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Polynomials with nontrivial relations between their roots

by

John D. Dixon (Ottawa, Ont.)

1. Introduction. Consider an irreducible polynomial f(X) over a
field K. We are interested in situations where some distinct roots α1, . . . , αk

of f(X) satisfy a multiplicative relation of the form αm1
1 . . . αmk

k = c where
m1, . . . ,mk are nonzero integers and c ∈ K. In Section 4 we also look at
additive relations. As we might expect, such relations imply special condi-
tions on the Galois group of the polynomial and sometimes on the form of
f(X) itself.

The problem of when relations like these hold arises naturally in the
study of polynomials; see, for example, the papers [5]–[6] of Smyth, [4] of
Ferguson and [3] of Drmota and Ska/lba. The object of the present paper
is to show how representation theory of finite groups can be used to solve
some of these questions.

Throughout this paper K will denote a subfield of C (although some of
the results can be extended to other fields). If Ω is the set of roots in C of
a polynomial f(X) ∈ K[X], then G := Gal(K(Ω)/K) denotes the Galois
group of the splitting field of f(X) over K. The group G acts on the set
Ω and is transitive on Ω if and only if f(X) is irreducible. Moreover, G
acts primitively on Ω if and only if the stabilizer Gα of a root α ∈ Ω is a
maximal subgroup; by elementary Galois theory the latter is equivalent to
the condition that there is no field lying properly between K and K(α).

We shall be studying connections between the Galois group G and its ac-
tion on Ω and the existence of relations between the roots of f(X). Lemma 1
of [6] shows that the existence of a nontrivial relation between the roots im-
plies that G does not act as the symmetric group on Ω (see Theorem 1 below
for a significant generalization). Since “almost all” polynomials over Q have
the full symmetric group as their Galois group, this proves the unsurprising
fact that polynomials with nontrivial relations between their roots are quite
special and are restricted in their possible Galois groups. On the other hand,

1991 Mathematics Subject Classification: 12E10, 12F12.

[293]



294 J. D. Dixon

simple examples show that knowledge of the Galois group by itself does not
permit us to deduce the existence of a nontrivial relation.

In Section 2 we introduce the relation modules corresponding to mul-
tiplicative relations between roots of f(X) and derive some of the conse-
quences of the existence of nontrivial relations in terms of the permutation
action of G on Ω. Such relation modules have been studied in rather differ-
ent forms by other authors in the papers [3]–[6]. In Section 3 we show how
the linear action of G can also be used, and use it to generalize the main
theorem of [3]. Finally, in Section 4 we discuss some of the analogous results
for additive relations.

2. Module of relations. Let f(X) ∈ K[X] be an irreducible polyno-
mial of degree n > 1 where K is a subfield of C, let Ω ⊆ C be the set of roots
of f(X) and put G := Gal(K(Ω)/K). For any commutative ring L with
unity, LΩ will denote the L-module consisting of all n-tuples of elements
of L indexed by the elements of Ω. For each α ∈ Ω, eα ∈ LΩ denotes the
αth standard basis element, namely, an n-tuple with 1 in the αth position
and 0’s elsewhere. Then G has a natural L-linear action on LΩ defined by
eαx := eβ when x ∈ G maps α onto β. This defines LΩ as an LG-module.
We put e :=

∑
eα, and note that eLG is an LG-submodule of LΩ .

First consider the special case where L = Z and put M := ZΩ . Then
we can define two submodules modules R and R1 as follows. An element∑

mαeα from M (with the mα ∈ Z) lies in R if and only if
∏

αmα ∈ K;
and it lies in R1 if and only if

∏
αmα = 1. Note that e ∈ R; the relations

(
∏

α)m ∈ K corresponding to me will be called trivial relations.
Next consider the case where L is a subfield of R. We use the standard

notation S⊥ to denote the orthogonal complement in LΩ of a subset S ⊆ LΩ

with respect to the usual dot product u · v. Recall that S⊥ is always an
L-subspace of LΩ , and that LΩ = S ⊕ S⊥ whenever S is an L-subspace.
Furthermore, if S is mapped into itself by all elements of G, then S⊥ is
clearly an LG-submodule. In particular, LΩ = eLG ⊕ (LΩ)0 as a direct
sum of LG-submodules where (LΩ)0 := (eLG)⊥ consists of the elements in
LΩ whose components sum to 0. A simple calculation shows that (LΩ)0 is
spanned by the vectors eα − eβ (α, β ∈ Ω).

In the special case where L = Q we have V := QΩ = Q ⊗Z M with
W := Q ⊗ R and W1 := Q ⊗ R1 as QG-submodules of V . Note that, if
v :=

∑
mαeα ∈ M , then v ∈ W (respectively, v ∈ W1) if and only if, for

some integer d ≥ 1, the dth power of
∏

αmα lies in K (resp. equals 1).
Using the notation above, the subspace V0 is equal to (eQG)⊥.

Lemma 1. With the notation above:

(i) W ∩ V0 = W1 ∩ V0;
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(ii) W = eQG + W1 and so W = W1 if and only if
∏

α is a root of
unity ;

(iii) W = V if and only if , for some integer m and some c ∈ K, f(X)
divides Xm − c.

P r o o f. (i) Suppose that v :=
∑

mαeα ∈ W ∩V0∩M . Then
∑

mα = 0
and the dth power of c :=

∏
αmα lies in K for some d ≥ 1. Now take the

dth power of both sides of this last equation. Then applying x ∈ G to both
sides of the new equation and forming the product over G we get cd|G| = 1
(using transitivity of G and the condition

∑
mα = 0). Hence v ∈ W1. Since

W ∩V0 = Q⊗ (W ∩V0∩M), this shows that W ∩V0 ⊆ W1∩V0. The reverse
inequality is trivial so (i) is proved.

(ii) Since e ∈ W and V = eQG ⊕ V0, therefore W = eQG + W1 by (i).
Hence W = W1 if and only if e ∈ W1. As we saw above this is equivalent to
the condition that

∏
α is a root of unity.

(iii) Suppose that f(X) divides Xm−c. Then αm = c for all α ∈ Ω, and
so αmβ−m = 1 for all α, β ∈ Ω. Hence all the vectors of the form eα− eβ lie
in W1. As noted above, these vectors span V0, and so W ⊇ eQG + V0 = V
by (ii). Conversely, if W = V and α ∈ Ω, then eα ∈ W and so there exists
an integer m and c ∈ K such that αm − c = 0. Since f(X) is irreducible,
this implies that f(X) divides Xm − c.

The following result is a classical (and easily proved) result from Galois
theory (see, for example, [8], Sect. 55).

Lemma 2. Consider a (not necessarily irreducible) polynomial of the form
h(X) := Xm − c ∈ K[X]. Let α be a root of h(X) and ω be a primitive
mth root of 1. Then the splitting field for h(X) over K is E := K(α, ω),
and the Galois group H := Gal(E/K) has a cyclic normal subgroup N :=
Gal(E/K(ω)) of order dividing m with a factor group H/N ∼= Gal(K(ω)/K)
which is abelian. In particular , the derived subgroup H ′ ≤ N , and so H ′ is
also cyclic.

Lemma 3. Consider α, β ∈ Ω with α 6= β. Then the following are
equivalent :

(i) eα − eβ ∈ W ;
(ii) eα − eβ ∈ W1;
(iii) α/β is an mth root of 1 for some integer m ≥ 1.

Moreover , condition (iii) holds for some pair of roots α 6= β if and only
if f(X) | g(Xm) for some monic irreducible g(X) ∈ K[X] of degree smaller
than n. In the latter case, g(X) is unique and its degree divides n.

P r o o f. (ii) and (iii) are equivalent by the observations made when
we defined W1, and (ii) is equivalent to (i) because W1 ∩ V0 = W ∩ V0 by
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Lemma 1. It remains to prove the assertions in the final paragraph. Fix
some root α of f(X), and let g(X) be the minimal polynomial for αm over K.
Since f(X) is irreducible, and α is a root of g(Xm), therefore f(X) | g(Xm).
There is only one monic irreducible polynomial g(X) satisfying the condition
f(X) | g(Xm) since the latter implies that g(X) has αm as a root. Now
consider the equivalence relation ∼ on Ω defined by: γ ∼ δ if and only
if γm = δm. The ∼-equivalence classes clearly form a set of blocks of
imprimitivity for G, and so the degree d of g(X) (which equals the number
of classes) must divide |Ω| = n. Moreover, d < n if and only if each class
has size at least 2, and the latter is equivalent to (iii) for some α, β.

R e m a r k. A classical theorem of Capelli (see, for example, [7], p. 288)
states that a composite g(h(X)) of polynomials g(X), h(X) ∈ K[X] is irre-
ducible over K if and only if: (a) g(X) is irreducible over K; and (b) h(X)−γ
is irreducible over K(γ) for each root γ of g(X). Hence in Lemma 3 we have:
f(X) = g(Xm) ⇒ g(Xm) is irreducible over K ⇒ Xm−γ is irreducible over
K(γ) for each root γ of g(X). Thus the cases where f(X) 6= g(Xm) occur
precisely when there exists θ ∈ C such that g(X) is the minimal polynomial
for θm over K but the degree of θ over K(θm) is not m. For example, take
K = Q and θ = 1+

√
2, so θ3 = 7+5

√
2. The minimal polynomials for θ and

θ3 over Q are h(X) = X2− 2X − 1 and g(X) = X2− 14X − 1, respectively,
and g(X3) = h(X)f(X) where f(X) = X4 + 2X3 + 5X2 − 2X + 1. The
polynomial f(X) is irreducible and has two pairs of complex conjugate roots
whose ratios are cube roots of 1. Its Galois group is the Klein 4-group. In-
cidentally the ratio of the two roots of h(X) is not a root of 1 (and of course
deg g(X) is not less than deg h(X)).

Theorem 1. Suppose that f(X) ∈ K[X] is monic irreducible and that
the Galois group G of f(X) acts primitively on the set Ω of roots of f(X).

(i) Suppose that some pair of distinct roots of f(X) has a ratio which
is an mth root of unity. Then the ratio of every pair of roots is an mth root
of unity , f(X) |Xm− c for some c ∈ K, the degree of f(X) is a prime, and
G is solvable.

(ii) If G acts 2-transitively on Ω and there is any nontrivial multiplica-
tive relation between the roots of f(X) then, for some prime p, f(X) has
degree p and G is isomorphic to the affine group of order p(p−1). Moreover ,
if K ⊆ R and deg f(X) > 2, then f(X) has the form Xp−b for some b ∈ K.

P r o o f. (i) Since G acts primitively on Ω, it follows from the last para-
graph of the proof of Lemma 3 that all the mth powers γm (γ∈Ω) are equal
and so the polynomial g(X) defined there has degree 1. Hence the lemma
shows that f(X) |Xm−c for some c ∈ K. Since the Galois group G of f(X)
is a factor group of the Galois group of the splitting field of Xm− c over K,
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Lemma 2 now shows that G is solvable and its derived group G′ is cyclic.
On the other hand, a solvable primitive permutation group always has prime
power degree, say pk for some prime p, and has a unique minimal normal
subgroup which is elementary abelian of order pk (see [2], Theorem 4.3B).
Since G acts primitively (and faithfully) as a permutation group of degree
|Ω| and G′ is cyclic, this shows that |Ω| = pk with either k = 1 or G′ = 1.
In the latter case G is a primitive abelian group, which again only occurs
when its degree is prime. Thus in either case we conclude that G is solvable
and that deg f(X) = |Ω| is equal to a prime p.

(ii) Because G is 2-transitive, the QG-module V0 defined above is irre-
ducible; indeed, it is absolutely irreducible (see [1], Sect. 32B). Since there is
a nontrivial relation between the roots of f(X), W properly contains eQG,
and so W = V by irreducibility. Thus eα − eβ ∈ W for all α, β ∈ Ω. Since
any 2-transitive group is primitive, (i) and Lemma 3 now show that |Ω| = p
for some prime p and G acts faithfully as a solvable 2-transitive group on
Ω. Hence G is isomorphic to the affine group of order p(p − 1) (see [2],
Sect. 3.5).

Finally, if K ⊆ R and deg f(x) > 2, then p is odd and f(X) has a real
root α. The other roots of f(X) differ from α by a factor which is a root
of unity, so all roots of f(X) have the same absolute value. There are p
roots, f(X) is monic and K is real; therefore b := αp = ±f(0) ∈ K. Thus
f(X) |Xp − b by the irreducibility of f(X). Since f(X) is monic of degree
p we conclude f(X) = Xp − b as claimed.

R e m a r k. The condition that deg f(X) > 2 in the last assertion of
Theorem 1 cannot be dropped. There are polynomials of degree 2 not of the
form X2−c whose roots have a ratio which is a root of unity. Indeed, suppose
that f(X) has degree 2 and has roots α and αω where ω is a primitive mth
root of 1 for some m ≥ 2. When m = 2, f(X) has the form X2 − c, but
suppose that m > 2. Then f(X) = X2 + aX + b for some a, b ∈ K with
a 6= 0 such that a2/b = ω−1 + 2 + ω is an algebraic integer lying in K. In
the special case where K = Q, this shows that k := a2/b must be one of
the integers 1, 2 or 3, corresponding respectively to the cases where ω is a
primitive mth root of unity for m = 3, 4 or 6. Conversely, for these values
of k, the ratio of the two roots of f(X) = X2 + aX + a2/k is an mth root
of 1. In general, when K is an arbitrary field, the quadratics which can arise
depend on which roots of unity have degree at most 2 over K.

Theorem 2. Suppose that an irreducible polynomial f(X) ∈ Z[X] has
degree n which is not prime and that the Galois group G of f(X) acts primi-
tively on the set Ω of roots of f(X). If the roots of f(X) satisfy a nontrivial
relation, then f(X) is reducible modulo p for each prime p not dividing the
leading coefficient of f(X).
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P r o o f. Since n is not prime, Theorem 1 shows that the Galois group G
of f(X) over Q is not 2-transitive on Ω. On the other hand, G is primitive
on Ω by hypothesis. Now a classical theorem of Schur (see [9], Theorem 25.4,
or [2], Sect. 3.5) shows that a permutation group of degree n which contains
an n-cycle is either 2-transitive or imprimitive. Hence G cannot contain
an n-cycle in its action on Ω, and so by a theorem of Frobenius (see [8],
Sect. 61), f(X) is reducible modulo p for all primes p not dividing the
leading coefficient of f(X).

Lemma 4. Suppose that L is a subfield of R and that U is an LG-
submodule of LΩ. If none of the vectors eαβ := eα − eβ (α, β ∈ Ω with
α 6= β) lies in U , then U⊥ contains a vector whose entries are all distinct.

P r o o f. For all α, β ∈ Ω with α 6= β we define Uαβ := (eαβLG +
U)⊥ = e⊥αβ ∩ U⊥. Then Uαβ is the set of all vectors in U⊥ whose αth and
βth components are equal, and Uαβ is a proper L-subspace of U⊥ because
eαβ 6∈ U . Since a vector space over an infinite field cannot be written as a
union of a finite number of proper subspaces, there exists w ∈ U⊥ such that
w is not contained in any Uαβ and such a vector has distinct components.

This gives a short alternative proof of a theorem given in [4] and [6].

Theorem 3. Let f(X) ∈ K[X] be irreducible, and let α1, . . . , αr be
distinct roots of f(X) with r ≥ 3. If there is a nontrivial relation

∏r
i=1 αmi

i ∈
K for some nonzero integers mi with mj ≥

∑
i 6=j |mi| for some j, then the

ratio of some pair of distinct roots of f(X) is a root of unity.

P r o o f. Suppose that no pair of distinct roots has a ratio which is a root
of unity. Then Lemma 3 shows that none of the vectors eα − eβ (α, β ∈ Ω
with α 6= β) lies in W , and so Lemma 4 shows that W⊥ contains a vector
v all of whose components are distinct. Since W⊥ is G-invariant, and G
acts transitively on Ω, we may choose x ∈ G so that the component of vx
with largest absolute value is the (αj)th component (there may be two such
components, in which case choose one). On the other hand, the hypothesis
shows that u :=

∑r
i=1 mieαi

∈ W so u ·(vx) = 0. Since r ≥ 3, the inequality
on the mi now gives an immediate contradiction.

R e m a r k. A similar proof goes through when r = 2 except when
m1 = m2. In the latter case there are genuine exceptions to the theorem;
for example, the two roots of the polynomial X2 − 3X + 1 have product 1
but their ratio is not a root of 1.

3. Linear representations of the Galois group. We continue the
notation of the previous section, but now we consider in more detail the
linear representation of G on the vector space LΩ where L is a subfield of C.
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Fix δ ∈ Ω and note that Gal(K(Ω)/K(δ)) is equal to the point stabilizer
Gδ of δ in the action of G on Ω.

Lemma 5 (L = Q). Suppose that the roots of f(X) are not roots of unity.
Consider the action of an element c in the group ring QG on V := QΩ. If
(eδ)c ∈ W (as defined in Section 2), then c is not invertible as a Q-linear
transformation on V/W . Consequently , %(c) is singular for some irreducible
matrix representation % of G over C. Moreover , % may be chosen as an
irreducible constituent of the representation of G obtained by inducing from
the trivial representation of Gδ.

P r o o f. Since δ is not a root of unity, eδ 6∈ W . Thus W +eδ is a nonzero
vector in V/W and the hypothesis shows that it lies in the null space of
c. Hence %(c) must be singular for one of the irreducible constituents of
a matrix representation of G afforded by V/W . The final assertion of the
lemma follows from the fact that the permutation module V can be obtained
by induction from the trivial representation of the point stabilizer Gδ.

As a simple application of Lemma 5 we have the following result.

Theorem 4. Let f(X) ∈ K[X] be an irreducible polynomial whose set Ω
of roots does not consist of roots of unity. Suppose that the Galois group G
can be written G = GδC for some δ ∈ Ω where C := 〈x〉 is a cyclic subgroup
of order n := |Ω|. Then we can enumerate the elements of Ω so that δi is
the image of δ under xi (i = 0, 1, . . . , n− 1). If

∏n−1
i=0 δmi

i ∈ K is a relation
on Ω, then the polynomial

∑n−1
i=0 miX

i must vanish at some nth root of 1.

P r o o f. The hypothesis shows that eδ(
∑

mix
i) =

∑
mieδi

∈ W . Then
Lemma 5 shows that %(

∑
mix

i) =
∑

mi%(x)i is singular for some irre-
ducible matrix representation % of G. Since x has order n, %(x) is similar
to a diagonal matrix whose nonzero entries are nth roots of 1. Thus the
singularity condition shows that

∑
miζ

i = 0 for some ζ where ζ is an nth
root of 1.

A similar but more complicated argument enables us to prove a gener-
alization of the main theorem of Drmota and Ska/lba in [3]. (The methods
in [3] do not seem to generalize easily from the case where the Galois group
G is an abelian group and K = Q.)

Theorem 5. Let f(X) ∈ K[X] be an irreducible polynomial whose set Ω
of roots does not consist of roots of unity. Suppose that the Galois group G
of f(X) can be written in the form G = GδM for some δ ∈ Ω where M is
either abelian or contains a normal abelian subgroup of index 2. If there are
distinct α, β, γ ∈ Ω such that αβγ−1 ∈ K, then |M | is divisible by either 6
or 10; moreover , when M is abelian, |M | is divisible by 6.
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P r o o f. Since G is transitive on Ω and G = GδM , therefore M is also
transitive. Define F to be the subfield of K(Ω) which is fixed by M . Then
f(X) is still irreducible over F by the transitivity of M = Gal(K(Ω)/F ).
Thus without loss in generality we can replace K by F and G by M , and so
(by a change in notation) assume that G itself is abelian or has an abelian
normal subgroup of index 2. Put g := |G|. We have to show that either 6
or 10 divides g, and that 6 divides g when G is abelian.

Because G acts transitively on Ω there is no loss in generality in assuming
that γ = δ. Then αβδ−1 ∈ K implies that for some x, y ∈ G we have eδ(1−
x− y) ∈ W . Lemma 5 now shows that for some irreducible representation %
of G, %(1−x−y) is singular. If G is abelian, then every irreducible represen-
tation has degree 1. On the other hand, if G has a normal abelian subgroup
A of index 2, then a simple application of the Frobenius reciprocity theorem
shows that each representation of G of degree > 1 can be induced from an
irreducible representation (of degree 1) of A and so is a monomial represen-
tation of degree 2 (see [1], Sect. 38, Ex. 8). We consider the two cases for %.

If % has degree 1, then the condition that %(1−x− y) is singular implies
that 1 − ξ − η = 0 where ξ and η are gth roots of 1. This in turn implies
that 0, 1 and ξ are vertices of an equilateral triangle in the complex plane
and so ξ = ± exp(2πi/6). Hence 6 | g. In particular, 6 always divides g in
the abelian case.

If % is monomial of degree 2 then %(x) and %(y) can each be written in
one of the forms

[
µ 0

0 ν

]
or

[
0 µ

ν 0

]
where µ and ν are (g/2)th roots of 1 since

g/2 = |A|. If both %(x) and %(y) are diagonal then the result follows at
once from the case of degree 1 proved above, so suppose that at least one is
not diagonal. In the latter case the condition det %(1 − x − y) = 0 reduces
either to a condition of the form (1 − ξ1)(1 − ξ2) = η1η2 or to one of the
form 1 = (ξ1 + η1)(ξ2 + η2) where ξ1, ξ2, η1, η2 are (g/2)th roots of 1. In
the first of these cases we replace ξi by ζi (i = 1, 2) and η1η2 by θ; and
in the second case we replace −ξiη

−1
i by ζi (i = 1, 2) and (η1η2)−1 by θ.

Then in either case we obtain a relation (1 − ζ1)(1 − ζ2) = θ where ζ1,
ζ2 and θ are all gth roots of 1. If ζ1 is a primitive dth root of 1 (where
d | g), then a suitable field automorphism applied to the last relation gives
a relation of the form (1 − ζ ′1)(1 − ζ ′2) = θ′ where ζ ′1 = exp(2πi/d), ζ ′2 =
exp(2πri/s) for some integers r and s, and d and s divide g. This implies
that 4 sin(π/d) sin(πr/s) = |(1−ζ ′1)(1−ζ ′2)| = 1; in particular, 4 sin(π/d) ≥ 1
and so d ≤ 12. A similar argument (with a different field automorphism)
shows that s ≤ 12. Finally, examination of the 12 possible cases for d shows
that only the following cases can actually arise: (1/d, r/s) = (1/12, 5/12),
(1/10, 3/10) and (1/6, 1/6). Thus in all cases g is divisible by either 6 or 10
and the proof of the theorem is complete.
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4. Additive relations. Many of the results obtained in Sections 2
and 3 for multiplicative relations can be proved also for additive relations.
As before, let K be an arbitrary subfield of C, Ω be the set of roots of an
irreducible polynomial f(X) ∈ K[X] and G be the Galois group of f(X) over
K. We define U and U1 to be the KG-submodules of KΩ consisting of all∑

cαeα in KΩ such that
∑

cαα ∈ K (or
∑

cαα = 0, respectively). Clearly
U and U1 cannot contain any eγ when deg f(X) ≥ 2. Nor can they contain
eγ−eδ for any γ 6= δ. Indeed, otherwise c := γ−δ is a nonzero element of K;
this implies that f(X + c) = f(X) and then f(0) = f(c) = f(2c) = . . . leads
to a contradiction. On the other hand, we always have e ∈ U corresponding
to the trivial relation

∑
α ∈ K; we say that the roots of f(X) satisfy

nontrivial K-linear relations if U 6= eKG.
We have the following additive analogues of our theorems for multiplica-

tive relations. The proofs are very similar and are omitted.

Theorem 1′. Suppose that f(X) ∈ K[X] is irreducible and its Galois
group acts 2-transitively on the set of roots. Then the roots of f(X) cannot
satisfy a nontrivial K-linear relation.

The exact analogue of Theorem 2 holds for Q-linear relations. In the
analogue of Theorem 3 we must restrict K to being real in order to apply
Lemma 4 (see [5] and [6] for similar results).

Theorem 3′. Suppose that K ⊆ R. Let f(X) ∈ K[X] be irreducible,
and let α1, . . . , αr be distinct roots of f(X) with r ≥ 3. Then there is no
nontrivial K-linear relation

∑r
i=1 ciαi ∈ K with all ci nonzero in which

cj ≥
∑

i 6=j |ci| for some j.

Corollary. Suppose that f(X) ∈ K[X] is irreducible and K ⊆ R.
Then:

(i) no root α of f(X) lies in the K-convex hull of the remaining roots;
(ii) if α, β and γ are distinct roots of f(X) and θ := (α−β)/(β−γ) ∈ R,

then f(X) is reducible over K(θ).

P r o o f. (i) This follows immediately from the theorem taking
∑

i 6=j ci =
1 = −cj with ci > 0 for all i 6= j.

(ii) Since α − (1 + θ)β + θγ = 0, therefore α, β and γ are collinear in
the complex plane, and the root which lies between the other two is in the
K(θ)-convex hull of those two. Thus (i) shows that f(X) is not irreducible
over K(θ).

R e m a r k. The condition that K (respectively, K(θ)) is a real field
cannot be dropped in the preceding theorem and its corollary. For example,
let f(X) = Xp − 2 where p is an odd prime. The roots of f(X) are γωi

(i = 0, 1, . . . , p− 1) where γ := p
√

2 and ω is a primitive pth root of 1. Put
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K := Q(ω). We claim f(X) is not reducible over Q(ω). Indeed, f(X) is
irreducible over Q by the Eisenstein criterion, so [Q(γ) : Q] = p. Thus
p | [K(γ) : Q] by the tower theorem and [K(γ) : K] ≤ p. Since p - [K : Q],
we conclude that [K(γ) : K] = p and so f(X) is irreducible over K. Since
(γω2 − γω)/(γω − γ) = ω ∈ K, this yields a counterexample to both parts
of the corollary when the condition of reality is dropped.

Lemma 5 has the following analogue.

Lemma 5′. Suppose that (eδ)c ∈ U for some c ∈ KG. Then there is an
irreducible matrix representation % of G over C such that %(c) is singular ;
% may be chosen as an irreducible constituent of the representation of G
induced from the trivial representation of Gδ.

This leads to straightforward analogues of Theorems 4 and 5 for additive
relations.
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