges absolutely for Æ ! 0, as well as at in�nity, using, inaddition, the estimate of Theorem 6. Thus we may let Æ tend to 0, leadingto I = � 0\�1�i+1+i\0 �G(p; q; z)z1�s dz= �\LG(p; q; z)z1�s dz + \e�iLG(p; q; z)z1�s dz= (e��is � 1)\LG(p; q; z)z1�s dz;sine G(p; q;�z) = G(p; q; z). Inserting this expression into (3.2) yields



Square of the Riemann zeta-funtion 329(e�is � 1)T (s) = 2(1� os �s)(e��is � 1)�1I;i.e.(3:3) T (s) = \�G(p; q; z)z1�s dz = (1� e�is) i+1\0 G(p; q; z)z1�s dz:To ensure absolute onvergene, we had to assume 3=2 < � < 2, but itmight well be that these formulas ontinue to hold for a wider range of �. Amore detailed investigation of the properties of G(p; q; z) will perhaps revealthis property. It is, however, possible to employ another, more elementary,method. In fat, using the deomposition (2.8) we getT (s) = �2i (1� e�is) i+1\0 [G(1)(p; q; z) + G(2)(p; q; z)℄z1�s dz:By Theorem 6 we may modify the path of integration in suh a mannerthat Im(z) ! 1 for G(1) and Im(z) ! �1 for G(2). Thus for any ' with0 � ' < �=2,(3:4) T (s) = �2i (1� e�is)n1ei'\0 G(1)(p; q; z)z1�s dz+1e�i'\0 G(2)(p; q; z)z1�s dzo:Here it should be remembered that G(1)(p; q; �) is holomorphi in the upperhalf plane, and G(2)(p; q; �) is holomorphi in the right half plane Re(z) > 0(Theorem 5). Thus we have obtained the desired analyti ontinuation,as the integrals in (3.3) are absolutely onvergent for any � < 2. Sine�2(s) is given in terms of T (s) and an elementary funtion (Theorem 2),formulas (3.1), (3.3), and (3.4) an be onsidered as the desired analogue ofthe Riemann{Siegel formula.It is the last equation (3.4) that may serve as a starting point for thederivation of the asymptoti expansion of �2(s). To illustrate this point andto show the utility of our formulas, we indiate how to derive the approxi-mate funtional equation for �2(s) [3℄. For simpliity we assume p = q = 1.Let s = � + it, � � 0, t � 2. Obviously, the seond integral is suÆientlysmall, namely � e��t=4. Hene the main ontribution omes from the �rstone. After a suitable modi�ation of the path of integration, we arrive at(3:5) T (s) = Xn�t=(2�) d(n)n�s + �2i z1\z0 G(1)(1; 1; z)z1�s dz +O(e�t);where  > 0 is a ertain onstant, and z0;1 = (t=(2�))(1 � e�i=4=2). Wemodify the path so as to pass through the point z = N + 1=2, where N =
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