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The ternary Goldbach problem in arithmetic progressions
by

JIANYA L1u and TAO ZHAN (Jinan)

For a large odd integer N and a positive integer r, define b = (b1, by, b3)
and

B(N,r)={beN:1<b; <r (bj,r)=1and by +by+bs =N (mod r)}.
It is known that

(P—1)p-2) 7 P*—3p+3
#B(N.r) = [[ —— 1] ——
p p
plr plr
pIN ptN
Let € > 0 be arbitrary and R = N'/8=¢. We prove that for all positive
integers r < R, with at most O(Rlog_AN) exceptions, the Diophantine
equation
N =p1 +p2 +ps,
pj=b; (modr), j=123,
with prime variables is solvable whenever b € B(N,r), where A > 0 is
arbitrary.

1. Introduction and statement of results. For given odd integers
N we shall be concerned with the solubility of the equation

(1.1) N =p1 + ps+ p3

in prime variables p;; this is known as the ternary Goldbach problem. Hardy
and Littlewood [HL] proved in 1923 that subject to the generalized Riemann
hypothesis (GRH hereafter) the number J(N) of solutions of (1.1) satisfies
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an asymptotic formula

N2
—(1 +0(1)).
210g3N( (1))

Here o(N) is the singular series, and one has o(N) > 1 for odd N. In 1937
Vinogradov [Vi] obtained for the first time a nontrivial estimate of expo-
nential sums over primes, and managed to establish (1.2) unconditionally.

Since 1923, many authors have considered the corresponding problems
with restrictive conditions posed on the three prime variables in (1.1). One
of these generalizations was given by Rademacher [R] in 1926. For a positive
integer r, define b = (b1, b, b3) and
(1.3)  B(N,r)

={beN:1<b;<r (bj,r)=1and by +by+b3 =N (mod r)}.

Then, according to Liu and Tsang [LT],

(P=1)p—-2) yp p*—3p+3
1.4 #B(N,r) =2 [ L2271 2 =P
(1.4) (N,7) [ ] pe p|T| po

pIN ptN

(1.2) J(N) = o(N)

Rademacher [R] showed, subject to GRH, that if r is a fixed positive integer,
and J(N;r,b) the number of solutions of the equation

(1.5) N =p1+p2 +ps,
: pj =b; (modr), j=123,
then we have, for odd N and all b € B(N,r),

2
1.6 J(N;r,b) =0(N;r)——=— (1 +0(1)),
(19 (Nirb) = (i) 7 (14 1)

and the singular series o(N;r) satisfies

Cm) P’ (p - D(p -1 1)
(L.7) o(N;r) = r2 H(pl)S_l_lH (p—1)3+1

p|N

ptr
<[] <1+ﬁ> > 1,

where p > 2 throughout, C(r)= 2 for odd r, and C(r) = 8 for even r. Follow-
ing the work of Vinogradov [Vi], several authors established Rademacher’s
result unconditionally; see for example Ayoub [A] and Zulauf [Zu].

The arguments of [A] and [Zu] with some minor modifications actually
give (1.6) for all r < logA N, where A > 0 is arbitrary. A natural problem
is whether (1.6) is still true for larger . The purpose of the present paper
is to give a result in this direction. We prove that (1.6) is true for almost
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all positive moduli r < N'/8=¢ and all b € B(N,r). Precisely speaking, we
have the following

THEOREM 1. Let N be a fized large odd integer, € > 0 arbitrarily small
and
R=NV8=
Let also A > 0 be arbitrary. For a positive integer r, define B(N,r) as in
(1.3). Then for all positive integers r < R, with at most O(Rlog™* N)
exceptions, the Diophantine equation (1.5) with prime variables is solvable
whenever b € B(N, ), and the number of solutions is given by (1.7).

The above result is a consequence of the following mean-value theorem.

THEOREM 2. Let N be a fized large odd integer, € > 0 arbitrarily small
and

R=NV8"=

Let also A > 0 be arbitrary. For a positive integer r, define B(N,r) as in
(1.3). Then

N2

(1.8) E rberlrgl(agl(’” g A(n1)A(na)A(ng) — o(N; 7")7
r<R N:n1—|(—n2—(|in§,
nj=b; (modr

< N? logf’4 N,
where A(n) denotes the von Mangoldt function.

Remark. If the r’s in the theorems are restricted to primes, then the
exponent 1/8 can be improved to 3/20. This improvement is useful in study-
ing the ternary Goldbach problem with the three prime summands restricted
to a thin subset of primes. This problem has been investigated in another
paper [Li].

Since the derivation of Theorem 1 from Theorem 2 is immediate, we give
it here.

Proof of Theorem 1. Let E(R) be the set of positive integers r < R
for which

1 1 1 . N? r N?

| X M)A —re(Nin) | > e
N=ni+na2+n3 ¥ 8
n;=b; (modr)

Then one deduces from Theorem 2 that
2

T —A
2 G <loe N
reE(R)

for arbitrary A > 0, and consequently,
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#E(R)= > 1<R Z <<R10gA
reE(R) ’I‘EE(R
Since
r r
(1.9) —— K o(Njr) € —,
@3(r) @3(r)

one sees that (1.6) is true for all » ¢ E(R) and all b € B(N,r). This
completes the proof of Theorem 1.

Now it remains to establish Theorem 2.

The proof of Theorem 2 is motivated by a paper of Wolke [W], which
contains several new ideas to study the problem under consideration and
the ternary Goldbach problem with the prime summands restricted to a
thin subset of prime numbers. His method actually gave Theorem 2 for
almost all prime moduli r = p < N'/11,

The basic tool of our proof, as can be expected, is the circle method. On
the minor arcs, one needs a nontrivial estimate for exponential sums over
primes in arithmetic progressions to every individual and large modulus 7.
All known results of this kind are, however, nontrivial when the choice of
minor arcs is very “thin”. Consequently, the major arc is much “larger”
than usual. By defining the major and minor arcs in this way, the minor
arcs can then be treated easily by a result of Balog and Perelli [BP] on
exponential sums over primes in an arithmetic progression (see Lemma 1
below). The main difficulty of the proof comes from the major arcs, where
we use the following ideas:

(a) The starting point is Lemma 2 in §2, where we establish a new
formula for

Z A(n)e(na)

n<N
n=b (modr)

in terms of Dirichlet characters. It plays a similar role as the formula
Z/l(n)e(n(g—i-)\)) Z G(a,x) Z/l
n<N q xmodq n<N

does in the treatment of the original ternary Goldbach problem, where
G(a, x) is the Gaussian sum defined as

ax) = éx(n)e(%).

Consequently, a generalization of the Gaussian sum, namely G(b, f, m. x4, k)
defined as in §2, occurs. We need upper estimates for G(b, f,m, x4, k), and
these are established in §3.
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(b) The treatment of the major arcs eventually reduces to the following
form of mean-value estimates for exponential sums over primes:

THEOREM 3. For any A > 0, there exists a constant E = E(A) > 0 such
that if

(1.10) 1<K<z'BL7B, 9=K3L7F,
then

max maX max
y<z (a,q)=1|A|<6
g<K

ZA <n<9+A>> —ﬂz (nA)| < oL~
q q) n<y

In §4, a general result (Theorem 4) containing this theorem is established.
These mean-value estimates play important roles in the proof of Theorem
2, and the exponent 1/8 results from them.

It should be mentioned that Maier and Pomerance [MP], Balog [B] and
Mikawa [Mi] studied the distribution of prime twins with one of them in
arithmetic progressions. Their methods can deal with the binary Goldbach
problem with one of the summands in arithmetic progressions, but we cannot
apply them to the problem considered in the present paper.

We use standard notations in number theory. In particular, the letter r
in the sequel stands always for positive integers, while L for log N except in
84 where L = log z. The letter § denotes a sufficiently small positive number,
whose value may vary in different occurrences. For example, we can write

N°LP < N°, N°N° < N°.
The expression r ~ R means —R < r < R. A Dirichlet character xy mod ¢
will be written as x, if necessary.

2. Qutline of the proof of Theorem 2. Let

(2.1) R < N/8==,
and
(2.2) P=R’I*Y, Q=NR 2L *°;

the constant C will be specified later. For each positive integer r ~ R, the
major arc of the circle method is defined as

oy LqJ [ELZJFL}
- g Q' q qQJ

= s
Since 2P < @, no two major arcs intersect. The minor arc is defined as
Bo(R) = [l,1+ i] _Bu(R).
Q Q
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Write « € [0,1] in the form
(2.3) a=a/qg+ A 1<a<gq, (a,q)=1.
It follows from Dirichlet’s lemma on rational approximations that
Ba(R) = {0 P<q<Q I\ <1/(aQ)}.
Let A(n) be the von Mangoldt function, e(a) = €2™* as usual, and
(2.4) S(a;r,b) = Z A(n)e(na).

n<N
n=b(modr)

Then the statement of Theorem 2 is equivalent to that, for arbitrary A > 0,
1

N2

Z 7 max SS(a; r,b1)S(; 7, b2)S(a; 7, b3)e(—Na) da — o (N 1) —

5 bEB(N,r) | 2
< N?L=4,

It thus suffices to prove

(2.5) Zrberlrglgs/(’r) S S(a;r,b1)S(a;r,b2)S(a;r, bs)e(—Na) do

r~R Ei(R)

2

— (N

2 <<]\[2[/7A7

(2.6) TERT bErlISl?J\)J(,T) i S(R) S(a;r,b1)S(a;r,b2)S (e, bs)e(—Na) doz‘

< N2L™4
The estimate of S(«;r,b) with (b,r) = 1 on the minor arcs is given in

the following lemma.

LEMMA 1. Let A > 0 be arbitrary and o € E3(R). If C is sufficiently
large, then
N
(27) S(Oé; T, b) < T A
rlog®™ N

uniformly for r ~ R.

Proof. We need the following result of Balog and Perelli [BP]: For
M < N and h = (r,q),

a 5 hN q1/2N1/2 N4/5
(2.8) ;‘4 A(n)e<6n><<L <7“q1/2+ Tt a )

n=b (modr)
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(A similar result was also obtained by Lavrik [La].) Now the desired estimate
can be easily derived from (2.8) via partial summation.
We can now give

Proof of (2.6). It follows from Lemma 1 that the integral over F5(R)
is

S S(a;r,b1)S(a;r,b2)S(a;r,b3)e(—Na) da

E>(R)
! ) 12,1 o \1/2
< ag];%)S(a-,r,bl)(éls(ambz)l da) ((S)S(a-,hbs) da)
N2
< T2LA+1’

uniformly for r ~ R. Hence the quantity on the left-hand side of (2.6) is
< N?L~4, which proves (2.6).

Theorem 2 now reduces to (2.5), which will be established in the following
four sections.

The starting point of the proof of (2.5) is Lemma 2 below, which trans-
forms the exponential sum S(«;r,b) into character sums. To state the
lemma, we need some more notations.

Let d, f,g,k,m be fixed positive integers, and x, a Dirichlet character
mod g. Define

k
(2.9) G(d, f,m,xg k)= Y., x(n)e(mn/k).
(=1
n=f (modd)

Obviously, this is a generalization of the Gaussian sum G(m, x).
For positive integers r and ¢, let

(2.10) h = (r,q).

Then r, ¢ and h can be written as

r=py...plirg,  (pj.To) =1,
g=p"..0%q. (pj.q0) =1,
h=p]" ...pP,
where o, §; and 7y, are positive integers with y; = min(e;, 3;), j = 1,...,s.
Define
_ 0 0
(2.11) hy =pi' ...p5,

where §; = a; or 0 according as a; = <y; or not. Then hq | h. Write

(2.12) hs = h/hy.
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Then
(2.13) hiho =h, (hiho)=1, [ L)=1.
hi’ hs
LEMMA 2. Let a,q,r be positive integers, and h, hi, ho defined as in
(2.10), (2.11) and (2.12) respectively so that (2.13) holds. Then

a 1 = _
S(;Jr)\,r,b)—(p(r/hl)w(q/}m)f Z £(b) Z G(h.b,a,7,q)

modr/h, nmodgq/hs

x Y En(n)A(n)e(n)) + O(L?),

n<N
where G(h,b,a,T7,q) is defined as in (2.9).

Proof. It is easily seen that

S<g+)\;r,b>: Xq: p<%> S Am)e(nh).

=1 q n<N
(e;q)=1 n=b(modr)
n=c (mod q)

The inner sum is empty unless ¢ = b (mod h); we can therefore add the
restriction ¢ = b (mod h) to the sum over ¢. On the other hand, under the
condition ¢ = b (mod h), the simultaneous congruences

n=>b (modr), n=c (modq)
are equivalent to
n=b (mod r/hy), n=c (mod q/hs)
according to (2.13). And consequently,

S(ng)\;r,b): zq: e’(E) > An)e(n))

=1 9 n<N
(c,q)=1 n=b(modr)
¢=b (mod h) n=c (mod q)
q
- Z e (£> Z A(n)e(nA).
c=1 q n<N
(e;q)=1 n=b(modr/hy)
¢=b (mod h) n=c (mod q/hs2)

Introducing the Dirichlet characters € mod r/h; and 1 mod g/hy, one has

S(%“””’):sowm)lso(q/hz) > (?) 2 )

c=1 EmOd r/h1
(c,q)=1
c=b (mod h)
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x Y wle) Y &nln e(nA) + O(L?)

nmodq/hg n<N
1 _
— Eb) Y. G(hba,7,q)
h h Z
o(r/h1)e(a/ 2)£m0dr/hl nmada/ha
X Z én(n Je(nX) + O(L?).
n<N

This proves the lemma.

3. The generalized Gaussian sum G(d, f,m, x4, k). Letd, f, g, m, k
be fixed positive integers, and x mod g a Dirichlet character. The purpose
of this section is to give upper estimates for the sum G(d, f, m, x4, k) defined
as in (2.9).

The main result of this section is the following

LEMMA 3. Let d|k, g|k and (m,k) = (f,k) = 1. Let also x mod g be
induced by the primitive character x* mod g*. Then

G(d, f,m, xg, k)] < g*/>.

In the special case g = k, define

31) G f,m,x)=G(d, f.m. xi k)= > x(n)e(mn/k).

Then Lemma 3 is a consequence of the following

LEMMA 4. Let d| k and (m,k) = (f,k) = 1. Let also x mod k be induced
by the primitive character x* mod k*. Then

G(d, f,m,x)| < k2.
Now we derive Lemma 3 from Lemma 4.

Proof of Lemma 3. Let x2 be the principal character mod k. Then
Xg X3 is a character mod k, and consequently,

G(d, f.m. xg, k) = G(d, f,m, xgx})-

The desired result follows from Lemma 4 on noting that x,x? mod £ is also
induced by the primitive character x* mod g*.

It remains to prove Lemma 4. To this end, we investigate G(d, f, m, x)
for some special characters x mod k in the following Lemmas 5-7. The proof
of Lemma 4 will then be given at the end of this section.
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LEMMA 5. Let d|k, and x mod k be primitive. Then

k 1 mf
3.2 d G
32 S =t ()64 omrx).
and consequently,
(3.3) G(d, f,m,x)| < k2.
Here and in the sequel T(x) is defined by
k
= x(n)e(n/k)
n=1
Proof. Making the substitution n = jd + f, one sees that
k/d
d

(3.4) G(d, f.m. x) = nyd+f ( id +f))

k/d

() S ()

Now we appeal to the identity

® 2_37“<?n>

which holds for the primitive character xy mod k. Therefore,

- _7(")(%> : (i)

The inner sum equals k/d or 0 according as n +m = 0 (mod k/d) or not.
Hence the right-hand side above is equal to

k
ko1 ~ fn) ko1 (k _)
— - — x\n)e — | ==" _G _a*mafaX .
B DR (F) =7 (s
nE—mtmodk/d)

This in combination with (3.4) gives (3.2).

The inequality (3.3) follows from the well-known fact that |7(x)| = k'/2
and the trivial estimate |G(k/d, —m, f,Xx)| < d. This completes the proof of
the lemma.
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LEMMA 6. Let d|k, (m,k) =1 and x mod k be induced by the primitive
character x* mod k*. If k* satisfies

plk=plk",
then
(3.5) G(d, f,m,x)| < &2
Proof. From the assumption of the lemma, one deduce that
k
G(d. fom,x) = Y X'(n)e(mn/k).
nEfn(?nlod d)

The following argument is divided into 2 cases.

Special case. We start from the simplest case where kK = p® for some
prime p and positive integer a. Since k* |k and d |k, we can suppose that
k* = p® and d = p?, where B and 7 are integers satisfying 1 < < « and
0 <« < a. It is obvious that one has either k* | d or d|k*.

If £* | d, then on setting n = du + f the above sum becomes

k/d
G(d, f,m,x) ZX (ud + f)e < (“d_i_f))
u=1
mf k/d mu
n()E ()

u=1

Since (m, k) = 1, the last sum vanishes, and consequently,

(3.6) G(d, f.m.x) = 0.

If d| k*, then on making the substitution n = uk* 4+ v one has

R m(uk* + v)
1
G d, ,m, E E Uk* + U 3
( f X u=1v= 1X ( k )

where the double sums over u,v are further restricted by the condition
uk* +v = f (mod d). The restriction uk* +v = f (mod d) is equivalent to
v = f (mod d). Therefore the above quantity can be written as

k/k* mu i muv
3 (k/k) ) X*(v)e<7>.
u=1 v=1

v=f (modd)

The first sum vanishes unless k = k*, hence for k* # k one has

(3.7) G(d, f,m,x) =0.
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While for £* = k one obtains
k*

* muv *
G(da famaX) = E X (1))6’( L > = G(dafamax )a
v=1
v=f (modd)

hence by Lemma 4,
(3.8) G(d, f,m, x)| < k7.

We therefore conclude from (3.6) (3.8) that (3.5) holds for k = p®.
General case. We now turn to general k. To this end, we first prove
that G(d, f, m,x) is multiplicative with respect to k. Let k = kiko with
(k1,ke) = 1. Then for x mod k there exist a unique couple of characters
x1 mod k1 and x3 mod ks such that xy = x1x2. Therefore, on making the
substitution n = konq 4+ k1no, one has
kv ko

m(kany + kin
(3.9) G, f,m,x) = Z Z X1X2(k2n1+k1n2)6( (k2 k11k2 1 2)),

TL1=1 TL2=1
where the double sums are further restricted by
(310) k2n1 + kl’ng = f (HlOd d)

On noting that d |k, we set d = dydy with d; | k1 and dy | ko. It follows from
(k1, ko) = 1 that (dy,d2) = 1, hence (3.10) is equivalent to

(3.11) n1 = fky (mod dy), ny= fk; (mod dy),

where k1 and kjy are defined by k1k; =1 (mod do) and kyko =1 (mod dy).
Now (3.9) becomes

(3.12)  G(d, f,m,x)

k)l k2
mn mn
- nz—l Xl(kznl)e( k11> nz—l Xz(klm)e( k22>
’I”l;]EfI;)‘Q (moddy) nQEfI;:; (modds)
= Xl(kQ)XQ(kl)G(dlafE27m7X1)G(d23fE17m7X2)'

Now let

a1 (X9

k=pi'py®...p5"
be the canonical decomposition of &k, where p; stands for primes, and o
positive integers. Accordingly, k* and d can be written as

E* :pfpoQ pP

where 8; and v; are integers satisfying 1 < 8; < a; and 0 < v; < aj.

and d=p!'p)®...pl°,

It follows that there are primitive characters x; mod p?j,j =1,...,s, such

that x* = xix5 - .- x&, and each x} mod p?j induces x; mod p?j.
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Making the substitution n = n;K; + noKs + ... + n,K,, where K is
defined by p?jK_- = k, one sees that

G(d, f,m,x) = HXJ pyafKJaij)

where I?j satisfies
K;K;

1 (modpz-j), j=1,...,s.
It follows that

G(d, f,m, )| < [TIG0], FK;,m, x;) = HPBJ/Q k12

j=1
This completes the proof of the lemma.

LEMMA 7. Let d|k and (m,k) = (f,k) = 1. Let also x° mod k be the
principal character. Then for (d,k/d) > 1,

G(d’ .f’ m’ XO) = 0;
and for (d,k/d) =1,

6ta. fomx) = u( 5 )e(15).

where t is defined by tk/d =1 (mod d).
This is Hilfssatz 2 of Rademacher [R] or Theorem 2.2 of Ayoub [A].
We can now give
Proof of Lemma 4. Let

(3.13)  k=kiko with (ki,ko) =1, Ek*|ky, and pl|ky = pl|k".

Then for y mod k there exist a unique couple of characters y; mod k; and
x5 mod ko such that x = x1x9, where x§ mod ks is the principal character.
On noting that d |k, we set d = didy with dy |k and da | ks. It therefore
follows from (3.12) that

G(da f’ m, X) = Xl(k2)Xg(k1)G(dla fEQa m, Xl)G(d2v fglama Xg)

The statement of the lemma now follows from Lemmas 6 and 7.

4. A mean-value estimate for exponential sums over primes.
Wolke [W] was the first to study the mean-value estimate as in Theorem 3.
He proved that Theorem 3 is true for

1<K =z% 0=min(K™* L7F).

Actually, Theorem 3 was recently given by the authors in another joint paper
[ZL] as an improvement of Wolke’s result. Unfortunately, however, there is
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a gap in the proof of [ZL]: the statement “A"(5) > 0 for 1/2 < < 1” on
p. 365 of [ZL] is not always true. The proof therefore needs corrections.

In this section we prove the following general result, which contains the
assertion of Theorem 3. One can see from the proof of Theorem 2 that this
general theorem is necessary.

THEOREM 4. Let z > 1 be arbitrary. For any A > 0, there exists a
constant E = E(A) > 0 such that if

(4.1) 1<K <2830 9=22K3L°F,
then

maxX maX maXx
y<z (a,q)=1|1|<0

Son(o(y ) - o] o

a<K (I) n<y

We need some lemmas to establish this result.
LEMMA 8. Suppose that F(u) and G(u) are real functions defined on
[a,b], and G(u) and 1/F'(u) are monotonic.
(i) If |F'(u)| > m and |G(u)| < M, then
b
| Gu)e(F(v) du < M/m.

(ii) If |[F"(u)| > r and |G(u)| < M, then
b

| G(u)e(F(u) du < M/+/r.

a

For the proof of these results, see Lemmas 3.3 and 3.4 in Titchmarsh
[T].

LEMMA 9. Let N(o,T,x) be the number of zeros o = [ + iy of the
Dirichlet L-function L(s,x) in the rectangle o < f < 1,-T < v < T.
Suppose ¢ <1 and T < 2. Then, for 1/2 < o <1, we have

Y N(o,T,x) < (¢T)** /7 (log qT)°.

x mod g

This is Theorem 12.1 in Montgomery [Mo].

LeMMmA 10. Let a,,n = 1,2,..., be complex numbers and x mod q a
character. Then

Z Z* S ‘ Z anx(n)n“ 2dt < (Q2T+N) Z ‘an|2

9<Q xmodgTp n<N n<N
for arbitrary Q, Ty, and T.

For this, see Theorem 7.1 in Montgomery [Mo].
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LEMMA 11. Let ((s) be the Riemann zeta-function, and

= S Ayt Gls) = 3 uln)/n.

n<U nsU
Then
< C;(e) F(*)> = G(s)(—('(s)) — F(s)G(s)¢(s)
7 ( = G(:
CI
e -0 - S F)

This is Vaughan’s identity; for the proof, see [Va].
Now we can, using the idea due to Zhan [Zh], give the proof of Theorem 4.

Proof of Theorem 4. Introducing the Dirichlet characters, the ex-
ponential sum under consideration becomes

M (( )

n<y
Z > A(n) e(nA)Zy(h)e<%h‘> + O(L?),

Xnmdqn<y h=1

L[S ey ) 2
1

< max max max —— ‘G a,x An;xxnen)\‘—i-KLQ,
L RIS I o) Z (a:x) Y A(n; x)x(n)e(n))

and consequently,

(4.2) max max max
y<z |A|<0 (a
<@

where G(a, x) is defined as in §3, and

) = § A) for x # x°,
Alnix) = {A(n) -1 for xy = x°.

To estimate the sums on the right-hand side of (4.2), one notes that if the
primitive character xy mod ¢ induces the character n mod k, then ¢ |k, and
|G(a,q)| < ¢'/? for (a,q) = 1. We now combine all contributions made by
an individual primitive character, so that the first term on the right-hand
side of (4.2) is

q *
< max max e(nA ‘
y<z \,\|<0(a q) 1 Z ) Z (nA)

g<K xmodg n<y
q\k

L ‘ A( A‘
< q<KU<T|M<w Z 2_ Alnix)x(m)e(n)

xmodgqg n<y
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Hence the assertion of the theorem reduces to

4.3) S:= max max )e(nA)| < zaDY2L=A73,

<z |X|<6
gop VST PIs

xmodgq n~Yy

with 1 < D < K and K, 0 satisfying (4.1).

The argument leading to (4.3) falls naturally into two cases according as
D is small or large. For D < L¥, where F is some positive constant, one
uses the classical zero-density estimate and zero-free region for the Dirichlet
L-functions. While for LF < D < K, one appeals to contour integration,
the large sieve inequality and Vaughan’s identity.

CASE 1. D < L¥, where F is a positive constant to be specified later in
terms of A. In this case, it suffices to prove that

(4.4) Y= Z A(n;x)x(n)e(n)) < zaL 72473
ney

for y < z, |A| < 6 and any primitive character x mod d.
To estimate X, one appeals to the Siegel Walfisz theorem ([D], §19):

S Am0x(memd) = — 3 b + o(%)
e yI<T

where ¢ = 8 + iy denotes nontrivial zeros of L(s,x), b(x) is a constant
depending on x, and T > 2 is a parameter. Applying partial summation,
we have

(4.5) Y= Z§ (Au) (ZAT? X)X )
y/2 n<u
= Z Z§ u? ™t (Au)du+0<(1+)\ 1) £2>
VI<Ty/2

Take T' = 22, so that the O-term is acceptable in (4.4). Since, for u ~ y,

d iny, 2mAu
(Au—}——logu) :)\+2’7 > ming~, [y + 27 1l|’

du U Y
and
d? v o M
M+ 1 =— —
du? ( BRI u) o2 y2’
we deduce from Lemma 8 that the integral on the right-hand side of (4.5) is
Y B

S uﬂ_le<)\u+ %logu) du < min( Y
e

B
Y
y/2 "7| + 1’ min’u,rvy "Y + 27r)\u| ) '
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Let Ty = 4mfx, so that for Ty < |y| < 22 and u ~ y,
|y + 2mAu| > |y| — 270u > |v|/2.
Then (4.5) becomes
B B
46 r< ¥ min( -

VI 1 ming .y [y + 27y

B
+ O(eL2F=473),

T
€D ==+ D o
lv|<To M +1 To<|v|<z? "l

It is well known that for any x mod ¢ there is a constant ¢; > 0 such
that L(s, x) has no zero in the region

) + Oz 2F473)

ly|<La?

C1
log g + log*/® (|t +2)’

except the possible Siegel zero. But the Siegel zero does not exist in the
present situation, since ¢ < L¥. Therefore, one has

/5 } < eXp(*(j2L1/5),

oc>1-—

c1 logx

(4.7) P < exp{ — 1
log g + log

for some constant ¢, > 0. Hence the second sum on the right-hand side of
(4.6) is acceptable.
To deal with the first term, one notes that

1/2 _
Z \/W<<TL£1~?L¥OT Z zh=1

IVI<To IVI<Ty

which is, on applying Lemma 9,

L T*1/21 T 9 T (3*30’)/(2*0’)”071
<ol max Ty (log qT1) 1/glgag§(q 1) x

3-30 1
gL ~(1-0)L ~ = |logT
Lz mnax 1/1r2n<agx<1 exp (1—-0)L+ 5, )l

= oL max max f(T1,0),

T1<To 1/2<0<1
say. Therefore, in view of (4.6), the estimate (4.4) reduces to

(4.8) max max f(Ty,0) < 2L 3F 4720,
Ti<To 1/2<0<1

Suppose first 4/5 < o < 1, so that
3 —30

It follows from (4.7) that

4.9 T xpf{—(1 — o)L wxpf ey L'/°
(4.9) X max f(T,0) K 4/2113;19@{ (1 -0)L} < exp{—coL'/°},
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which is acceptable in (4.8). Now we turn to 3/5 < o < 4/5, which ensures
that
3 — 30
2—-o0
On noting that log Ty < L+ O(1), and

. {0(0—1/2)}23

3/5<0<4/5 2—0 70’

vV
L\D.I —

one deduces that

4.10 T,
( ) 7{?2%(0 3/5213;4/5’)0( ! U)

3—-30 1
> —(1—-0o)L —=|L
< 3/5??%(4/5 PXP{ ( o)L+ < 2—-0 2> }

—1/2
~ max exp{ _ ML}
3/5<o<4/5 2—0
< m73/70’

and this is also acceptable in (4.8). Finally, we consider 1/2 < o < 3/5.
Now we have

3—30 1
2—-o0 27

~|

<
and consequently,

max max f(T1,0)
T1<Tv 1/2<0<3/5

3 -3 1
< max  max exp{—(l—a)L—i— ( U——) logac}
Th<Tp 1/2<0<3/5

o 3—30c 1 I T
ex — — — |log — 7.

P 2_o 2) %7
Since T} < Ty < 0z < zL~F, the above quantity is

—1/2
(4.11) <« max exp{ - ML} exp{ — §Elog loggc}
1/2<0<3/5 o 7

< L*GE/'?’

which is acceptable in (4.8) if E > 6F + 2A + 28.
Combining (4.9)—(4.11) we get (4.8), hence (4.4). This proves (4.3) in
Case 1.

CasSeE 2. LF < D < K, where F is a constant to be specified in the

following argument. In this case, we use Vaughan’s identity to establish
(4.3).
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Estimation of the sum of type I. We first show that

412) ¥ .= ‘ (m)b(n)x (mn)e(mnX
(4.12) 3 maxmay 3| 57 almo)xtmnle(mn
[~ x modd ™Mn~y
me~ M
n~N

& zzDY2LATT
holds for a(m) < d(m) and b(n) < d(n) with m ~ M, n ~ N and

(4.13) < MN <z, M,N<gD 'L 2420,
Let
a(m)x(m b(n)x(n
filsg = 3 WD g (s = 30 M),
mn~ M ) n~N )
where s = o + 1t is a complex variable. Then one sees that
(4.14) Fils ) fa(s,x) < MITONITTT L gt

uniformly for —2 < o < 2. Applying Perron’s summation formula (see e.g.
Lemma 3.12 in [T]) and then shifting the contour to the left, one gets

> a(m)b(n)x(m)x(n)
mn<u

me~ M
n~N

1—+—E—+—iq:2 us
=5- | fGx0fsx) - ds+O0(L)

271
1+e—ix?

! 1/2—iz?®  1/24i2® 14e+iz? s
Uu
= %{ S + S + S }fl(SaX)fQ(SaX)T ds + O(L).
D l4e—iz?  1/2—iz2  1/2+ix? ‘

By (4.14), the integrals on the horizontal parts are clearly O(L). Therefore,

> a(m)b(n)x(m)x(n)
mn<u

ma~ M
n~N

_ ! TSf L it VSt w/ dt + O(L)
Toap ) I TIRX) R g T ‘

Now, by partial summation, the inner sum of X' is

| eGaya{ > alm)bn)x(m)x(n)}
y/2 mn<u

ma~ M
n~N

P I I 1 ;
= on S f1<§+'bt,x)f2(§+’lt,x>m S ut/? te()\u)dudt
— 2 y/2

+O((1 + [A|z)L)
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2
17 1
= o S f1<§+zt,x>f2< +it, X)
—,’132

| SR t
S W Ve L L
X 21t S u e()\—i—%r 0gu> dudt + O(6zL),

y/2
which, by the argument leading to (4.6), is estimated as

(aoa(hen)
a 7‘” . P a 7‘” . B
J1 2 X |J2 ) X \tH—l
1 1 dt
f1 (5 +’it,X>f2(§ +’it,X>‘? +O(9£I)L)

1
< + it, X)f <§+it,x>‘dt

< Zm1/2D1/2T21/2L—A—8

1
( + it, X)f (§+it,x>‘dt

< Zm1/2D1/2T3L—A—8

< .'1}1/2 S
[t|<To

+ /2 S
To< |t|<z2

It therefore suffices to show

(415) ) Z S

d~D x modd T, /2

for 1 <715 <Tp, and

(416) Y- Z S

d~D x moddTs/2

for Ty < T5 < 2.
The left-hand side of (4.15) is, by Cauchy’s inequality and Lemma 10,

(4.17) {Z Y S ( + it x) 2(#}1/2

d~D xmodd T, /2
2 1/2
( + i, X) dt}

{5z
< (D?*Ty + M)?(D*T, + N)'/2L
< (DT, +DT1/2(M1/2 + N2 +M1/2N1/2}L
< Zm1/2D1/2T1/2L—A—8

if F>24+20 and E > 2A + 20. This yields (4.15).
A similar argument gives (4.16). This proves (4.12) subject to (4.13).
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Estimation of the sum of type II. Next we prove that

(4.18) Zryn?flril‘ag; Z ‘ Z Je(mn)

x modd ™Mn~y
ma~ M
n~N

& zzDY2LATT
holds for b(n) < d(n) with n ~ N and M, N satisfying
(4.19) < MN <z, M >DL***+%,

Arguing as before, one sees that it suffices to show (4.15) and (4.16)
subject to (4.19). Here f1(s,X), f2(s,x) are the same as before except that
a(m) = 1 in the definition of fi(s,x). Since now M is large according to
(4.19), the above approach to attack the mean value of f;(s,x) does not
work any more; one therefore needs to treat f;(s,y) differently.

Let w = u 4 4v be a complex variable. Then, applying Perron’s formula
and then shifting the line of integration as before, one gets

14e+iz?
1 1 1 MU) _ M 2 w
fi <§ +7575,X> = — S L<§ +it+1v,x>#dw+0@)
w

271 )
14+e—ix2
1% /1 M — (M/2)i
=— | L(5+it+ivx .( /2) dv + O(L)
2 7, 2 20

¥ 1 1
— Ll =+t +1 d O(L).
<SQ|1)|+1‘ <2+1 +7v,x>‘ v+ O(L)

Consequently, by Cauchy’s inequality,

1 2

z? 1 z? 1 1 2
—d L{=+it+i d L?
<<{S2U+1 1)}{82”4_1 (2+7 —I—vv,x) 1)}4—
z? 2
<L\ L) l+1’f+m>( dv + L2
vl 1 2 4 ' '

It follows that

>

d~D x modd T, /2

dt

2
< + it X>
Ty Ty

<<L;?2iz—2 >0

d~D xmodd Ty /2Ty/2

2
dv dt + D?*T, 1.2

1
L<§+it+iv,x>
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Ty+t

<<LT;HT3§#74 S {Z >

d~D x moddTy/2+t

T2 +’U

+L%?2%§— S {Z >

d~D x modd T, /2+v

+ DT, 2.
Applying the classical estimate

r .
the quantity above is

< D*T, L2 + D?*TL, L3 + D*Ty L2 < D*TL L2,

(i)
AT T

( + it, X)
d~D x moddTy/2

< (D2T2L3)1/2(D2T2 +N)1/2L1/2

S

x mod g 0

2
dt < qT(logqT)?,

Hence by the argument leading to (4.17), one has

S afm)bn)x(m {Z > S

mn<u d~D x modd T, /2

2 1/2
dt}

2 1/2
dt}

< (DT, + DT NY2\ 12 « DY2g1/2) /2 [-A-8

if £ > 2A+ 20. This proves (4.15) under the condition of (4.19).

A similar argument gives (4.16). This completes the proof of (4.18)
subject to (4.19).

Application of Vaughan’s identity. By Lemma 11, one sees that the inner
sum of S in (4.3) is equal to

Z/l mn)\) 51*52783,

n~y

where

Si= Y u(m)(logn)x(mn)e(mn)),

mn~y
m<U

Sy = Z a(m)x(mn)e(mn),

mn~y
m<U?
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Sy =Y a(m)(logn)x(mn)e(mn)),

mn~y
m>U
n>U
and a(m) < d(m). Therefore,
(4.20) S= max max Z* \S1|+ Z max max Z* |Sa|
y<z |Amodq| y<z |Amodgq|
q~D x mod g q~D x mod g

+ max max Z* |S3].

7 vs Pmodal

q~ mod g

Taking U = DL?4%20 in (4.20) and E > 2A + 20 in (4.1), we have
U2 — D2L4A+40 < mD71L72A720‘

Hence each of the three terms on the right-hand side of (4.20) can be divided
into O(L*) sums of the form X’ or X". Now, in view of the choice of FE,
(4.12) and (4.18) are both valid, from which the desired result (4.3) for Case
2 follows in the standard way. This completes the proof of the theorem.

5. Preparation for the major arcs. Let ¢, be positive integers and

(5.1) (¢.r) =h.
For (a,q) =1 and (b,r) = 1, define

pla/h) (abty . _ — 1 (o
(52) f('r’q’a,’b) = SD(TQ/h) ‘( h > f (Q/hah) I, tQ/h =1 ( d h),
0 if (g/h,h) > 1.

And for S(a;r, b) defined by (2.4), let

(53)  E(rgab)) = s(g i, b) Cfrgab) Y e,
n<N

(5.4) E*(r,q) = max max m |E(r,q,a,b,\)|.

ax
(a,q)=1(b,r)=1|X<1/(qQ)

The purpose of this section is to establish the following mean-value estimate,
which plays an important role in proving (2.5), hence Theorem 2.

LEMMA 12. Let R, P and Q be defined as in (2.1) and (2.2), while f,
E and E* as in (5.2), (5.3) and (5.4). Then for any A > 0, there exists a
constant C > 0 such that
> > E*(rq) < NL™*.
r~R q<P
This estimate depends on Lemma 13 below, Lemma 3 of §3, and (4.3) of
84 which implies Theorem 4.
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LEMMA 13. Let r and q be positive integers, and h, hy, ho be defined as
in (2.10), (2.11) and (2.12) respectively so that (2.13) holds. Then for fized

positive integers v*, q*, one has

d *
(5.5) Z Z r/h < (r *) log® Ny log® Ns.

’I‘<N1 q<N2 q/h ) q
r*[r/h1 q¢*|g/h2

Proof. Since n <« go( ) log n, one has

20 X it < eMilsNe 2 2, e

r<N1 q<N2 r<N; q< N q
r*|r/h1 q"|q/h2 r*|r/h1 q"|q/h2

For a fixed pair r, hy, we set j; = r/h;. To estimate the sums on the right-
hand side, one needs the number of pairs ¢, hy such that the quotients g/hs
assume the same value js. Since hs of these pairs must satisfy hs|r/hq, the
required number is obviously < d(r/h1), where d(n) is the divisor function.
Hence the double sum under consideration is

hh2 dll d(r* 1
SOy tkey y WAy Wy o

T
r<Ni  q<N <Ny i<, 172 L L A
r*|r/h1 q"|q/h2 r*lj1 (d2.51)=1
q*|j2
d(r*)
2
< . IOg N1 IOgNQ.
T*q

This proves the lemma.
We can now establish the main result of this section.

Proof of Lemma 12. By Lemma 2 we have

(5.6) S(% + A, b)
1 _ _
N o(r/h1)p(q/h2) Z £(0) Z G(h,b,a,7,q)

Emodr/hy nmodgq/hs

x 3 en(m)A(n)e(nd) + O(L?)
n<N
=1+ J+ K+ O(L?,
say, where I, J and K are the sums corresponding to
(i) §= 50 mod ’r'/h,l’ n= 770 mod q/h2’
(§) € = & mod r/h1, n # n° mod q/hs,
(k) € # ¢° mod r/hy

respectively.
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It is easily seen that

- ! S Ghbamg Y xm)Amen))

plr/ha)elafha) o= n<N
x=x" modrq/h

1
= G(hubaaang/hQ)

p(rq/h)
X { n;v e(nA) + W;V x(n)(A(n) — 1)e(nd) + O (90(%2/;7,» }

x=x"modrq/h

= f(ra.a.b) Y en) + 0(

n<N

‘P(T;/h) 2 (An) - 1)6("/\)> +O(L2),
n<N

where we have used Lemma 5 and (5.2). Taking maxima ever A, b and a,
and then summing over ¢ and r, one gets

5.7 max 1max  max ‘I— r,q,a,b en)\‘
( ) Z (a,g)=1 (b,r)=1|X|<1/(qQ) f( q ) Z ( )

r~R q<P n<N
< Z Z N ‘Z e(n))] + RPL?
<t Z \/\|<1/(kQ)‘ Z o(nA)| + BPE

We proceed to estimate J. One sees that

= n 0
T= i Y G(hbang) Y €mAm)e(n)

2 nmod q/ho n<N

: n 2
o(r/h1)e(q/ha) nm%/m G(h,b,a,7,q) n;Vn(n)A(n)e(n)\) + O(L?).

Consequently, one has

Z max max max |J|
(a,0)=1 (br)=1|X|<1/(aQ)

1 1
< 2 50T 2 Pl

X  max (h,b,a,7 ‘ e(nA + P3/2[3,
[A<1/(4Q) Z ‘ :4)] Z )
nmodq/hs n<N

To estimate the sums on the right-hand side above, one appeals to Lemma
3, which ensures that if a primitive character y mod k induces a character
7 mod q/hsy, then k|q/hy and |G(h,b,a,7,q)| < k'/?. We now combine all
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contributions made by an individual primitive character, which gives

5.8 J
(58) Z Z a.q l(br) 1\/\|<1/(qQ)‘ |

r~Rq<P
k1/2
< —_—
z{z T S )
k‘Q/hz

*

X  max n)A(n; en)\‘+P3/2L3

1

b — . 3/2713

CIY g a0 | 0 XAl xe(nd)| + PEY,
k<P - xmodk n<N

*

where we have used Lemma 13 to estimate the sums in braces.
We now turn to K. One has by the definition of K,

K:(P(T/h T Y. Y GlhbaTag) ) énn) nA)

Emodr nmodq/h n<N
£#€°
< 1
o(r/h1)e(q/h2)
x 3 S (Ghubama)l S em)Ame(ny)
¢modr/h; nmodgq/hs n<N
£££°

Working analogously to the argument above, one sees that

Z Z max max max |K|
=1(b,r)=1[X|<1/(aQ)

:q

r~R q<P
1 ky/?
< -
klgR k;P { ,2 o(r/h1) q<ZP ©(q/hs) }
- (K ,k;):l kilr/hy ko |E/h2

X  max Z Z ‘ Z X1Xx2(n (n)\)‘.
IA<1/(k2Q)
x1 modk; xoa modks n<N
X1#X]

By Lemma 13, the quantity in braces is

d(ky)EL?
< dk1)ky " s < RS,
kv ko

Hence



Ternary Goldbach problem 223

5.9 max 1max max |K
o ;Rq<P( a)=1(b,r)= 1\>\|<1/(qQ)‘ |

1
<R > Y —7

k1<2R k2<P k1ksy

I Eevir e > X ‘ 2 xxa(mA(n)e(n)|

x1 modk; xo modkys n<N
x1#x]

One thus concludes from (5.6) (5.9) that

(5.10) > > E*(r.q)

r~R q<P

max max max E(r,q,a,b) — f(r,q,a,b en)\‘
g?q;a a,q)=1 (b;r)= 1\/\|<1/(qQ)‘ ( )~/ )n;V( )

< max max  max ‘If, r,q,a,b en)\‘
2 2 ey T S nan) 3 elnd)

—I—Z Z(m?)xx max  max |J|

L(br)=1|A|<1/(¢Q)

+ max max max K +RPL2+P3/2L3

Lo .
— A(n: A‘
< Rlﬂgusnf%cz) de ;VX(") (n:x)e(n))
:~ xmodk n<

e D mg 2 | X xmAmie ()

xmodk n<N

+ RPL? + P37,
where
(5.11) U< P=RLC.

By (4.3) with z = 1, the first term on the right-hand side of (5.10) is
admissible if

1

(5.12) U< NY3L=P, 70 <U~3L=D,

Taking z = R'/279 in (4.3), we see that the second term on the right-hand
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side of (5.10) is admissible if

1
(5.13) RU < RY3-INY3[=D, TG < R'“(RU)*L™P,

In view of the definitions of @ and U (see (2.2) and (5.11)), the optimal
choice of R satisfying (5.12) and (5.13) is

R S Nl/S—E

as stated in (2.1). This proves the lemma.

6. The major arcs. In this section we give

Proof of (2.5). In the course of the proof, the following elementary
estimate will be used: If A; = B+ C, j =1,2,3, then

(6.1) AyAsA3 = B3+ C(AZ+B?+A,B) = B*+0(|C|-|A:|*+|C|-|B|%).
If « € F1(R), then for j = 1,2,3,

(6.2) S(air,bj) = f(r,q,a,05) Y e(n)) + O(E*(r,q)).
n<N

Applying (6.1), one has

I(r) := S S(a;r,b1)S(a;r,b2)S(a;r, bs)e(—Na) da
E: (R)
g alN
= Z {f(lra q,a, bl)f(lra q,a, b2)f(TaQaa‘ab3)e( - —>
g<P a=1 q
(a,9)=1

3
x| (Z e(nA)) e(—N) dA
N<T/(aQ) n<N
a 2
S<—+>\;r,bl> d)\>
q

+ 0<E*(7«, 9 |
3 e(n)\)rd)\> }

[M<1/(qQ)
E*
[\<1/(¢gQ) n<N

©*(rq/h)

The third integral on the right-hand side above is trivially < N. While the
second integral, when summed over a, can be estimated as

2 2

£ a : a N
> | S<—+>\;r,bl> dx < | S<—+)\;r,bl> dr < —.
=1 <1/ Y ol N4 g

(a,q)
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On using the estimate
Y e(n)) < min(N, 1/||]A]),
n<N

one sees that the first integral is

1/2 5 1/2
S (Z e(nA)) e(—NA) dA+O( | )\_3d>\)
—1/2 n<N 1/(aQ)
1
= Yo 140((gQ)%) = §N2 + O(N2L79).
ni+na+nz=N
1<n; <N
We thus have
1
Ii(r) = <§N2 + O(N2L0)>
a aN
X Z Z f(T,q,a,bl)f(T,q,a,bg)f(r,q,a,b3)€<— —>
¢<P a=1 q
(a7Q):1
N
+ O(— Z E*(r, q))
" q<P

We now consider the singular series

00 q

f(’l“, q, a, bl)f(lra q, a, bg)f(’l“, q, a, b3)€< - ﬂ) .

g=1 a=1 q

(a,q)
For (q/h,h) > 1, one has f(r,q,a,b;) =0, j = 1,2,3, by (6.2), hence the
series converges absolutely to 0. For (q/h,h) = 1, the series reduces to

1

1 i p(q/h) i (a(bl + by + ba)t aN)
P(r) = pila/h) o I .
(g/h,h)=1 (a,q)=1

It was proved by Rademacher [R] that if N is odd and b € B(N,r), then
the above series converges absolutely and equals o(NV;r) defined as in (1.7).
One therefore has
N? N? N .
hr) —o(N;r)— < P2 ()LC + > E(rq),
q<P
and consequently,

N2 21 —A
(6.3) ér(}%{l Li(r) = o(N;r) = | < N2L74,

if C is sufficiently large. This proves (2.5), hence Theorem 2.
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