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On double covers of the generalized alternating group
Z41 U, as Galois groups over algebraic number fields

by

MARTIN EPKENHANS (Paderborn)

Let Zq1 2, be the generalized alternating group. We prove that all
double covers of Z41%2,, occur as Galois groups over any algebraic number
field. We further realize some of these double covers as the Galois groups
of regular extensions of Q(7'). If d is odd and m > 7, then every central
extension of Zg4 1 %2,, occurs as the Galois group of a regular extension of
Q(T). We further improve some of our earlier results concerning double
covers of the generalized symmetric group Zg 1 S,,.

1. Introduction and notations. Serre’s formula on trace forms [15],
[16] relates the obstruction to certain embedding problems

15Zs—G—G—1

of a finite group G to invariants of the trace form of a field extension. Using
this, N. Vila [19] realized the unique covering group 2,,, of 2,,,,m > 8,m =
0,1 mod 8 as the Galois group of a regular extension of the rational function
field Q(T'). J. F. Mestre [11] extended this result to all m > 4. Following
Mestre’s ideas, J. Sonn [18] improved one of his previous results on covering
groups of the symmetric group &,,. We can summarize these results as
follows.

Every finite central extension of S, and of U, m > 4, is realizable as
the Galois group of a regular extension of Q(T).

Vila, Sonn and Schacher [19], [20], [17], [13] used trinomials f(X) =
X™ +aX'!+ b with Galois group &,,, resp. A,,,. We know the trace form of
a trinomial [15], [3]. The trace form of a trinomial with square discriminant
depends only on [. It is not always possible to choose | < n such that the
obstruction vanishes. This explains why Vila’s results are not complete.
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Mestre gave a one-parameter deformation of a polynomial of odd de-
gree to an irreducible polynomial with the same trace form. Vélklein [21]
obtained Mestre’s result on §[m without trace form considerations.

In a previous paper [4] we realized some of the double covers of the
generalized symmetric group Z41 &, as Galois groups over K (T'), where K
is an algebraic number field which contains the dth roots of unity.

In this paper we investigate double covers of the generalized alternating
group as a Galois group over number fields and over rational function fields.
Using Ishanov’s theorem we prove that all double covers of Z 412, and of
Z4l G, occur as the Galois groups over any algebraic number field. If d
is odd, then the unique non-trivial double cover of Z4 1%, occurs as the
Galois group of a regular extension of Q(7').

Kotlar, Schacher and Sonn [8, Theorem 6] reduced the question whether
a central extension of &,, is a Galois group over K to certain pull-backs
of stem covers of &,, with cyclic groups. Following their arguments we
show that all central extensions of Z;1 %, are the Galois groups of regular
extensions of Q(7') if d is odd and m > 7.

Let us fix some notation. Let G be a finite group. Then G’ denotes
the commutator subgroup of G and M(G) is the Schur multiplier of G. Let
m : H1 — G, me : Ho — G be homomorphisms of groups. Then H; xg Ho
is the associated pull-back.

Let K be a field. Then K denotes an algebraic closure of K. pug C K is
the group of dth roots of unity. Let f(X) € K[X] be a polynomial. Then
dis(f) is the discriminant of f(X), and Gal(f) stands for its Galois group.
Let T,U,V, X,Y denote indeterminates.

2. The embedding problem. Let K be a field of char(K) # 2, K a
separable closure of K, and I'k := G(K/K) the absolute Galois group of K.
Let L/K be a separable field extension of finite degree n, N O L a normal
closure of L/K inside Ky, and G = G(N/K) the Galois group of N/K. By
Galois theory we have homomorphisms p: I'x - G and e: 'y — &,,. Let

0o ABESG—0

be a group extension of G with abelian kernel A. We say the embedding
problem with abelian kernel defined by the diagram

I'k
1
1 A & g 1

has a (proper) solution iff there is a (surjective) homomorphism ¢ : I'x — £
making the diagram commutative. If 1(A) C Z(€), the center of £, then
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we call it a central embedding problem. An abelian embedding problem over
an algebraic number field has a proper solution if it has a solution (Ikeda’s
Theorem [6]). If the order |A| of A is a prime and if £ is a non-trivial
extension of G, then every solution of the embedding problem is a proper
solution.

Let H™(G, A), m € Z, denote the mth cohomology group of the G-
module A. The group extension 1 - A — & — G — 1 with abelian kernel
A defines an element ¢ € H?(G, A). Let Br(K) be the Brauer group of K
and let inf : H?(G, A) — Br(K) be the inflation map induced by ¢ : I'r — G.

HOECHSMANN’S THEOREM. The embedding problem associated with ¢ €
H2(G, A) has a solution if and only if inf(e) = 0 € Br(K).

With the help of Serre’s formula we are able to calculate the obstruc-
tion inf(e) for some embedding problems. By Kummer theory we know
H'(I'x,7Z3) ~ Hom(I'x,Zs) ~ K*/K*2. For a,b € K*, (a,b)x denotes
the generalized quaternion algebra generated over K by 4,5 and satisfying
i? = a, j2 = b, ij = —ji. The class of (a,b)x in Br(K) is also denoted by
(a,b)k. Let ¢ be a (non-degenerate) quadratic form over K. The Hasse
invariant (second Stiefel Whitney class) is defined by

Wot) 1= ® (az-,aj)K S BI"(K),
1<i<j<n
where ¢ ~g (ay,...,a,) is a diagonalization of 1. Here ~g denotes the iso-
metry of quadratic forms defined over K. The determinant of ¢ is denoted
by detK f(,b
Now we recall a definition of two covering groups of G,,. G,, has a stan-
dard presentation with generators tq,...,¢,_1 (t; = (4,7 + 1)) and relations

2 =1, (titi)> =1, tit;=t;t; if i —j|>2.
Let &, be the group generated by W, t1,...,tn_1 with relations
ti=1=w? wt=rtw, (titig1)®=1, Lit;=wtit; if|i —j|>2.
Let &' be the group generated by W, b1, ..., tn_1 with relations
EQ —w, w’=1, wt ="tw, (%;%;‘4.1)3 =1, f~1f~7 = wf~7f~l if i — 4] > 2.
Denote by s, s € H2(&,,, Z5) the cohomology classes associated with these

n» n
group extensions. The signature homomorphism ¢,, : G,, — Z, is the unique

non-zero element of H!(&,,,Z5) if n > 2. We know H%(8,,, Zs) ~ Zo® 7y =
{0,s},s, e, Ue,} if n > 4. Here U denotes the usual cup product of
cohomology classes.

The trace map trp/x : L — K defines a quadratic form over K on the
K-vector space L by & +— trp x(z?). We denote the associated quadratic
space by (L). This form is usually called trace form. The homomorphism
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e: I'y — &, defines a homomorphism e* : H?(S,,, Zs) — Bry(K), where
Bro(K) is the subgroup of elements z € Br(K) with 2z = 0. Now Serre’s
formula asserts:

PROPOSITION 1 (Serre [15]). 1. e*(s) = (—2,detx (L)) k ® wa(L).
2. e*(s;) = (2,det g (L)) k ® wa(L).
3. e*(enUey,) = (detg (L), —1) k.
Let
inf : H*(G,Zo) — H*(I'x, Z2)
be the inflation homomorphism induced by g and let
res : H*(6,,, Zo) — H?(G,Z,)
be the restriction homomorphism induced by the injection G — &,,. Then

e* = infores. Combining Serre’s formula with Hoechsmann’s result we get

PROPOSITION 2. The embedding problem associated with the group ex-

tension res(s;") (resp. res(s;)) has a solution iff

wa (L) = (=2,detx (L)) k (resp. wa(L) = (2,detx (L)) k)

3. The wreath product. The generalized alternating group Z41!%,,
is the wreath product of Z; and 2,,. We now recall the definition of the
wreath product of groups.

DEFINITION 1. Let G be a permutation group on a finite set (2. Let H
be a finite group and set H? = {f : 2 — H}. Then f — *f = for™1,
7 € G, defines an action of G on H*. Now the wreath product H1G of H
and G is the semidirect product of H? and G induced by the action above.

In the sequel we need the commutator subgroup of a wreath product.

LEMMA 1. Let G be a permutation group of degree m, and H,H1, Hs be
groups.

1. If G acts transitively, then
(H1G) ={(h1,...,hm;0) | h1...hyy € H', 0 € G}
and
(H1G)/(H1G) ~H/H xG/G".
3. If G’ acts doubly transitively, then
(H1G9)" ={(h1,...,hm;0) | h1...hp €H", 0 €G"}.
3. (H11G) xg (H21G) ~ (H1 X H2)1G.

Proof. 1. Let my : H — H/H' and 7o : G — G/G' be the canonical
projections. Let [z,y] = zyz 'y~ ! be the commutator of z,y. Set K =
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{(h1,...,hm;o) | h1...hy € H', 0 € G'}. Since H/H' is abelian,
HIG = H/H xG/G" : (hi,... ,hm;0) = (w1(hy ... hy), 72 (0))

is a homomorphism with kernel . Hence (#1G)" C K. Define f;, :
2 = H,a € H, by fi.i) =a, fio(k) =1if k # 4. Let i # j. Since
G acts transitively, there is a permutation o € G with o(i) = j. Then
[(fi,a:, 1d)7 (11 U)] = (fi,a . fj,a*l:,id)' Hence {(h17 s 7hm:, ld) ‘ hl s hm =
1} € (H1G). If hy, € H', then (1,...,1,hy;id) € (H1G). We get the
assertion from (h;id)(1;7) = (h; 7).

2. If G’ acts doubly transitively on 2, then we can choose o € G’ with
o(i) =i, o(j) = k, where i # j, k. Then

[(fia fia131d), (1;0)] = (fra - fia1,id) € (H2G)".
3. Define
w:(H11G) Xg (Ha1G) = (H1 x H2)1 G

by ((h;o),(g;0)) = ((h1,h2);0), where (hi,hs) : 2 — Hy X Hy : j —
(h1(7),h2(7)). Then ¢ is an isomorphism. m

In the following two lemmas we study inflation maps.

LEMMA 2. Let G be a permutation group of degree m, and let H be a finite
group. Let A be a finite abelian group, considered as a trivial G-module.
Then the inflation map

inf : H*(G, A) — H*(H1G, A)
induced by the canonical projection o : H1G — G is injective.

Proof. An element ¢ € H?(G,.A) corresponds to a central extension of
G with kernel A. The image of € under the inflation map corresponds to a
pull-back, i.e. there is a commutative diagram

l—=A——=E xg (H1G) H1G 1
e
1 A £ = g 1

We know inf(e) = 0 if and only if the upper sequence splits. By the universal
property of the pull-back this is equivalent to the existence of a homomor-
phism ¢ : H1G — £ making the above diagram commutative. We know
t:G — H1G: 0~ (0;0) is a monomorphism. Now ¢((0;0)) = e gives
o = 0((0;0)) = id. Hence G ~ poi(G) is a subgroup of £. Let x € ANgou(G).
Then 2 = ¢((0;0)) and 7(z) = id = 7o p((0;0)) = o gives z = e. Hence
E~AX(G. n

The next lemma reduces our approach to double covers of Z41 G, where
d=2>1.
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LEMMA 3. Let G be a permutation group of degree m. Let w: Hq — Ha
be an epimorphism of finite groups Hy,Ho. Let A be an abelian group with
order relatively prime to the order of ker(w). Then the inflation map

inf : H2(H21G, A) — H2(H11G, A)
induced by 0 : H11G — Ha1G : (h;o) — (mo h;o) is an isomorphism.
Proof. The sequence
1 — ker(m)™ = H11G = Ha21G — 1
is exact. Since the order of A is relatively prime to the order of ker(w), we
get H' (ker(m)™, A) = H?(ker(m)™, A) = 0 (see [1, I1.10.2]). Hence
0 — H2(H21G, A) 25 H2(H11 G, A) 2% H(ker(m)™, A) = 0

is an exact sequence (see [14, VII, §7, Proposition 5]). =

4. The restriction map res : H%(S,,4,Z2) — H2(Z41 Uy, Zs). The
image of the restriction map determines the double covers which can be

shown to be Galois groups by the use of Serre’s formula.
We know

H*(G, A) ~ ((6/G") ® A) x (M(G) ® A),
with an abelian group A (see [7, 2.1.20]). In [7, Theorem 6.3.13] we found
a list of the relevant Schur multipliers. Together with Lemma 1 we get

oo if d =1 mod 2,

2 ~
H (ZdZQIm,Z2){Z2@Z2@ZQ if d = 0 mod 2,

and m > 4. We further know
Zgl U = (S1, -y Sy Wisen .y Wiy | $5 = 93 = (3_7-_15_7)3 =1,
1<j<m—2 (s;5)°=11<i<j—1,j<m—2 wf=1;
WiW; = Wjw;; S;w; = w;s;, J#1,2,14+1,442;
SiWi41 = Wi42S54, 1= 2, R 2;
S1Ww3 = w181; S;wy; = waS;, 1 =1,....,m —2).

Let 1 — {l,w} - & — Z412,,, — 1 be an exact sequence. Then g € &
denotes a preimage of g € Z41%,, in £. We can choose a set of generators

S1yeerySm_2;W1i,..., Wy of Zg1%A,, such that
w3 : = 21 wE S Wi —
E=(w,51,..,Sm_2,W1,..., Wy, | W =1; wW§ = §w; WW; = W;w;
T3 1. 32 — (T T3 = - (S92 —
sp=1; 87 = X35 (85-185)" =1, j=2,....,m —2; (5;5;)" = A3,

1<i<j—1,j<m=—2 @) =N WW; = A\gW;w;, i # J

:';:117;3 = 1?51:';“41; :';:1'17;1 = 1?52:';:1'),
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where A2, A3, As € {1,w} (our notation agrees with the notation in [4]). If d
is odd, we can choose Ay = A4y = 1. Therefore the one-to-one correspondence
between all central extensions of Z 1%, with kernel Z, and all elements of
H?(Z g1 U, Z3) is given by € — (Ao, A3, Ay) if d is even; and by &€ — )3 if
d is odd. If d is odd, then A3 = w gives the unique non-trivial extension of
Zg A, with kernel Z.

Let 1 — {l,w} — Gn 2 S,, — 1, n = md, be an exact sequence. We
know

Sp=(w, t1,. . tpoy | W2 =1, wt; = tiw, 12 =1, (titig1)® =1,
(tit;)? = 5 if |i — j| > 2).
If n > 4, we get &, = (1,w), 6} = (w,w) and &° := (w,1). If &, = &,
then & Y(Z412,,) = (Zg12,,)". (Zg12,,)" and (Zg121,,)° are defined
similarly.
PROPOSITION 3. Let
res : H2(G,na, Z2) — H?(Z gl Uy, 7o)

be the restriction map, m > 4. Then res can be identified with the map

( ) o A3 =¢1 if d =1 mod 2,

1,82 (A2, Agy Ag) = (726847218 0 c)) if d = 0 mod 2.
If d = 1 mod 2, then res is surjective, but not injective. If d = 2 mod 4,
then res is injective, but not surjective.
If d = 0 mod 8, then res(6 ) =1es(S, ;) = (0,0,w).
If d = 4 mod 8, then res(& ) =1es(S, ;) = (w,0,w).

If d is odd, then §lm Xo, (Z412Uy,) is the unique non-trivial double cover
of Z412,, (see Lemma 2). If m > 7 and if m =5 and d = 1,5 mod 6 we get
M(Z41,,) = Zo. Hence 2y, Xg, (Zg12U,,) is the unique covering group

of Zg1Uy,. If d is even, then A, xo . (Zagl2Ay) corresponds to the tuple
(0,w,0) € H2(Zg1 2, 7).

5. The main theorems. We are now able to formulate the main
results of this paper.

THEOREM 1. Let K be an algebraic number field. Then all double covers
of Zgl Uy, and of Z41 S, are realizable as Galois groups over K.

THEOREM 2. Let m > 5,d € N be integers. Let K be an algebraic number
field.

1. The non-trivial double cover §lm Xor, (Zagl2Um) of Zal Uy, occurs as
the Galois group of a regular extension of the rational function field K(T).
This is the unique non-trivial double cover of Zg1 Uy, if d is odd.
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2. Letd=2f-d', 2{d'.

(a) If d = 2 mod 4, then (Z412,,)° occurs as the Galois group of a
reqular extension of K(T).

(b) If d =2 mod 4 and m is even, then (Zgl2A,,)" and (Zg 1 2A,,)~
occur as the Galois groups of reqular extensions of K(T).

(c) If d = 0mod 4 and pyr C K*, then (Zgl Uyt = (Zg 1 2A,,)~
occurs as the Galois group of a reqular extension of K(T). The
double cover which corresponds to the tuple (wd/4, w,w) is the Gal-
0is group of a regular extension of K(T).

THEOREM 3. Let d be odd, m > 7. Then every central extension of
Zg LU,y is the Galois group of a regular extension of Q(T).

6. Some reduction lemmas. First we recall a fact from group theory.
LEMMA 4. A central extension of an abelian group is nilpotent.

Proof Letl - A —= & — G — 1 be a central extension with G an
abelian group. Then & C A C Z(£). By a theorem of Gaschiitz (see [5,
I11.Satz 3.12]) we know &' = &' N Z(E) C #(£), the Frattini subgroup of £.
Hence & is nilpotent by a result of Wielandt ([5, Satz 3.11]). m

PROPOSITION 4. Let K be an algebraic number field. Let G be a per-
mutation group of degree m and let H1 G be a wreath product of groups.
Suppose

15 A—HIGDHIG—1
1s a central extension with

1. the preimage N of H™ in H1G nilpotent and
2. the preimage G of G in H1G realizable as a Galois group over K.

Then ’HAZJQ occurs as a Galois group over K.

Proof. Consider the semidirect product N G defined by conjugation
of G on N. Then

ng~—>7-ZTg:(n,g) = ng

defines an epimorphism. If 7 € A and § € G, then 7 (72) = (n,id) and 7 (§) =
(1,9). We get 7(gng~") = (1,9)(n.id)(1,¢97") = (L, 9)(n,g~") = "@nr(n).
The conditions 1 and 2 are the assumptions of Ishanov’s theorem [16, Claim
2.2.5]. Hence N % G and its epimorphic image ﬁTg occur as Galois groups
over K. m

Let A = Zy and H = Z4. Then condition 1 is satisfied by Lemma 4.
This reduces our approach to double covers of G. By results of Mestre and
of Sonn we are done if G =%,,,, 5,,,. This gives Theorem 1.

Now we prove a regularity lemma.
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LEMMA 5. Let N/K(T) be a reqular Galois extension with Galois group
G. Let M/N be an abelian extension such that M/K(T) is a Galois exten-
ston with Galois group H.

1. Then M/K(T) is a regular extension if and only if M™ /K (T) (the
mazximal abelian subextension of M/K(T)) and N/K(T) are reqular exten-
510MS.

2. If H is a non-trivial double cover of G = Zg1 Uy, m > 5, then
M/K(T) is a regular extension.

Proof. 1. Let M/K(T) be a regular extension. Then N/K(T) and
M JK(T) are regular extensions [9, Corollary 1, p. 57]. Conversely let K’
be the algebraic closure of K in M. Then K'NN = K. Hence K'(T)/K(T)
is an abelian extension contained in M*'.

2. If G(M/N) < G(M/K(T))', then H/H' ~ G/G'. This gives M* =
N9 . Now let # be a double cover of G with G(M/N)NG(M/K(T))" = {id}.
The number of these extensions is |H?(G/G’, Zo)| = [H?(Zq, Z5)| = ged(d, 2)
(see [7, 2.1.17]). If H is a non-trivial extension, then d = 0 mod 2, and H
corresponds to the tuple (w,0,0) (see Section 4). But then H/H' ~ Zsq4,
which completes the proof. m

PROPOSITION 5. Let K be a field. Let G be a transitive permutation
group of degree m and let H be a finite group. Let

E: 1—>A—>§—>g—>1

be a non-trivial central group extension with |A| a prime. Let N/K be a
Galois extension with Galois group G.

1. Let N/K and L/K be Galois extensions with N = L4, U = {(ty, ...

costmiid) |t € HY <H UG, such that N O N and with Galois groups

G(N/K) ~ G and G(L/K) ~ H1 G respectively. Then G(NL/K) ~ G xg
H1G.

2. Let K be a Hilbertian field of characteristic 0 and let H be a group
which is realizable as the Galois group of a reqular extension of K. Suppose
there is a Galois extension ]\NT/K with Galois group G. Then there is a Galois
extension M /K with G(M/K) ~ G xg (H1G).

Let A C G' and let K be a rational function field. If Z\Nf/K is a reqular
extension, then we can choose a reqular extension M /K.

Proof. 1. We prove NNL=N. Suppose NNL # N. Then N C L,
since |G(N/N)| is a prime. Since G(L/K) ~ H 1 G is a semidirect product
of G(L/N) = H™ and G, there is a subgroup Gy ~ G of G(L/K) such that
GoNG(L/N) = {id} and G(L/K) = Gy-G(L/N). Set Ny = L% . Obviously

0:Go > G(N/K):0— 0

IN
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is a monomorphism. Now o € G(L/K) with o5 € ¢(Go) N G(N/N) im-
plies oy,ny = id. Since NgN = L, the sequence E splits, contrary to our
hypothesis.

2. Set N = NA. There is a (regular) Galois extension L/K with L D N
and G(L/K) ~ H1G (see [10, Satz 1, Zusatz 1, p. 228]).

A C G implies (G xg (H1G))/(G xg (H1G))' ~ H/H' x G/G'. Hence the
maximal abelian subextensions of L/K and of N/K coincide. Now apply
Lemma 5. m

Let H be an abelian group and let G be a permutation group with trivial
center. Then ¢ : H1G — G : (t1,...,t;m;0) — o is the unique epimorphism
from H1G onto G. Hence G(L/K) ~ H1G and N C L with G(N/K) ~ G
gives G(L/N) ~ H™.

PROPOSITION 6. Let K be a rational function field of characteristic 0.
Let G be a transitive permutation group of degree m, and let dy,dy be rela-
tively prime integers. Let

E: 15A-E8—-7Z41G—1

be a central group extension with ged(|A|,do) = 1. Let N/K be a (regular)
Galois extension with Galois group €. Then there is a (regular) Galois
extension M /K with Galois group

G(M/K) =~ (Zaya, 1 G) X746 €-
The sequence
1A= GM/K) = Zgya, 1G — 1
corresponds to the image of the sequence E under the inflation map induced

by the canonical projection Zgyq, VG — Zg, 1G.

Proof. Set Ny = NAand N = NY where U = {(t1,. ..., ty;id)}<4Zq1G.
From [10, Satz 1, Zusatz 1, p. 228 and Satz 1, p. 224] we know that there is
a (regular) Galois extension Ny/K with Ny D N and G(Ny/K) ~ Z4,1G.
Since dg and dy are relatively prime, we get

G(N()Nl/K) ~ G(N()/K) XG(N/K) G(Nl/K)
~ (Zay1G) xg G(Za, 1G) ~ Laga, 19
Set M := NNy = N(NoN;). Then M/K is a Galois extension. Since
ged(do, |A|) = 1, we get N N NyN; = N;. Hence

G(M/K) = G(NyN1/K) X g(n, /) G(N/K) = (Zagi, 1G) X746 .

If ]\Nf/K and Ny/K are regular extensions, then so is M/K, because dy and
the order of A are relatively prime. m
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COROLLARY 1. Let K be a rational function field of characteristic 0. Let
d be an odd number, f e N, f > 1, G =, 6,

1. If (Z9s1G) T, (Zys 1G)™ and (79 1G)® are Galois groups over K, then
50 are (Zos.q1G)%, (Zar.a1G)”™ and (Zys.41G)°.

2. If every double cover of Zos 1 Uiy occurs as the Galois group of a
(reqular) extension of K, then every double cover of Zos.4 02y, with d odd
is realizable as the Galois group of a (regular) extension of K.

Proof. We know H?(Zos 1y, 7o) = Zio @ 7o ® Z5. With the notation
as in Section 4 we get

inf : H?(Zos 1 U, Zo) = H2(Zos.g 1 U, Zo)

is defined by (A2, A3, A4) — (A2, A3, As). Now apply Proposition 6. If G =
G, then see [4, Section 4]. =

7. Trinomials, trace forms and the Galois group of f(X%). Let
G be a transitive permutation group of degree m. Then the wreath product
Z41G appears in a natural way as the Galois group of a polynomial. For
further details we refer to [2].

PROPOSITION 7. Let K be a field and let f(X) € K[X] be an irreducible
and separable polynomial of degree m > 4 with Galois group G.

1. Let d € N be an integer with png C K* and char(K) = 0 or char(K) t d
and pg C K*.

(a) Then Gal(f (X)) is a subgroup of Z41G.
(b) Gal(f(X%) ~ Zaq1 G if and only if Gal(f(XP)) ~ Z,1 G for all
primes p|d.

2. Let p be a prime with p # char(K) and p, C K*. Suppose G ~ A, or
G~6,,. If G ~Ay,As, then let p # 3. Let Ny be a splitting field of f(X).
Then Gal(f(X?)) ~ Z,1G if and only if

(a) p divides m and (—1)™f(0) & Ny? or
(b) ptm, (—=1)™f(0) & N;¥ and f(XP) is irreducible over the field
K({/(=1)™f(0)).
If ptm, then (—1)"£(0) & NG if and only if Gal(f(X?)) ~ Z, x G or
Gal(f(XP?)) ~ Z,1G. Then Gal(f(XP)) ~ Z, x G iff f(XP) factors over
K(/(=1)mf(0)) into a product of p prime polynomials of degree m.

This is proven in [2, Corollary 1, Theorem 2 and Corollary 7).

LEMMA 6. Let K be an algebraic number field. Let m,l,d € N, s,t € Z
be integers with 1 <1 < m, ged(l,m) =1, ms + tl = 1, ged(t,d) € {1,2}
and pg C K*. Choose u,D € K*. Set

H(X,UV)=X"4+mUm 'V X!+ (m - U™V € K(U,V)[X].
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Let H(X,Y) € K(Y)[X] be the polynomial obtained by making in H(X,u, V)
the substitution
V= I'mDY? — [~ if m is odd,
L ((m —1)DY2+1H"1 if m is even.

Suppose —(m — Du, (=1)™+D/2(m —)Du ¢ K*? if m # d =t =0 mod 2.
The Galois group of H(X®Y) over K(Y) is isomorphic to Zgql &,, iff
(=1)™m=D/2D ¢ K*2 and it is isomorphic to Zgl2,, iff (—1)™"=D/2D ¢
K*2. Ift is odd, then the splitting field N of H(X?,Y) is a reqular extension
of K(/(-1)mm=D/2D)(Y).

Proof. The polynomial X™ + mV**tX! + (m — )V € K(V)[X] is
absolutely irreducible and has Galois group &,, over K (V) (see [4, Propo-
sition 6] and [19]). Set L = K(y/(=1)m(m-1/2D). Let N and Ny be
the splitting fields of H(X,Y) and of H(X?Y) over K(Y) respectively.
N(gzdlglm)’ —

Then N/L(Y) is a regular extension. From Lemma 1 we get
L({/(=1)m(m — l)u™V1,Y), which is regular over L(Y) if ged(t,d) = 1.
Now apply Lemma 5. =

PROPOSITION 8. Let K be a field of characteristic 0 and consider the
irreducible and separable polynomial f(X) := X" + aX* + b € K[X] with
a#0. Set L := K[X]/(f), d:=gced(n, k), md:=n, ld:=k. Let d be even.

Then the quadratic space (L) factorizes as follows.

1. (L) ~k (n,nk(n — k), —k(n — k)2, —bz) L 252(1, -1) if m is odd;

2. (L) ~k (n,—n -z, —kab, kax) L "‘;4<1, —1) if m is even,

where
T = nmbm—l + (_1)m—1(n _ k)m—lklambl—l
= (=1)mm=D2gm . dis(X™ + aX' +b).
This is proven in [3, Theorem 1]. There we also find a diagonalization
in the case of d odd, which we do not need in this context.

9. Proof of Theorem 2. 1. Mestre [11, Théoreme 1] gave a polynomial
Fr(X) € Q(T)[X] with Galois group 2,,,,m > 5, such that the splitting field
of Fr(X) is a regular extension of (T"), contained in a regular extension
with Galois group §lm and such that

(QT)[X]/(Fr(X))) ~gr) m - (1).

Now apply Proposition 5. Thus Q~lm X, (ZaglUy) occurs as the Galois
group of a regular extension of K(T'). If d is odd, then this is the unique
non-trivial double cover of Z 1 2,, (see Lemma 3).

2. By Corollary 1 we can assume d = 2/ > 2,

(b) m =2 mod 4, d=2. Choose | € Nwith 1 <1 < m,ged(l,m) = 1.
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STEP 1. Let a,b,c,d € K* be elements with
c

a2+cb2:(m—l)ll—g

and —d, —c ¢ K*. Set
F(Y)=(Y?+¢)?+d((Y? - c)b+2aY).

Then F(Y) ¢ Q[v]™

Proof. Assume zF(Y) = (G(Y))? for some 2 € K* and G(Y) € K[Y].
Let @ € K bearoot of F(Y). F(0) = 0 contradicts —d ¢ K*?, and a®+c =0
gives cb — aae = 0, hence o € K, which contradicts —c¢ ¢ K*2. The formal
derivative of F(Y) is

F(Y) =4(Y? 4+ )Y +4d((Y? = )b+ 2aY)(bY + a).
From F(a) = F(a) =0 we get
5 aa? + c)
“ — )b+ 200 = ———
(a® — )b+ 2ac (b + a)

and

da?(a? + c)?

d?(ba + a)?’

which gives d(ba+a)?+a? = 0. Since —d ¢ K*? and a # 0, the polynomial

G(Y)=Y?2+d(bY +a)? € K[Y]

0=F(a)=(a®+¢)* +

is irreducible and has root «, hence divides F(Y). We get

(1+d*)F(Y) = G(Y)%
Hence (1 4+ db*)F(Y) = (G(Y)?) = 4Y? +d(bY + a)?)(Y + bd(bY + a)),
which implies (1 + db?)F'(0) = —4abcd(1 + db?) = 4a3bd?. Thus

(
2 + cb? = = (m =)' — d?,
a contradiction.

STEP 2. We consider (Z1G)t and (Z21G)~. Choose s,t € Z with
ms—+1tl =1, s =1mod 2. Let ¢ € {1,-1}. There is a prime ¢ = 1 mod 4
such that ¢tim and

1. ¢ Z —ml mod Q;Q ifp|l;

2. g —m(m —1) mod@;2 if p|m and p # 2.

By [12, 71:19] there is an element P € Z with P # —1,0,1 and

L. (Pa *le)@ &® (*l,z‘:ZQ)@ = Oa

2. P,—ImqP ¢ Q*2.
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Using the Hasse—-Minkowski Principle we see there are elements a,b, ¢
€ Q with

a® + ImqPb? = (m — 1)I' — Pc2.
We can choose a,b,c # 0. Set V = (I' — (m — )T?)~! and
(Y2 — lmgP)a — 2lmqPbY")?

T — -1
(m =) (Y2 + lmqP)?

Then —Imgq, —ImqgP ¢ Q2 implies
(m =0V = (m =Dl = (m—1)*T?
2 2
e
Now set F(X2,Y) = H(X?2,—eq,V) and L = K(Y)[X]/(F(X2,Y)). Propo-
sition 8 gives
wa(L) = (—1,elq) g (v) ® ((m — 1)V, 2lmqe) g (v) = (det g vy (L), —2¢) k(v

Hence e*(s3,) = 0.
(b), (¢) m = 0 mod 2, md = 0 mod 8. Let [ be an integer with 1 <1 <m
and ged(l,m) = 1. Choose s,t € Z with ms +tl =1, s = 0 mod 2. Set
V=_>0+C)"2m-DY?)™ and uF = F2m(m —1)ld.

Then the splitting field of F(X?,Y) = H(X?, u*,V) over K(Y) is a regular
extension of K (V) with Galois group Z2,,. Set L = K(Y)[X]/(F(X4,Y)).
Proposition 8 gives

wa(L) = ((m — 1)V, :FQ)K(Y) = (dis(F(Xd,Y)), :FQ)K(Y)-

(c)m=1mod2,d=27 >4. Let | € N be an element with [ € Q*2 and
1 <1< m,ged(l,m)=1. Choose s,t € Z with ms + tl = 1 and ¢ even. Set
V = (=1)m=U/21lypy? — = The splitting field of

G(X4UY)=H(X? (m—1)(U?*~-2),V)

= Pc* + ImqP

over K(U,Y) is a regular extension with Galois group Z412,,. By Hilbert’s
Irreducibility Theorem there are elements u,yy € K* such that G(X?, u,y)
has Galois group Z41 2, over K. Since

Gal(G(X%, u,y)) = Zgl Upm < Gal(G(XT, uy™'Y,Y)) < Zgl Ap,

the polynomial G(X?, uy~'Y,Y) has Galois group Z412,, over K(Y). The
splitting field of G(((uy~1Y)? — 2)X,uy~1Y,Y) over K(Y) is a regular ex-
tension of K(Y). Since t is even, G(0,uy 'Y,Y) ¢ K(Y)*?. Hence the
splitting field of G(X?, uy~'Y,Y) is a regular extension of K(Y). Set
L=K(Y)[X]/(G(X% uy 'Y,Y)). Proposition 8 gives
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wa(L) = ((uy 'Y)? = 2,27 ) vy = (dis(G(X %, uy 'Y, Y)), 27 ) k(v = 0,

since —1 € K*2. Hence e*(s ) = 0.
Now consider the double cover (w%* w,w) = (0,w,0) + (W¥*,0,w) =
(0,w,0) +res(&,, ;). Set

L' = KY)X)/(F(X.Y)), L:=K(Y)[X]/(F(X"Y))

if m is even and L' = K(Y)[X]/(G(X,Y)), L := K(Y)[X]/(G(X4,Y)) if
m is odd. Let N, N’ be normal closures of L/K(Y), L'/K(Y) resp. By
the above N/K(Y) and N'/K(Y) are regular extensions. We further know
G(N'/K(Y)) ~ 2, and G(N/K(Y)) ~ Zq1%,,. Since —1 € K*?, Propo-
sition 8 gives wo(L') = 0. Hence N'/K(Y) is contained in a regular Galois
extension N/K (V) with Galois group 2,,. By Proposition 5, NN/K(Y) is
a solution of the embedding problem defined by N/K(Y) and (0,w,0). We
get inf((0,w,0)) = 0. From wy(L) = 0 we conclude inf((w%*,0,w)) = 0.
Hence (w**, w,w) is in the kernel of the inflation map induced by F(X?,Y)
resp. G(X,Y).
(a) Consider (Z31%,,)°. If m = 0 mod 2, choose a,b,c € Q* with

a’? + b2 =(m -l - 2
and set

(Y2 = 1)a — 2b6Y)?

V=>0+1)"?m-0)T?)"" and T = (m—1) CEEE

Then
(Y2 -1)b+2aY)?  — .,
Y *
since —1 ¢ Q*2. Thus ((m — 1)V, —1)g(y) = 0. Now consider F(X?,Y) =
H(X?,1,V).
If m = 1 mod 2, then use the polynomial H(X?2, —(m —1)(U%2+1),V), t
even, V = (—1)(m=D/2]l;my?2 — =1 and proceed as in (c). =

(m -V '=c+

10. Central extensions of Z;1%,,, d odd. The unique non-trivial
double cover of Z41%,,, where d is odd and m > 7, is a covering group
of Z412,,. Following the arguments of Kotlar, Schacher and Sonn [8], we
can reduce the question whether all central extensions of Z41%,,. d odd
and m > 7, are Galois groups over an algebraic number field to certain
pull-backs. This method gives an affirmative answer to the problem.

The central extension 1 - A = & — G — 1 is called a stem extension
of G if AC &' If in addition A ~ M(G), then we call it a stem cover of G.
Theorem 6 of [8] generalizes as follows.
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PROPOSITION 9. Let G be a group satisfying

1.G' =g".
2. G/G' is cyclic of order d and there is an element o € G of order d
which generates G/G'.

Let K be a (rational function) field with the following properties.

1. If the finite group H is the Galois group of a (regular) extension of
K, then so is H X A for every finite abelian group A.

2. Every factor group of the Galois group of a (regular) extension of K
is the Galois group of a (reqular) extension of K.

If for every stem cover G of G and every d' with d |d" and such that p|d’
iff p|d the pull-back

5 Xg/gl Zdl

is the Galois group of a (regular) extension of K, then every central exten-
sion of G is the Galois group of a (regular) extension of K.

Here GV Xg/gr Z g stands for the pull-back of GV and Zg along the homo-

morphisms G - G — G/G" and Zgy — Z4 ~ G/G'. We just have to imitate
the proof of Theorem 6 in [8].

Proof of Theorem 3. 0 =(0,...,0,1;id) € Z;2,, has order d and
generates (Zg12,,)/(Zq124)". Hence we can apply Proposition 9 (see [10,
Zusatz 1, p. 226]). Let d’ € N be any odd integer with d|d'. By Lemma 3
and Section 4 the pull-back §lm X, (Zql2y,) is the unique stem cover of
Zg1%2,,. We already know that there is a regular Galois extension L/K
with Galois group 2,,,, contained in regular Galois extensions ]V/K, M/K
with G(N/K) ~ U, and G(M/K) ~ Zg 1,,. We get NN M = L and
G(NM/K) ~ Uy xa, (Zg 1 Um). Set Moy = MTa2m)" and My = MY,
U= {(tl, ce 7'lfw“ld) | t; € ker(Zd/ — Zd)} Then G(Mo/K) ~ Zd l Q[m We
further get

My M, = MU Zgn2m) Mé%dzmm)"

The Galois extension NM,,/K has Galois group (U, Xa,, (Zal2%m)) Xz,
Zd’- ]
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