On the irreducibility of some polynomials in two variables

by
B. Brindza and Á. Pintér (Debrecen)

To the memory of Paul Erdös

Let $f(X)$ and $g(Y)$ be polynomials with integral coefficients in the single independent variables X and Y. The diophantine problem $f(x)=g(y)$ is strongly related to the absolute irreducibility and the genus of $f(X)-g(Y)$ as pointed out by Davenport, Lewis and Schinzel [DLS]:

Theorem A. Let $f(X)$ be of degree $n>1$ and $g(Y)$ of degree $m>1$. Let $D(\lambda)=\operatorname{disc}(f(x)+\lambda)$ and $E(\lambda)=\operatorname{disc}(g(y)+\lambda)$. Suppose there are at least $[n / 2]$ distinct roots of $D(\lambda)=0$ for which $E(\lambda) \neq 0$. Then $f(X)-g(Y)$ is irreducible over the complex field. Further, the genus of the equation $f(x)-g(y)=0$ is strictly positive except possibly when $m=2$ or $m=n=3$. Apart from these possible exceptions, the equation has at most a finite number of integral solutions.

The purpose of this note is to handle some special cases. For an integer $k>1$ we set

$$
f_{k}(X)=X(X+1) \ldots(X+k-1)
$$

For several scattered effective and ineffective results on the equation

$$
\begin{equation*}
f_{k}(x)=f_{l}(y) \quad \text { in integers } x, y \tag{1}
\end{equation*}
$$

we refer to $[\mathrm{BS}],[\mathrm{MB}],[\mathrm{SS}],[\mathrm{SST} 1],[\mathrm{SST} 2]$ and [Sh].
By using an algebraic number-theoretic argument we can guarantee the conditions of Theorem A in certain cases. Let I denote the set of integers k for which $f_{k}^{\prime}(X)$ is either irreducible or it has an irreducible factor of degree $k-2$. Our conjecture, based upon several numerical examples, is that I is the whole set of positive integers, more exactly, either $f_{k}^{\prime}(X)$ or $f_{k}^{\prime}(X) /(2 X+k-1)$ are irreducible depending on the parity of k. Applying

[^0]Eisenstein's theorem one can see that the primes belong to I and we have checked by computer that $\{1,2,3, \ldots, 30\} \subset I$.

TheOrem 1. If k and l are elements of I with $2<k<l$, then the polynomial $f_{k}(X)-f_{l}(Y)$ is irreducible (over $\left.\mathbb{C}\right)$ and (1) has only finitely many solutions.

Moreover, some simple inequalities lead to
Theorem 2. Let k and m be integers greater than 2. Then the equation

$$
f_{k}(x)=\binom{y}{m} \quad \text { in positive integers } x \text { and } y
$$

has only finitely many solutions.
Remark. Similar (effective) results in the cases $k=2, l>2 ; k=2$, $m>2$ and $m=2, k>2$ were obtained in [Y] and [SST2], respectively. These equations can be treated by Baker's method.

Proof of Theorem 1. The discriminant of the polynomial $f_{k}(X)+\lambda$ is denoted by $D_{k}(\lambda)$, i.e.

$$
D_{k}(\lambda)=C \prod_{f_{k}^{\prime}(x)=0}\left(f_{k}(x)+\lambda\right)
$$

(cf. [DLS]) where C is a non-zero absolute constant. To show that $D_{k}(\lambda)$ and $D_{l}(\lambda)$ have no common zeros, we take any irrational zeros α_{k} and β_{l} of f_{k}^{\prime} and f_{l}^{\prime}, respectively, and put

$$
\mathbb{K}=\mathbb{Q}\left(\alpha_{k}, \beta_{l}\right)
$$

The crucial step is that instead of the comparison of $f_{k}\left(\alpha_{k}\right)$ and $f_{l}\left(\beta_{l}\right)$ we show that their field norms with respect to \mathbb{K} are not equal. If $f_{k}^{\prime}(X)$ is irreducible, then a simple calculation yields

$$
N_{\mathbb{K} / \mathbb{Q}}\left(f_{k}\left(\alpha_{k}\right)\right)=\left(\frac{f_{k}^{\prime}(0) \ldots f_{k}^{\prime}(1-k)}{k^{k}}\right)^{\left[\mathbb{K}: \mathbb{Q}\left(\alpha_{k}\right)\right]}
$$

furthermore, if k is even then $f_{k}^{\prime}(X)$ is always divisible by the linear factor $2 X+k-1$ and in case $k \in I$, as was pointed out by A. Schinzel, we get

$$
N_{\mathbb{K} / \mathbb{Q}}\left(f_{k}\left(\alpha_{k}\right)\right)=\left(\frac{2^{k} f_{k}^{\prime}(0) \ldots f_{k}^{\prime}(1-k)}{(-1)^{k / 2} k^{k}(k-1)!!}\right)^{\left[\mathbb{K}: \mathbb{Q}\left(\alpha_{k}\right)\right]}
$$

According to these formulae, for an integer $n>2$, we write

$$
a_{n}= \begin{cases}\left|\frac{f_{n}^{\prime}(0) \ldots f_{n}^{\prime}(1-n)}{n^{n}}\right|^{1 /(n-1)} & \text { if } n \text { is odd } \\ \left|\frac{2^{n} f_{n}^{\prime}(0) \ldots f_{n}^{\prime}(1-n)}{n^{n}(n-1)!!}\right|^{1 /(n-2)} & \text { if } n \text { is even. }\end{cases}
$$

For convenience, set $b_{1}=b_{2}=1$ and

$$
b_{k}=\left|f_{k}^{\prime}(0) \ldots f_{k}^{\prime}(1-k)\right| \quad(k>2)
$$

Since

$$
f_{k+1}^{\prime}(i)=(i+k) f_{k}^{\prime}(i), \quad i=0,-1, \ldots, 1-k, \quad\left|f_{k+1}^{\prime}(-k)\right|=k!
$$

we have the recursion $b_{k+1}=b_{k}(k!)^{2}$, and therefore

$$
b_{k}=(2!\ldots(k-1)!)^{2} \quad(k>2) .
$$

To prove that the sequence $a_{n}, n=3,4, \ldots$, is strictly increasing we have two cases to distinguish depending on the parity of the indices. To illustrate the tendency, a_{3}, \ldots, a_{14} are listed below up to several digits:

$$
\begin{gathered}
a_{3}=0.38 \ldots, \quad a_{4}=1.7 \ldots, \quad a_{5}=2.2 \ldots, \quad a_{6}=18.1 \ldots, \\
a_{7}=30.1 \ldots, \quad a_{8}=362.9 \ldots, \quad a_{9}=711.9 \ldots, \quad a_{10}=11756.1 \ldots, \\
a_{11}=26250.9 \ldots, \quad a_{12}=244460.0 \ldots, \quad a_{13}=1.39 \cdot 10^{6}, \quad a_{14}=1.65 \cdot 10^{7} .
\end{gathered}
$$

If k is even then $a_{k}<a_{k+1}(k>2)$ is equivalent to

$$
b_{k}^{2 /(k(k-2))}<(k!)^{2 / k} k^{k /(k-2)}((k-1)!!)^{1 /(k-2)}(k+1)^{-(k+1) / k} 2^{-k /(k-2)}
$$

and in the sequel, we may assume that $k \geq 14$. By using induction we obtain

$$
\begin{equation*}
b_{k}^{2 /(k(k-2))}<\frac{k^{2}}{8} \quad(k \geq 9) . \tag{2}
\end{equation*}
$$

Indeed, supposing (2) and the recursion for b_{k+1} we have to show

$$
\begin{equation*}
\left(\frac{k^{2}}{8}\right)^{k(k-2)}(k!)^{4}<\left(\frac{(k+1)^{2}}{8}\right)^{k^{2}-1} \tag{3}
\end{equation*}
$$

Assuming (3) not true and applying $k!<\left(\frac{k+1}{2}\right)^{k}(k>2)$ we obtain

$$
\frac{8^{2 k-1} k^{2 k^{2}-4 k}}{2^{4 k}} \geq(k+1)^{2 k^{2}-4 k-2}
$$

and

$$
2.6^{2 k-4}>\frac{(k+1)^{2}}{8} 2^{2 k} \geq\left(1+\frac{1}{k}\right)^{2 k^{2}-4 k}
$$

which is false for $k \geq 14$. Therefore (3), and hence (2), is proved for $k \geq 14$.
On the other hand,

$$
\left(\frac{k}{e}\right)^{2}<(k!)^{2 / k}, \quad\left(\frac{k}{e}\right)^{1 / 2}<((k-1)!!)^{1 /(k-2)}
$$

and
$k^{k /(k-2)}(k+1)^{-(k+1) / k}>\left(\frac{k}{k+1}\right)^{k /(k-2)} \geq\left(\frac{14}{15}\right)^{k /(k-2)}>\left(\frac{14}{15}\right)^{7 / 6}>0.92$
imply

$$
k^{2} / 8<\frac{k^{2.5}}{29.5}<\left(\frac{k}{e}\right)^{1 / 2} \cdot 0.92 \cdot 2^{-7 / 6}\left(\frac{k}{e}\right)^{2} \quad(k \geq 14)
$$

hence $a_{k}<a_{k+1}$ is proved if k is even. The remaining case (k is odd) is simple. We get

$$
\begin{aligned}
a_{k} & =\left(\frac{b_{k}}{k^{k}}\right)^{1 /(k-1)}, \\
a_{k+1} & =\left(2^{k+1}(k!)^{2} b_{k}(k+1)^{-(k+1)}(k!!)^{-1}\right)^{1 /(k-1)} .
\end{aligned}
$$

One can observe that $k!>k!!$ and

$$
k^{-k}<\frac{(k+1) e}{(k+1)^{k+1}}<\frac{2^{k+1} k!}{(k+1)^{k+1}}
$$

and thus, Theorem 1 is proved.
Proof of Theorem 2. The exceptional case $(k, m)=(3,3)$ is covered by a rather general result of [S1] (cf. [ST, p. 122]).

Set

$$
A(k)= \begin{cases}\frac{(1 \cdot 3 \cdot \ldots \cdot(k-1))^{2}}{2^{k}} & \text { if } k \text { is even, } \\ \frac{k \cdot(1 \cdot 3 \cdot \ldots \cdot(k-2))^{2}}{2^{k}} & \text { if } k \text { is odd. }\end{cases}
$$

As a matter of fact we prove a little more. Namely, the equation

$$
a f_{k}(x)=b f_{m}(y) \quad \text { in positive integers } x \text { and } y
$$

with $a A(k)>b(m-1)$! has only finitely many solutions. To guarantee the conditions of Theorem A it is enough to show that

$$
\begin{equation*}
a \min _{f_{k}^{\prime}(x)=0}\left|f_{k}(x)\right|>b \max _{f_{m}^{\prime}(y)=0}\left|f_{m}(y)\right| . \tag{4}
\end{equation*}
$$

Obviously,

$$
b(m-1)!>b \max _{f_{m}^{\prime}(y)=0}\left|f_{m}(y)\right| .
$$

Since all the zeros of $f_{k}(x)$ are real, also all zeros of $f_{k}^{\prime}(x)$ are real and, by Rolle's theorem, they alternate with the zeros of $f_{k}(x)$. Elementary calculus yields
$a \min _{f_{k}^{\prime}(x)=0}\left|f_{k}(x)\right|>a \min \left(\left|f_{k}\left(-\frac{1}{2}\right)\right|,\left|f_{k}\left(-\frac{3}{2}\right)\right|, \ldots,\left|f_{k}\left(-\frac{2 k-3}{2}\right)\right|\right)$.

Since

$$
\begin{aligned}
a \cdot\left|f_{k}\left(-\frac{2 j-1}{2}\right)\right| & =\frac{(2(k-j)-1)!!(2 j-1)!!}{2^{k}} \\
& =\frac{a \cdot 1 \cdot 3 \cdot \ldots \cdot(2 j-1) \cdot 1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 k-(2 j+1))}{2^{k}} \\
& \geq a \cdot A(k) \quad(j=1, \ldots, k-1)
\end{aligned}
$$

(4) is proved.

References

[BS] R. Balasubramanian and T. N. Shorey, On the equation $f(x+1) \ldots f(x+$ $k)=f(y+1) \ldots f(y+m k)$, Indag. Math. (N.S.) 4 (1993), 257-267.
[DLS] H. Davenport, D. J. Lewis and A. Schinzel, Equations of the form $f(x)=$ $g(y)$, Quart. J. Math. 12 (1961), 304-312.
[MB] R. A. MacLeod and I. Barrodale, On equal products of consecutive integers, Canad. Math. Bull. 13 (1970), 255-259.
[SS] N. Saradha and T. N. Shorey, The equations $(x+1) \ldots(x+k)=(y+1) \ldots(y+$ $m k$) with $m=3,4$, Indag. Math. (N.S.) 2 (1991), 489-510.
[SST1] N. Saradha, T. N. Shorey and R. Tijdeman, On the equation $x(x+1) \ldots$ $\ldots(x+k-1)=y(y+d) \ldots(y+(m k-1) d), m=1,2$, Acta Arith. 71 (1995), 181-196.
[SST2] —, 一, 一, On arithmetic progressions with equal products, ibid. 68 (1994), 89100.
[S1] A. Schinzel, An improvement of Runge's theorem on diophantine equations, Comment. Pontific. Acad. Sci. 2 (1969), no. 20, 1-9.
[S2] -, Reducibility of polynomials of the form $f(x)-g(y)$, Colloq. Math. 18 (1967), 213-218.
[Sh] T. N. Shorey, On a conjecture that a product of k consecutive positive integers is never equal to a product of $m k$ consecutive positive integers except for $8 \cdot 9 \cdot 10=6$! and related questions, in: Number Theory (Paris, 1992-93), London Math. Soc. Lecture Note Ser. 215, Cambridge Univ. Press, Cambridge, 1995, 231-244.
[ST] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Univ. Press, Cambridge, 1986.
[Y] P. Z. Yuan, On a special Diophantine equation $a\binom{x}{n}=b y^{r}+c$, Publ. Math. Debrecen 44 (1994), 137-143.

Mathematical Institute of Kossuth Lajos University
P.O. Box 12

H-4010 Debrecen, Hungary
E-mail: apinter@math.klte.hu

[^0]: 1991 Mathematics Subject Classification: Primary 11D41.
 Research supported in part by the Hungarian Academy of Sciences, by Grants 16975, 19479 and 23992 from the Hungarian National Foundation for Scientific Research.

