On double covers of the generalized alternating group $\mathbb{Z}_d \wr \mathfrak{A}_m$ as Galois groups over algebraic number fields

 ${\bf by}$

MARTIN EPKENHANS (Paderborn)

Let $\mathbb{Z}_d \wr \mathfrak{A}_m$ be the generalized alternating group. We prove that all double covers of $\mathbb{Z}_d \wr \mathfrak{A}_m$ occur as Galois groups over any algebraic number field. We further realize some of these double covers as the Galois groups of regular extensions of $\mathbb{Q}(T)$. If d is odd and m > 7, then every central extension of $\mathbb{Z}_d \wr \mathfrak{A}_m$ occurs as the Galois group of a regular extension of $\mathbb{Q}(T)$. We further improve some of our earlier results concerning double covers of the generalized symmetric group $\mathbb{Z}_d \wr \mathfrak{S}_m$.

1. Introduction and notations. Serre's formula on trace forms [15], [16] relates the obstruction to certain embedding problems

$$1 \to \mathbb{Z}_2 \to \widetilde{\mathcal{G}} \to \mathcal{G} \to 1$$

of a finite group \mathcal{G} to invariants of the trace form of a field extension. Using this, N. Vila [19] realized the unique covering group $\widetilde{\mathfrak{A}}_m$ of \mathfrak{A}_m , $m \geq 8$, $m \equiv 0, 1 \mod 8$ as the Galois group of a regular extension of the rational function field $\mathbb{Q}(T)$. J. F. Mestre [11] extended this result to all $m \geq 4$. Following Mestre's ideas, J. Sonn [18] improved one of his previous results on covering groups of the symmetric group \mathfrak{S}_m . We can summarize these results as follows.

Every finite central extension of \mathfrak{S}_m and of \mathfrak{A}_m , $m \geq 4$, is realizable as the Galois group of a regular extension of $\mathbb{Q}(T)$.

Vila, Sonn and Schacher [19], [20], [17], [13] used trinomials $f(X) = X^m + aX^l + b$ with Galois group \mathfrak{S}_m , resp. \mathfrak{A}_m . We know the trace form of a trinomial [15], [3]. The trace form of a trinomial with square discriminant depends only on l. It is not always possible to choose l < n such that the obstruction vanishes. This explains why Vila's results are not complete.

¹⁹⁹¹ Mathematics Subject Classification: Primary 12F12.

Mestre gave a one-parameter deformation of a polynomial of odd degree to an irreducible polynomial with the same trace form. Völklein [21] obtained Mestre's result on $\widetilde{\mathfrak{A}}_m$ without trace form considerations.

In a previous paper [4] we realized some of the double covers of the generalized symmetric group $\mathbb{Z}_d \wr \mathfrak{S}_m$ as Galois groups over K(T), where K is an algebraic number field which contains the dth roots of unity.

In this paper we investigate double covers of the generalized alternating group as a Galois group over number fields and over rational function fields. Using Ishanov's theorem we prove that all double covers of $\mathbb{Z}_d \wr \mathfrak{A}_m$ and of $\mathbb{Z}_d \wr \mathfrak{S}_m$ occur as the Galois groups over any algebraic number field. If d is odd, then the unique non-trivial double cover of $\mathbb{Z}_d \wr \mathfrak{A}_m$ occurs as the Galois group of a regular extension of $\mathbb{Q}(T)$.

Kotlar, Schacher and Sonn [8, Theorem 6] reduced the question whether a central extension of \mathfrak{S}_m is a Galois group over K to certain pull-backs of stem covers of \mathfrak{S}_m with cyclic groups. Following their arguments we show that all central extensions of $\mathbb{Z}_d \wr \mathfrak{A}_m$ are the Galois groups of regular extensions of $\mathbb{Q}(T)$ if d is odd and m > 7.

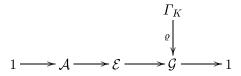
Let us fix some notation. Let \mathcal{G} be a finite group. Then \mathcal{G}' denotes the commutator subgroup of \mathcal{G} and $M(\mathcal{G})$ is the Schur multiplier of \mathcal{G} . Let $\pi_1: \mathcal{H}_1 \to \mathcal{G}, \ \pi_2: \mathcal{H}_2 \to \mathcal{G}$ be homomorphisms of groups. Then $\mathcal{H}_1 \times_{\mathcal{G}} \mathcal{H}_2$ is the associated pull-back.

Let K be a field. Then \overline{K} denotes an algebraic closure of K. $\mu_d \subset \overline{K}$ is the group of dth roots of unity. Let $f(X) \in K[X]$ be a polynomial. Then dis(f) is the discriminant of f(X), and Gal(f) stands for its Galois group. Let T, U, V, X, Y denote indeterminates.

2. The embedding problem. Let K be a field of $\operatorname{char}(K) \neq 2$, K_s a separable closure of K, and $\Gamma_K := G(K_s/K)$ the absolute Galois group of K. Let L/K be a separable field extension of finite degree $n, N \supset L$ a normal closure of L/K inside K_s , and $\mathcal{G} = G(N/K)$ the Galois group of N/K. By Galois theory we have homomorphisms $\varrho : \Gamma_K \to \mathcal{G}$ and $e : \Gamma_K \to \mathfrak{S}_n$. Let

$$0 \to \mathcal{A} \xrightarrow{\iota} \mathcal{E} \to \mathcal{G} \to 0$$

be a group extension of \mathcal{G} with abelian kernel \mathcal{A} . We say the *embedding* problem with abelian kernel defined by the diagram



has a (proper) solution iff there is a (surjective) homomorphism $\varphi : \Gamma_K \to \mathcal{E}$ making the diagram commutative. If $\iota(\mathcal{A}) \subset Z(\mathcal{E})$, the center of \mathcal{E} , then

we call it a central embedding problem. An abelian embedding problem over an algebraic number field has a proper solution if it has a solution (Ikeda's Theorem [6]). If the order $|\mathcal{A}|$ of \mathcal{A} is a prime and if \mathcal{E} is a non-trivial extension of \mathcal{G} , then every solution of the embedding problem is a proper solution.

Let $H^m(\mathcal{G}, \mathcal{A})$, $m \in \mathbb{Z}$, denote the mth cohomology group of the \mathcal{G} -module \mathcal{A} . The group extension $1 \to \mathcal{A} \to \mathcal{E} \to \mathcal{G} \to 1$ with abelian kernel \mathcal{A} defines an element $\varepsilon \in H^2(\mathcal{G}, \mathcal{A})$. Let Br(K) be the Brauer group of K and let inf: $H^2(\mathcal{G}, \mathcal{A}) \to Br(K)$ be the inflation map induced by $\varrho : \Gamma_K \to \mathcal{G}$.

HOECHSMANN'S THEOREM. The embedding problem associated with $\varepsilon \in H^2(\mathcal{G}, \mathcal{A})$ has a solution if and only if $\inf(\varepsilon) = 0 \in Br(K)$.

With the help of Serre's formula we are able to calculate the obstruction $\inf(\varepsilon)$ for some embedding problems. By Kummer theory we know $\mathrm{H}^1(\Gamma_K,\mathbb{Z}_2) \simeq \mathrm{Hom}(\Gamma_K,\mathbb{Z}_2) \simeq K^\star/K^{\star 2}$. For $a,b \in K^\star$, $(a,b)_K$ denotes the generalized quaternion algebra generated over K by i,j and satisfying $i^2 = a, j^2 = b, ij = -ji$. The class of $(a,b)_K$ in $\mathrm{Br}(K)$ is also denoted by $(a,b)_K$. Let ψ be a (non-degenerate) quadratic form over K. The Hasse invariant (second Stiefel-Whitney class) is defined by

$$w_2\psi := \bigotimes_{1 \le i < j \le n} (a_i, a_j)_K \in Br(K),$$

where $\psi \simeq_K \langle a_1, \ldots, a_n \rangle$ is a diagonalization of ψ . Here \simeq_K denotes the isometry of quadratic forms defined over K. The determinant of ψ is denoted by $\det_K \psi$.

Now we recall a definition of two covering groups of \mathfrak{S}_n . \mathfrak{S}_n has a standard presentation with generators t_1, \ldots, t_{n-1} $(t_i = (i, i+1))$ and relations

$$t_i^2 = 1$$
, $(t_i t_{i+1})^3 = 1$, $t_i t_j = t_j t_i$ if $|i - j| \ge 2$.

Let \mathfrak{S}_n^- be the group generated by $\omega, \widetilde{t}_1, \dots, \widetilde{t}_{n-1}$ with relations

$$\widetilde{t}_i^2 = 1 = \omega^2, \quad \omega \widetilde{t}_i = \widetilde{t}_i \omega, \quad (\widetilde{t}_i \widetilde{t}_{i+1})^3 = 1, \quad \widetilde{t}_i \widetilde{t}_j = \omega \widetilde{t}_j \widetilde{t}_i \quad \text{if } |i-j| \ge 2.$$

Let \mathfrak{S}_n^+ be the group generated by $\omega, \widetilde{t}_1, \dots, \widetilde{t}_{n-1}$ with relations

$$\widetilde{t_i}^2 = \omega, \quad \omega^2 = 1, \quad \omega \widetilde{t_i} = \widetilde{t_i} \omega, \quad (\widetilde{t_i} \widetilde{t_{i+1}})^3 = 1, \quad \widetilde{t_i} \widetilde{t_j} = \omega \widetilde{t_j} \widetilde{t_i} \quad \text{if } |i-j| \geq 2.$$

Denote by $s_n^-, s_n^+ \in \mathrm{H}^2(\mathfrak{S}_n, \mathbb{Z}_2)$ the cohomology classes associated with these group extensions. The signature homomorphism $\varepsilon_n : \mathfrak{S}_n \to \mathbb{Z}_2$ is the unique non-zero element of $\mathrm{H}^1(\mathfrak{S}_n, \mathbb{Z}_2)$ if $n \geq 2$. We know $\mathrm{H}^2(\mathfrak{S}_n, \mathbb{Z}_2) \simeq \mathbb{Z}_2 \oplus \mathbb{Z}_2 = \{0, s_n^+, s_n^-, \varepsilon_n \cup \varepsilon_n\}$ if $n \geq 4$. Here \cup denotes the usual cup product of cohomology classes.

The trace map $\operatorname{tr}_{L/K}: L \to K$ defines a quadratic form over K on the K-vector space L by $x \mapsto \operatorname{tr}_{L/K}(x^2)$. We denote the associated quadratic space by $\langle L \rangle$. This form is usually called *trace form*. The homomorphism

 $e: \Gamma_K \to \mathfrak{S}_n$ defines a homomorphism $e^*: \mathrm{H}^2(\mathfrak{S}_n, \mathbb{Z}_2) \to \mathrm{Br}_2(K)$, where $\mathrm{Br}_2(K)$ is the subgroup of elements $x \in \mathrm{Br}(K)$ with 2x = 0. Now Serre's formula asserts:

Proposition 1 (Serre [15]). 1. $e^*(s_n^+) = (-2, \det_K \langle L \rangle)_K \otimes w_2 \langle L \rangle$.

2.
$$e^{\star}(s_n^-) = (2, \det_K \langle L \rangle)_K \otimes w_2 \langle L \rangle$$
.

3.
$$e^{\star}(\varepsilon_n \cup \varepsilon_n) = (\det_K \langle L \rangle, -1)_K$$
.

Let

$$\inf: \mathrm{H}^2(\mathcal{G}, \mathbb{Z}_2) \to \mathrm{H}^2(\Gamma_K, \mathbb{Z}_2)$$

be the inflation homomorphism induced by ϱ and let

res:
$$H^2(\mathfrak{S}_n, \mathbb{Z}_2) \to H^2(\mathcal{G}, \mathbb{Z}_2)$$

be the restriction homomorphism induced by the injection $\mathcal{G} \hookrightarrow \mathfrak{S}_n$. Then $e^* = \inf \circ \text{res}$. Combining Serre's formula with Hoechsmann's result we get

PROPOSITION 2. The embedding problem associated with the group extension $res(s_n^+)$ (resp. $res(s_n^-)$) has a solution iff

$$w_2\langle L\rangle = (-2, \det_K\langle L\rangle)_K \ (resp.\ w_2\langle L\rangle = (2, \det_K\langle L\rangle)_K).$$

3. The wreath product. The generalized alternating group $\mathbb{Z}_d \wr \mathfrak{A}_m$ is the wreath product of \mathbb{Z}_d and \mathfrak{A}_m . We now recall the definition of the wreath product of groups.

DEFINITION 1. Let \mathcal{G} be a permutation group on a finite set Ω . Let \mathcal{H} be a finite group and set $\mathcal{H}^{\Omega} = \{f : \Omega \to \mathcal{H}\}$. Then $f \mapsto {}^{\pi}\!f = f \circ \pi^{-1}$, $\pi \in \mathcal{G}$, defines an action of \mathcal{G} on \mathcal{H}^{Ω} . Now the wreath product $\mathcal{H} \wr \mathcal{G}$ of \mathcal{H} and \mathcal{G} is the semidirect product of \mathcal{H}^{Ω} and \mathcal{G} induced by the action above.

In the sequel we need the commutator subgroup of a wreath product.

LEMMA 1. Let \mathcal{G} be a permutation group of degree m, and $\mathcal{H}, \mathcal{H}_1, \mathcal{H}_2$ be groups.

1. If \mathcal{G} acts transitively, then

$$(\mathcal{H} \wr \mathcal{G})' = \{(h_1, \dots, h_m; \sigma) \mid h_1 \dots h_m \in \mathcal{H}', \ \sigma \in \mathcal{G}'\}$$

and

$$(\mathcal{H} \wr \mathcal{G})/(\mathcal{H} \wr \mathcal{G})' \simeq \mathcal{H}/\mathcal{H}' \times \mathcal{G}/\mathcal{G}'.$$

3. If \mathcal{G}' acts doubly transitively, then

$$(\mathcal{H} \wr \mathcal{G})'' = \{(h_1, \dots, h_m; \sigma) \mid h_1 \dots h_m \in \mathcal{H}'', \ \sigma \in \mathcal{G}''\}.$$

3.
$$(\mathcal{H}_1 \wr \mathcal{G}) \times_{\mathcal{G}} (\mathcal{H}_2 \wr \mathcal{G}) \simeq (\mathcal{H}_1 \times \mathcal{H}_2) \wr \mathcal{G}$$
.

Proof. 1. Let $\pi_1: \mathcal{H} \to \mathcal{H}/\mathcal{H}'$ and $\pi_2: \mathcal{G} \to \mathcal{G}/\mathcal{G}'$ be the canonical projections. Let $[x, y] = xyx^{-1}y^{-1}$ be the commutator of x, y. Set $\mathcal{K} =$

 $\{(h_1,\ldots,h_m;\sigma)\mid h_1\ldots h_m\in\mathcal{H}',\ \sigma\in\mathcal{G}'\}$. Since \mathcal{H}/\mathcal{H}' is abelian,

$$\mathcal{H} \wr \mathcal{G} \to \mathcal{H}/\mathcal{H}' \times \mathcal{G}/\mathcal{G}' : (h_1, \dots, h_m; \sigma) \mapsto (\pi_1(h_1 \dots h_m), \pi_2(\sigma))$$

is a homomorphism with kernel \mathcal{K} . Hence $(\mathcal{H} \wr \mathcal{G})' \subset \mathcal{K}$. Define $f_{i,a}: \Omega \to \mathcal{H}$, $a \in \mathcal{H}$, by $f_{i,a}(i) = a$, $f_{i,a}(k) = 1$ if $k \neq i$. Let $i \neq j$. Since \mathcal{G} acts transitively, there is a permutation $\sigma \in \mathcal{G}$ with $\sigma(i) = j$. Then $[(f_{i,a}; \mathrm{id}), (1; \sigma)] = (f_{i,a} \cdot f_{j,a^{-1}}; \mathrm{id})$. Hence $\{(h_1, \ldots, h_m; \mathrm{id}) \mid h_1 \ldots h_m = 1\} \subset (\mathcal{H} \wr \mathcal{G})'$. If $h_m \in \mathcal{H}'$, then $(1, \ldots, 1, h_m; \mathrm{id}) \in (\mathcal{H} \wr \mathcal{G})'$. We get the assertion from $(h; \mathrm{id})(1; \pi) = (h; \pi)$.

2. If \mathcal{G}' acts doubly transitively on Ω , then we can choose $\sigma \in \mathcal{G}'$ with $\sigma(i) = i$, $\sigma(j) = k$, where $i \neq j, k$. Then

$$[(f_{i,a} \cdot f_{j,a^{-1}}; id), (1; \sigma)] = (f_{k,a} \cdot f_{j,a^{-1}}, id) \in (\mathcal{H} \wr \mathcal{G})''.$$

3. Define

$$\varphi: (\mathcal{H}_1 \wr \mathcal{G}) \times_{\mathcal{G}} (\mathcal{H}_2 \wr \mathcal{G}) \to (\mathcal{H}_1 \times \mathcal{H}_2) \wr \mathcal{G}$$

by $((h; \sigma), (g; \sigma)) \mapsto ((h_1, h_2); \sigma)$, where $(h_1, h_2) : \Omega \to \mathcal{H}_1 \times \mathcal{H}_2 : j \mapsto (h_1(j), h_2(j))$. Then φ is an isomorphism.

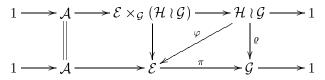
In the following two lemmas we study inflation maps.

LEMMA 2. Let \mathcal{G} be a permutation group of degree m, and let \mathcal{H} be a finite group. Let \mathcal{A} be a finite abelian group, considered as a trivial \mathcal{G} -module. Then the inflation map

$$\inf: \mathrm{H}^2(\mathcal{G}, \mathcal{A}) \to \mathrm{H}^2(\mathcal{H} \wr \mathcal{G}, \mathcal{A})$$

induced by the canonical projection $\varrho: \mathcal{H} \wr \mathcal{G} \to \mathcal{G}$ is injective.

Proof. An element $\varepsilon \in H^2(\mathcal{G}, \mathcal{A})$ corresponds to a central extension of \mathcal{G} with kernel \mathcal{A} . The image of ε under the inflation map corresponds to a pull-back, i.e. there is a commutative diagram



We know $\inf(\varepsilon)=0$ if and only if the upper sequence splits. By the universal property of the pull-back this is equivalent to the existence of a homomorphism $\varphi:\mathcal{H}\wr\mathcal{G}\to\mathcal{E}$ making the above diagram commutative. We know $\iota:\mathcal{G}\to\mathcal{H}\wr\mathcal{G}:\sigma\mapsto(0;\sigma)$ is a monomorphism. Now $\varphi((0;\sigma))=e$ gives $\sigma=\varrho((0;\sigma))=\mathrm{id}$. Hence $\mathcal{G}\simeq\varphi\circ\iota(\mathcal{G})$ is a subgroup of \mathcal{E} . Let $x\in\mathcal{A}\cap\varphi\circ\iota(\mathcal{G})$. Then $x=\varphi((0;\sigma))$ and $\pi(x)=\mathrm{id}=\pi\circ\varphi((0;\sigma))=\sigma$ gives x=e. Hence $\mathcal{E}\simeq\mathcal{A}\times\mathcal{G}$.

The next lemma reduces our approach to double covers of $\mathbb{Z}_d \wr \mathcal{G}$, where $d = 2^f > 1$.

LEMMA 3. Let \mathcal{G} be a permutation group of degree m. Let $\pi: \mathcal{H}_1 \to \mathcal{H}_2$ be an epimorphism of finite groups $\mathcal{H}_1, \mathcal{H}_2$. Let \mathcal{A} be an abelian group with order relatively prime to the order of $\ker(\pi)$. Then the inflation map

$$\inf: \mathrm{H}^2(\mathcal{H}_2 \wr \mathcal{G}, \mathcal{A}) \to \mathrm{H}^2(\mathcal{H}_1 \wr \mathcal{G}, \mathcal{A})$$

induced by $\varrho: \mathcal{H}_1 \wr \mathcal{G} \to \mathcal{H}_2 \wr \mathcal{G}: (h; \sigma) \mapsto (\pi \circ h; \sigma)$ is an isomorphism.

Proof. The sequence

$$1 \to \ker(\pi)^m \to \mathcal{H}_1 \wr \mathcal{G} \to \mathcal{H}_2 \wr \mathcal{G} \to 1$$

is exact. Since the order of \mathcal{A} is relatively prime to the order of $\ker(\pi)$, we get $\mathrm{H}^1(\ker(\pi)^m, \mathcal{A}) = \mathrm{H}^2(\ker(\pi)^m, \mathcal{A}) = 0$ (see [1, II.10.2]). Hence

$$0 \to \mathrm{H}^2(\mathcal{H}_2 \wr \mathcal{G}, \mathcal{A}) \xrightarrow{\mathrm{inf}} \mathrm{H}^2(\mathcal{H}_1 \wr \mathcal{G}, \mathcal{A}) \xrightarrow{\mathrm{res}} \mathrm{H}^2(\ker(\pi)^m, \mathcal{A}) = 0$$

is an exact sequence (see [14, VII, §7, Proposition 5]).

4. The restriction map res : $H^2(\mathfrak{S}_{md}, \mathbb{Z}_2) \to H^2(\mathbb{Z}_d \wr \mathfrak{A}_m, \mathbb{Z}_2)$. The image of the restriction map determines the double covers which can be shown to be Galois groups by the use of Serre's formula.

We know

$$\mathrm{H}^2(\mathcal{G},\mathcal{A})\simeq ((\mathcal{G}/\mathcal{G}')\otimes\mathcal{A})\times (\mathrm{M}(\mathcal{G})\otimes\mathcal{A}),$$

with an abelian group \mathcal{A} (see [7, 2.1.20]). In [7, Theorem 6.3.13] we found a list of the relevant Schur multipliers. Together with Lemma 1 we get

$$\mathrm{H}^2(\mathbb{Z}_d \wr \mathfrak{A}_m, \mathbb{Z}_2) \simeq \left\{ \begin{array}{ll} \mathbb{Z}_2 & \text{if } d \equiv 1 \bmod 2, \\ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 & \text{if } d \equiv 0 \bmod 2, \end{array} \right.$$

and $m \geq 4$. We further know

$$\mathbb{Z}_d \wr \mathfrak{A}_m = \langle s_1, \dots, s_{m-2}, w_1, \dots, w_m \mid s_1^3 = s_j^2 = (s_{j-1}s_j)^3 = 1,$$

$$1 < j \le m-2; \ (s_is_j)^2 = 1, \ 1 \le i < j-1, \ j \le m-2; \ w_j^d = 1;$$

$$w_iw_j = w_jw_i; \ s_iw_j = w_js_i, \ j \ne 1, 2, i+1, i+2;$$

$$s_iw_{i+1} = w_{i+2}s_i, \ i = 2, \dots, m-2;$$

$$s_1w_3 = w_1s_1; \ s_iw_1 = w_2s_i, \ i = 1, \dots, m-2 \rangle.$$

Let $1 \to \{1, \omega\} \to \mathcal{E} \to \mathbb{Z}_d \wr \mathfrak{A}_m \to 1$ be an exact sequence. Then $\widetilde{g} \in \mathcal{E}$ denotes a preimage of $g \in \mathbb{Z}_d \wr \mathfrak{A}_m$ in \mathcal{E} . We can choose a set of generators $s_1, \ldots, s_{m-2}; w_1, \ldots, w_m$ of $\mathbb{Z}_d \wr \mathfrak{A}_m$ such that

$$\mathcal{E} = \langle \omega, \widetilde{s}_1, \dots, \widetilde{s}_{m-2}, \widetilde{w}_1, \dots, \widetilde{w}_m \mid \omega^2 = 1; \ \omega \widetilde{s}_i = \widetilde{s}_i \omega; \ \omega \widetilde{w}_j = \widetilde{w}_j \omega;$$

$$\widetilde{s}_1^3 = 1; \ \widetilde{s}_j^2 = \lambda_3; \ (\widetilde{s}_{j-1} \widetilde{s}_j)^3 = 1, \ j = 2, \dots, m-2; \ (\widetilde{s}_i \widetilde{s}_j)^2 = \lambda_3,$$

$$1 \le i < j-1, \ j \le m-2; \ \widetilde{w}_j^d = \lambda_2; \ \widetilde{w}_i \widetilde{w}_j = \lambda_4 \widetilde{w}_j \widetilde{w}_i, \ i \ne j;$$

$$\widetilde{s}_i \widetilde{w}_j = \widetilde{w}_j \widetilde{s}_i, \ j \ne 1, 2, i+1, i+2; \ \widetilde{s}_i \widetilde{w}_{i+1} = \widetilde{w}_{i+2} \widetilde{s}_i, \ i \ne 1;$$

$$\widetilde{s}_1 \widetilde{w}_3 = \widetilde{w}_1 \widetilde{s}_1; \ \widetilde{s}_i \widetilde{w}_1 = \widetilde{w}_2 \widetilde{s}_i \rangle,$$

where $\lambda_2, \lambda_3, \lambda_4 \in \{1, \omega\}$ (our notation agrees with the notation in [4]). If d is odd, we can choose $\lambda_2 = \lambda_4 = 1$. Therefore the one-to-one correspondence between all central extensions of $\mathbb{Z}_d \wr \mathfrak{A}_m$ with kernel \mathbb{Z}_2 and all elements of $H^2(\mathbb{Z}_d \wr \mathfrak{A}_m, \mathbb{Z}_2)$ is given by $\mathcal{E} \mapsto (\lambda_2, \lambda_3, \lambda_4)$ if d is even; and by $\mathcal{E} \mapsto \lambda_3$ if d is odd. If d is odd, then $\lambda_3 = \omega$ gives the unique non-trivial extension of $\mathbb{Z}_d \wr \mathfrak{A}_m$ with kernel \mathbb{Z}_2 .

Let $1 \to \{1, \omega\} \to \widetilde{\mathfrak{S}}_n \stackrel{\widetilde{\Phi}}{\to} \mathfrak{S}_n \to 1, n = md$, be an exact sequence. We know

$$\widetilde{S}_n = \langle \omega, \ \widetilde{t}_1, \dots, \widetilde{t}_{n-1} \mid \omega^2 = 1, \ \omega \widetilde{t}_i = \widetilde{t}_i \omega, \ \widetilde{t}_i^2 = \varepsilon_1, \ (\widetilde{t}_i \widetilde{t}_{i+1})^3 = 1,$$

$$(\widetilde{t}_i \widetilde{t}_j)^2 = \varepsilon_2 \text{ if } |i - j| \ge 2 \rangle.$$

If $n \geq 4$, we get $\mathfrak{S}_n^- = (1, \omega)$, $\mathfrak{S}_n^+ = (\omega, \omega)$ and $\mathfrak{S}_n^0 := (\omega, 1)$. If $\widetilde{\mathfrak{S}}_n = \mathfrak{S}_n^+$, then $\widetilde{\varPhi}^{-1}(\mathbb{Z}_d \wr \mathfrak{A}_m) =: (\mathbb{Z}_d \wr \mathfrak{A}_m)^+$. $(\mathbb{Z}_d \wr \mathfrak{A}_m)^-$ and $(\mathbb{Z}_d \wr \mathfrak{A}_m)^0$ are defined similarly.

Proposition 3. Let

$$\operatorname{res}: \operatorname{H}^2(\mathfrak{S}_{md}, \mathbb{Z}_2) \to \operatorname{H}^2(\mathbb{Z}_d \wr \mathfrak{A}_m, \mathbb{Z}_2)$$

be the restriction map, $m \geq 4$. Then res can be identified with the map

$$(\varepsilon_1, \varepsilon_2) \mapsto \begin{cases} \lambda_3 = \varepsilon_1 & \text{if } d \equiv 1 \bmod 2, \\ (\lambda_2, \lambda_3, \lambda_4) = (\varepsilon_1^{d/2} \varepsilon_2^{d(d-2)/8}, 0, \varepsilon_2) & \text{if } d \equiv 0 \bmod 2. \end{cases}$$

If $d \equiv 1 \mod 2$, then res is surjective, but not injective. If $d \equiv 2 \mod 4$, then res is injective, but not surjective.

If
$$d \equiv 0 \mod 8$$
, then $\operatorname{res}(\mathfrak{S}_{md}^+) = \operatorname{res}(\mathfrak{S}_{md}^-) = (0, 0, \omega)$.
If $d \equiv 4 \mod 8$, then $\operatorname{res}(\mathfrak{S}_{md}^+) = \operatorname{res}(\mathfrak{S}_{md}^-) = (\omega, 0, \omega)$.

If d is odd, then $\widetilde{\mathfrak{A}}_m \times_{\mathfrak{A}_m} (\mathbb{Z}_d \wr \mathfrak{A}_m)$ is the unique non-trivial double cover of $\mathbb{Z}_d \wr \mathfrak{A}_m$ (see Lemma 2). If m > 7 and if m = 5 and $d \equiv 1, 5 \mod 6$ we get $\mathrm{M}(\mathbb{Z}_d \wr \mathfrak{A}_m) = \mathbb{Z}_2$. Hence $\widetilde{\mathfrak{A}}_m \times_{\mathfrak{A}_m} (\mathbb{Z}_d \wr \mathfrak{A}_m)$ is the unique covering group of $\mathbb{Z}_d \wr \mathfrak{A}_m$. If d is even, then $\widetilde{\mathfrak{A}}_m \times_{\mathfrak{A}_m} (\mathbb{Z}_d \wr \mathfrak{A}_m)$ corresponds to the tuple $(0, \omega, 0) \in \mathrm{H}^2(\mathbb{Z}_d \wr \mathfrak{A}_m, \mathbb{Z}_2)$.

5. The main theorems. We are now able to formulate the main results of this paper.

THEOREM 1. Let K be an algebraic number field. Then all double covers of $\mathbb{Z}_d \wr \mathfrak{A}_m$ and of $\mathbb{Z}_d \wr \mathfrak{S}_m$ are realizable as Galois groups over K.

Theorem 2. Let $m \geq 5, d \in \mathbb{N}$ be integers. Let K be an algebraic number field.

1. The non-trivial double cover $\widetilde{\mathfrak{A}}_m \times_{\mathfrak{A}_m} (\mathbb{Z}_d \wr \mathfrak{A}_m)$ of $\mathbb{Z}_d \wr \mathfrak{A}_m$ occurs as the Galois group of a regular extension of the rational function field K(T). This is the unique non-trivial double cover of $\mathbb{Z}_d \wr \mathfrak{A}_m$ if d is odd.

- 2. Let $d = 2^f \cdot d', \ 2 \nmid d'$.
 - (a) If $d \equiv 2 \mod 4$, then $(\mathbb{Z}_d \wr \mathfrak{A}_m)^0$ occurs as the Galois group of a regular extension of K(T).
 - (b) If $d \equiv 2 \mod 4$ and m is even, then $(\mathbb{Z}_d \wr \mathfrak{A}_m)^+$ and $(\mathbb{Z}_d \wr \mathfrak{A}_m)^-$ occur as the Galois groups of regular extensions of K(T).
 - (c) If $d \equiv 0 \mod 4$ and $\mu_{2f} \subset K^*$, then $(\mathbb{Z}_d \wr \mathfrak{A}_m)^+ = (\mathbb{Z}_d \wr \mathfrak{A}_m)^-$ occurs as the Galois group of a regular extension of K(T). The double cover which corresponds to the tuple $(\omega^{d/4}, \omega, \omega)$ is the Galois group of a regular extension of K(T).

THEOREM 3. Let d be odd, m > 7. Then every central extension of $\mathbb{Z}_d \wr \mathfrak{A}_m$ is the Galois group of a regular extension of $\mathbb{Q}(T)$.

6. Some reduction lemmas. First we recall a fact from group theory.

Lemma 4. A central extension of an abelian group is nilpotent.

Proof. Let $1 \to \mathcal{A} \to \mathcal{E} \to \mathcal{G} \to 1$ be a central extension with \mathcal{G} an abelian group. Then $\mathcal{E}' \subset \mathcal{A} \subset Z(\mathcal{E})$. By a theorem of Gaschütz (see [5, III.Satz 3.12]) we know $\mathcal{E}' = \mathcal{E}' \cap Z(\mathcal{E}) \subset \Phi(\mathcal{E})$, the Frattini subgroup of \mathcal{E} . Hence \mathcal{E} is nilpotent by a result of Wielandt ([5, Satz 3.11]).

PROPOSITION 4. Let K be an algebraic number field. Let \mathcal{G} be a permutation group of degree m and let $\mathcal{H} \wr \mathcal{G}$ be a wreath product of groups. Suppose

$$1 \to \mathcal{A} \to \widetilde{\mathcal{H} \wr \mathcal{G}} \stackrel{\pi}{\to} \mathcal{H} \wr \mathcal{G} \to 1$$

is a central extension with

- 1. the preimage \mathcal{N} of \mathcal{H}^m in $\widetilde{\mathcal{H} \wr \mathcal{G}}$ nilpotent and
- 2. the preimage $\widetilde{\mathcal{G}}$ of \mathcal{G} in $\widetilde{\mathcal{H} \wr \mathcal{G}}$ realizable as a Galois group over K.

Then $\widetilde{\mathcal{H} \wr \mathcal{G}}$ occurs as a Galois group over K.

Proof. Consider the semidirect product $\mathcal{N} \rtimes \widetilde{\mathcal{G}}$ defined by conjugation of $\widetilde{\mathcal{G}}$ on \mathcal{N} . Then

$$\mathcal{N} \rtimes \widetilde{\mathcal{G}} \to \widetilde{\mathcal{H} \wr \mathcal{G}} : (n,g) \mapsto ng$$

defines an epimorphism. If $\widetilde{n} \in \mathcal{N}$ and $\widetilde{g} \in \widetilde{\mathcal{G}}$, then $\pi(\widetilde{n}) = (n, \mathrm{id})$ and $\pi(\widetilde{g}) = (1,g)$. We get $\pi(\widetilde{g}\widetilde{n}\widetilde{g}^{-1}) = (1,g)(n,\mathrm{id})(1,g^{-1}) = (1,g)(n,g^{-1}) = \pi(\widetilde{g})\pi(\widetilde{n})$. The conditions 1 and 2 are the assumptions of Ishanov's theorem [16, Claim 2.2.5]. Hence $\mathcal{N} \rtimes \widetilde{\mathcal{G}}$ and its epimorphic image $\widetilde{\mathcal{H} \wr \mathcal{G}}$ occur as Galois groups over K.

Let $\mathcal{A} = \mathbb{Z}_2$ and $\mathcal{H} = \mathbb{Z}_d$. Then condition 1 is satisfied by Lemma 4. This reduces our approach to double covers of \mathcal{G} . By results of Mestre and of Sonn we are done if $\mathcal{G} = \mathfrak{A}_m$, \mathfrak{S}_m . This gives Theorem 1.

Now we prove a regularity lemma.

Lemma 5. Let N/K(T) be a regular Galois extension with Galois group \mathcal{G} . Let M/N be an abelian extension such that M/K(T) is a Galois extension with Galois group \mathcal{H} .

- 1. Then M/K(T) is a regular extension if and only if $M^{\mathcal{H}'}/K(T)$ (the maximal abelian subextension of M/K(T)) and N/K(T) are regular extensions.
- 2. If \mathcal{H} is a non-trivial double cover of $\mathcal{G} = \mathbb{Z}_d \wr \mathfrak{A}_m$, $m \geq 5$, then M/K(T) is a regular extension.
- Proof. 1. Let M/K(T) be a regular extension. Then N/K(T) and $M^{\mathcal{H}'}/K(T)$ are regular extensions [9, Corollary 1, p. 57]. Conversely let K' be the algebraic closure of K in M. Then $K' \cap N = K$. Hence K'(T)/K(T) is an abelian extension contained in $M^{\mathcal{H}'}$.
- 2. If G(M/N) < G(M/K(T))', then $\mathcal{H}/\mathcal{H}' \simeq \mathcal{G}/\mathcal{G}'$. This gives $M^{\mathcal{H}'} = N^{\mathcal{G}'}$. Now let \mathcal{H} be a double cover of \mathcal{G} with $G(M/N) \cap G(M/K(T))' = \{\mathrm{id}\}$. The number of these extensions is $|\mathrm{H}^2(\mathcal{G}/\mathcal{G}',\mathbb{Z}_2)| = |\mathrm{H}^2(\mathbb{Z}_d,\mathbb{Z}_2)| = \gcd(d,2)$ (see [7, 2.1.17]). If \mathcal{H} is a non-trivial extension, then $d \equiv 0 \mod 2$, and \mathcal{H} corresponds to the tuple $(\omega,0,0)$ (see Section 4). But then $\mathcal{H}/\mathcal{H}' \simeq \mathbb{Z}_{2d}$, which completes the proof. \blacksquare

PROPOSITION 5. Let K be a field. Let G be a transitive permutation group of degree m and let H be a finite group. Let

$$E: 1 \to \mathcal{A} \to \widetilde{\mathcal{G}} \to \mathcal{G} \to 1$$

be a non-trivial central group extension with |A| a prime. Let N/K be a Galois extension with Galois group G.

- 1. Let \widetilde{N}/K and L/K be Galois extensions with $N = L^{\mathcal{U}}$, $\mathcal{U} = \{(t_1, \ldots, t_m; \mathrm{id}) \mid t_i \in \mathcal{H}\} \triangleleft \mathcal{H} \wr \mathcal{G}$, such that $\widetilde{N} \supset N$ and with Galois groups $G(\widetilde{N}/K) \simeq \widetilde{\mathcal{G}}$ and $G(L/K) \simeq \mathcal{H} \wr \mathcal{G}$ respectively. Then $G(\widetilde{N}L/K) \simeq \widetilde{\mathcal{G}} \times_{\mathcal{G}} \mathcal{H} \wr \mathcal{G}$.
- 2. Let K be a Hilbertian field of characteristic 0 and let \mathcal{H} be a group which is realizable as the Galois group of a regular extension of K. Suppose there is a Galois extension \widetilde{N}/K with Galois group $\widetilde{\mathcal{G}}$. Then there is a Galois extension M/K with $G(M/K) \simeq \widetilde{\mathcal{G}} \times_{\mathcal{G}} (\mathcal{H} \wr \mathcal{G})$.
- Let $\mathcal{A} \subset \widetilde{\mathcal{G}}'$ and let K be a rational function field. If \widetilde{N}/K is a regular extension, then we can choose a regular extension M/K.
- Proof. 1. We prove $\widetilde{N} \cap L = N$. Suppose $\widetilde{N} \cap L \neq N$. Then $\widetilde{N} \subset L$, since $|G(\widetilde{N}/N)|$ is a prime. Since $G(L/K) \simeq \mathcal{H} \wr \mathcal{G}$ is a semidirect product of $G(L/N) = \mathcal{H}^m$ and \mathcal{G} , there is a subgroup $\mathcal{G}_0 \simeq \mathcal{G}$ of G(L/K) such that $\mathcal{G}_0 \cap G(L/N) = \{ \mathrm{id} \}$ and $G(L/K) = \mathcal{G}_0 \cdot G(L/N)$. Set $N_0 = L^{\mathcal{G}_0}$. Obviously

$$\varphi: \mathcal{G}_0 \to G(\widetilde{N}/K): \sigma \mapsto \sigma_{|\widetilde{N}}$$

is a monomorphism. Now $\sigma \in G(L/K)$ with $\sigma_{|\widetilde{N}} \in \varphi(\mathcal{G}_0) \cap G(\widetilde{N}/N)$ implies $\sigma_{|N_0N} = \mathrm{id}$. Since $N_0N = L$, the sequence E splits, contrary to our hypothesis.

2. Set $N = \widetilde{N}^{\mathcal{A}}$. There is a (regular) Galois extension L/K with $L \supset N$ and $G(L/K) \simeq \mathcal{H} \wr \mathcal{G}$ (see [10, Satz 1, Zusatz 1, p. 228]).

 $\mathcal{A} \subset \widetilde{\mathcal{G}}'$ implies $(\widetilde{\mathcal{G}} \times_{\mathcal{G}} (\mathcal{H} \wr \mathcal{G}))/(\widetilde{\mathcal{G}} \times_{\mathcal{G}} (\mathcal{H} \wr \mathcal{G}))' \simeq \mathcal{H}/\mathcal{H}' \times \mathcal{G}/\mathcal{G}'$. Hence the maximal abelian subextensions of L/K and of N/K coincide. Now apply Lemma 5. \blacksquare

Let \mathcal{H} be an abelian group and let \mathcal{G} be a permutation group with trivial center. Then $\varphi: \mathcal{H} \wr \mathcal{G} \to \mathcal{G}: (t_1, \ldots, t_m; \sigma) \mapsto \sigma$ is the unique epimorphism from $\mathcal{H} \wr \mathcal{G}$ onto \mathcal{G} . Hence $G(L/K) \simeq \mathcal{H} \wr \mathcal{G}$ and $N \subset L$ with $G(N/K) \simeq \mathcal{G}$ gives $G(L/N) \simeq \mathcal{H}^m$.

PROPOSITION 6. Let K be a rational function field of characteristic 0. Let \mathcal{G} be a transitive permutation group of degree m, and let d_0, d_1 be relatively prime integers. Let

$$E: 1 \to \mathcal{A} \to \mathcal{E} \to \mathbb{Z}_{d_1} \wr \mathcal{G} \to 1$$

be a central group extension with $gcd(|\mathcal{A}|, d_0) = 1$. Let \widetilde{N}/K be a (regular) Galois extension with Galois group \mathcal{E} . Then there is a (regular) Galois extension M/K with Galois group

$$G(M/K) \simeq (\mathbb{Z}_{d_0d_1} \wr \mathcal{G}) \times_{\mathbb{Z}_{d_1} \wr \mathcal{G}} \mathcal{E}.$$

The sequence

$$1 \to \mathcal{A} \to G(M/K) \to \mathbb{Z}_{d_0d_1} \wr \mathcal{G} \to 1$$

corresponds to the image of the sequence E under the inflation map induced by the canonical projection $\mathbb{Z}_{d_0d_1} \wr \mathcal{G} \to \mathbb{Z}_{d_1} \wr \mathcal{G}$.

Proof. Set $N_1 = \widetilde{N}^{\mathcal{A}}$ and $N = N_1^{\mathcal{U}}$, where $\mathcal{U} = \{(t_1, \ldots, t_m; \mathrm{id})\} \triangleleft \mathbb{Z}_{d_1} \wr \mathcal{G}$. From [10, Satz 1, Zusatz 1, p. 228 and Satz 1, p. 224] we know that there is a (regular) Galois extension N_0/K with $N_0 \supset N$ and $G(N_0/K) \simeq \mathbb{Z}_{d_0} \wr \mathcal{G}$. Since d_0 and d_1 are relatively prime, we get

$$\begin{split} G(N_0N_1/K) &\simeq G(N_0/K) \times_{G(N/K)} G(N_1/K) \\ &\simeq (\mathbb{Z}_{d_0} \wr \mathcal{G}) \times_{\mathcal{G}} \mathcal{G}(\mathbb{Z}_{d_1} \wr \mathcal{G}) \simeq \mathbb{Z}_{d_0d_1} \wr \mathcal{G}. \end{split}$$

Set $M := \widetilde{N}N_0 = \widetilde{N}(N_0N_1)$. Then M/K is a Galois extension. Since $\gcd(d_0, |\mathcal{A}|) = 1$, we get $\widetilde{N} \cap N_0N_1 = N_1$. Hence

$$G(M/K) \simeq G(N_0 N_1/K) \times_{G(N_1/K)} G(\widetilde{N}/K) \simeq (\mathbb{Z}_{d_0 d_1} \wr \mathcal{G}) \times_{\mathbb{Z}_{d_1} \wr \mathcal{G}} \mathcal{E}.$$

If \widetilde{N}/K and N_0/K are regular extensions, then so is M/K, because d_0 and the order of \mathcal{A} are relatively prime.

COROLLARY 1. Let K be a rational function field of characteristic 0. Let d be an odd number, $f \in \mathbb{N}$, $f \geq 1$, $\mathcal{G} = \mathfrak{A}_m$, \mathfrak{S}_m .

- 1. If $(\mathbb{Z}_{2^f} \wr \mathcal{G})^+$, $(\mathbb{Z}_{2^f} \wr \mathcal{G})^-$ and $(\mathbb{Z}_{2^f} \wr \mathcal{G})^0$ are Galois groups over K, then so are $(\mathbb{Z}_{2^f \cdot d} \wr \mathcal{G})^+$, $(\mathbb{Z}_{2^f \cdot d} \wr \mathcal{G})^-$ and $(\mathbb{Z}_{2^f \cdot d} \wr \mathcal{G})^0$.
- 2. If every double cover of $\mathbb{Z}_{2^f} \wr \mathfrak{A}_m$ occurs as the Galois group of a (regular) extension of K, then every double cover of $\mathbb{Z}_{2^{f.d}} \wr \mathfrak{A}_m$ with d odd is realizable as the Galois group of a (regular) extension of K.

Proof. We know $H^2(\mathbb{Z}_{2^f} \wr \mathfrak{A}_m, \mathbb{Z}_2) = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$. With the notation as in Section 4 we get

$$\inf: \mathrm{H}^2(\mathbb{Z}_{2^f} \wr \mathfrak{A}_m, \mathbb{Z}_2) \to \mathrm{H}^2(\mathbb{Z}_{2^f \cdot d} \wr \mathfrak{A}_m, \mathbb{Z}_2)$$

is defined by $(\lambda_2, \lambda_3, \lambda_4) \mapsto (\lambda_2, \lambda_3, \lambda_4)$. Now apply Proposition 6. If $\mathcal{G} = \mathfrak{S}_m$, then see [4, Section 4].

7. Trinomials, trace forms and the Galois group of $f(X^d)$. Let \mathcal{G} be a transitive permutation group of degree m. Then the wreath product $\mathbb{Z}_d \wr \mathcal{G}$ appears in a natural way as the Galois group of a polynomial. For further details we refer to [2].

PROPOSITION 7. Let K be a field and let $f(X) \in K[X]$ be an irreducible and separable polynomial of degree m > 4 with Galois group \mathcal{G} .

- 1. Let $d \in \mathbb{N}$ be an integer with $\mu_d \subset K^*$ and $\operatorname{char}(K) = 0$ or $\operatorname{char}(K) \nmid d$ and $\mu_d \subset K^*$.
 - (a) Then $Gal(f(X^d))$ is a subgroup of $\mathbb{Z}_d \wr \mathcal{G}$.
 - (b) $\operatorname{Gal}(f(X^d)) \simeq \mathbb{Z}_d \wr \mathcal{G}$ if and only if $\operatorname{Gal}(f(X^p)) \simeq \mathbb{Z}_p \wr \mathcal{G}$ for all primes $p \mid d$.
- 2. Let p be a prime with $p \neq \operatorname{char}(K)$ and $\mu_p \subset K^*$. Suppose $\mathcal{G} \simeq \mathfrak{A}_m$ or $\mathcal{G} \simeq \mathfrak{S}_m$. If $\mathcal{G} \simeq \mathfrak{A}_4, \mathfrak{A}_5$, then let $p \neq 3$. Let N_0 be a splitting field of f(X). Then $\operatorname{Gal}(f(X^p)) \simeq \mathbb{Z}_p \wr \mathcal{G}$ if and only if
 - (a) p divides m and $(-1)^m f(0) \notin N_0^{\star p}$ or
 - (b) $p \nmid m$, $(-1)^m f(0) \notin N_0^{\star p}$ and $f(X^p)$ is irreducible over the field $K(\sqrt[p]{(-1)^m f(0)})$.

If $p \nmid m$, then $(-1)^m f(0) \notin N_0^{\star p}$ if and only if $Gal(f(X^p)) \simeq \mathbb{Z}_p \times \mathcal{G}$ or $Gal(f(X^p)) \simeq \mathbb{Z}_p \wr \mathcal{G}$. Then $Gal(f(X^p)) \simeq \mathbb{Z}_p \times \mathcal{G}$ iff $f(X^p)$ factors over $K(\sqrt[p]{(-1)^m f(0)})$ into a product of p prime polynomials of degree m.

This is proven in [2, Corollary 1, Theorem 2 and Corollary 7].

LEMMA 6. Let K be an algebraic number field. Let $m, l, d \in \mathbb{N}$, $s, t \in \mathbb{Z}$ be integers with $1 \leq l < m$, $\gcd(l, m) = 1$, ms + tl = 1, $\gcd(t, d) \in \{1, 2\}$ and $\mu_d \subset K^*$. Choose $u, D \in K^*$. Set

$$H(X, U, V) = X^{m} + mU^{m-l}V^{s+t}X^{l} + (m-l)U^{m}V^{t} \in K(U, V)[X].$$

Let $H(X,Y) \in K(Y)[X]$ be the polynomial obtained by making in H(X,u,V) $the\ substitution$

$$V = \begin{cases} l^{l} m D Y^{2} - l^{-l} & \text{if } m \text{ is odd,} \\ ((m-l)D Y^{2} + l^{l})^{-1} & \text{if } m \text{ is even.} \end{cases}$$

Suppose $-(m-l)u, (-1)^{(m+1)/2}(m-l)Du \notin K^{*2}$ if $m \not\equiv d \equiv t \equiv 0 \mod 2$. The Galois group of $H(X^d,Y)$ over K(Y) is isomorphic to $\mathbb{Z}_d \wr \mathfrak{S}_m$ iff $(-1)^{m(m-1)/2}D \notin K^{\star 2}$, and it is isomorphic to $\mathbb{Z}_d \wr \mathfrak{A}_m$ iff $(-1)^{m(m-1)/2}D \in$ $K^{\star 2}$. If t is odd, then the splitting field N of $H(X^d, Y)$ is a regular extension of $K(\sqrt{(-1)^{m(m-1)/2}D})(Y)$.

Proof. The polynomial $X^m + mV^{s+t}X^l + (m-l)V^t \in K(V)[X]$ is absolutely irreducible and has Galois group \mathfrak{S}_m over K(V) (see [4, Proposition 6] and [19]). Set $L = K(\sqrt{(-1)^{m(m-1)/2}D})$. Let N and N_d be the splitting fields of H(X,Y) and of $H(X^d,Y)$ over K(Y) respectively. Then N/L(Y) is a regular extension. From Lemma 1 we get $N_d^{(\mathbb{Z}_{d^{l\mathfrak{A}_m}})'}$ $L(\sqrt[d]{(-1)^m(m-l)u^mV^t}, Y)$, which is regular over L(Y) if $\gcd(t,d) = 1$. Now apply Lemma 5. ■

Proposition 8. Let K be a field of characteristic 0 and consider the irreducible and separable polynomial $f(X) := X^n + aX^k + b \in K[X]$ with $a \neq 0$. Set L := K[X]/(f), $d := \gcd(n, k)$, md := n, ld := k. Let d be even. Then the quadratic space $\langle L \rangle$ factorizes as follows.

- 1. $\langle L \rangle \simeq_K \langle n, nk(n-k), -k(n-k)x, -bx \rangle \perp \frac{n-4}{2} \langle 1, -1 \rangle$ if m is odd; 2. $\langle L \rangle \simeq_K \langle n, -n \cdot x, -kab, kax \rangle \perp \frac{n-4}{2} \langle 1, -1 \rangle$ if m is even,

where

$$x = n^m b^{m-1} + (-1)^{m-1} (n-k)^{m-l} k^l a^m b^{l-1}$$

= $(-1)^{m(m-1)/2} d^m \cdot \operatorname{dis}(X^m + aX^l + b).$

This is proven in [3, Theorem 1]. There we also find a diagonalization in the case of d odd, which we do not need in this context.

9. Proof of Theorem 2. 1. Mestre [11, Théorème 1] gave a polynomial $F_T(X) \in \mathbb{Q}(T)[X]$ with Galois group \mathfrak{A}_m , m > 5, such that the splitting field of $F_T(X)$ is a regular extension of $\mathbb{Q}(T)$, contained in a regular extension with Galois group $\widetilde{\mathfrak{A}}_m$ and such that

$$\langle \mathbb{Q}(T)[X]/(F_T(X))\rangle \simeq_{\mathbb{Q}(T)} m \cdot \langle 1 \rangle.$$

Now apply Proposition 5. Thus $\widetilde{\mathfrak{A}}_m \times_{\mathfrak{A}_m} (\mathbb{Z}_d \wr \mathfrak{A}_m)$ occurs as the Galois group of a regular extension of K(T). If d is odd, then this is the unique non-trivial double cover of $\mathbb{Z}_d \wr \mathfrak{A}_m$ (see Lemma 3).

- 2. By Corollary 1 we can assume $d = 2^f > 2$.
- (b) $m \equiv 2 \mod 4$, d = 2. Choose $l \in \mathbb{N}$ with $1 < l < m, \gcd(l, m) = 1$.

STEP 1. Let $a, b, c, d \in K^*$ be elements with

$$a^{2} + cb^{2} = (m - l)l^{l} - \frac{c}{d}$$

and $-d, -c \notin K^{*2}$. Set

$$F(Y) = (Y^{2} + c)^{2} + d((Y^{2} - c)b + 2aY)^{2}.$$

Then $F(Y) \notin \overline{\mathbb{O}}[Y]^{*2}$.

Proof. Assume $xF(Y) = (G(Y))^2$ for some $x \in K^*$ and $G(Y) \in K[Y]$. Let $\alpha \in \overline{K}$ be a root of F(Y). F(0) = 0 contradicts $-d \notin K^{*2}$, and $\alpha^2 + c = 0$ gives $cb - a\alpha = 0$, hence $\alpha \in K$, which contradicts $-c \notin K^{*2}$. The formal derivative of F(Y) is

$$F(Y)' = 4(Y^2 + c)Y + 4d((Y^2 - c)b + 2aY)(bY + a).$$

From $F(\alpha) = F(\alpha)' = 0$ we get

$$(\alpha^{2} - c)b + 2a\alpha = -\frac{\alpha(\alpha^{2} + c)}{d(b\alpha + a)}$$

and

$$0 = F(\alpha) = (\alpha^2 + c)^2 + \frac{d\alpha^2(\alpha^2 + c)^2}{d^2(b\alpha + a)^2},$$

which gives $d(b\alpha + a)^2 + \alpha^2 = 0$. Since $-d \notin K^{*2}$ and $\alpha \neq 0$, the polynomial

$$G(Y) = Y^2 + d(bY + a)^2 \in K[Y]$$

is irreducible and has root α , hence divides F(Y). We get

$$(1 + db^2)F(Y) = G(Y)^2.$$

Hence $(1+db^2)F(Y)' = (G(Y)^2)' = 4(Y^2 + d(bY + a)^2)(Y + bd(bY + a)),$ which implies $(1 + db^2)F'(0) = -4abcd(1 + db^2) = 4a^3bd^2$. Thus

$$\frac{c}{d} + cb^2 = -a^2 = (m - l)l^l - a^2,$$

a contradiction.

STEP 2. We consider $(\mathbb{Z}_2 \wr \mathcal{G})^+$ and $(\mathbb{Z}_2 \wr \mathcal{G})^-$. Choose $s, t \in \mathbb{Z}$ with ms + tl = 1, $s \equiv 1 \mod 2$. Let $\varepsilon \in \{1, -1\}$. There is a prime $q \equiv 1 \mod 4$ such that $q \nmid lm$ and

- 1. $q \not\equiv -ml \mod \mathbb{Q}_p^{\star 2}$ if $p \mid l$; 2. $q \not\equiv -m(m-l) \mod \mathbb{Q}_p^{\star 2}$ if $p \mid m$ and $p \neq 2$.

By [12, 71:19] there is an element $P \in \mathbb{Z}$ with $P \neq -1, 0, 1$ and

- 1. $(P, -mlq)_{\mathbb{O}} \otimes (-1, \varepsilon lq)_{\mathbb{O}} = 0$,
- 2. P, $-lmqP \notin \mathbb{Q}^{*2}$.

Using the Hasse–Minkowski Principle we see there are elements $a,b,c\in\mathbb{Q}$ with

$$a^{2} + lmqPb^{2} = (m-l)l^{l} - Pc^{2}.$$

We can choose $a, b, c \neq 0$. Set $V = (l^l - (m-l)T^2)^{-1}$ and

$$T = (m-l)^{-1} \frac{((Y^2 - lmqP)a - 2lmqPbY)^2}{(Y^2 + lmqP)^2}.$$

Then -lmq, $-lmqP \notin \mathbb{Q}^{*2}$ implies

$$(m-l)V^{-1} = (m-l)l^{l} - (m-l)^{2}T^{2}$$
$$= Pc^{2} + lmqP \frac{((Y^{2} - lmqP)b + 2aY)^{2}}{(Y^{2} + lmqP)^{2}} \notin \overline{\mathbb{Q}}[Y]^{*2}.$$

Now set $F(X^2, Y) = H(X^2, -\varepsilon q, V)$ and $L = K(Y)[X]/(F(X^2, Y))$. Proposition 8 gives

$$w_2\langle L\rangle = (-1, \varepsilon lq)_{K(Y)} \otimes ((m-l)V, 2lmq\varepsilon)_{K(Y)} = (\det_{K(Y)}\langle L\rangle, -2\varepsilon)_{K(Y)}.$$

Hence $e^{\star}(s_{2m}^{\pm}) = 0$.

(b), (c) $m \equiv 0 \mod 2$, $md \equiv 0 \mod 8$. Let l be an integer with $1 \leq l < m$ and $\gcd(l, m) = 1$. Choose $s, t \in \mathbb{Z}$ with ms + tl = 1, $s \equiv 0 \mod 2$. Set

$$V = (l^l + (-1)^{m/2}(m-l)Y^2)^{-1}$$
 and $u^{\pm} = \mp 2m(m-l)ld$.

Then the splitting field of $F(X^d, Y) = H(X^d, u^{\pm}, V)$ over K(Y) is a regular extension of K(Y) with Galois group $\mathbb{Z}_d \mathfrak{A}_m$. Set $L = K(Y)[X]/(F(X^d, Y))$. Proposition 8 gives

$$w_2\langle L\rangle = ((m-l)V, \mp 2)_{K(Y)} = (\operatorname{dis}(F(X^d, Y)), \mp 2)_{K(Y)}.$$

(c) $m \equiv 1 \mod 2$, $d = 2^f \geq 4$. Let $l \in \mathbb{N}$ be an element with $l \in \mathbb{Q}^{\star 2}$ and $1 \leq l < m$, $\gcd(l, m) = 1$. Choose $s, t \in \mathbb{Z}$ with ms + tl = 1 and t even. Set $V = (-1)^{(m-1)/2} l^l m Y^2 - l^{-l}$. The splitting field of

$$G(X^d, U, Y) = H(X^d, (m-l)(U^2 - 2), V)$$

over K(U,Y) is a regular extension with Galois group $\mathbb{Z}_d \wr \mathfrak{A}_m$. By Hilbert's Irreducibility Theorem there are elements $u,y \in K^*$ such that $G(X^d,u,y)$ has Galois group $\mathbb{Z}_d \wr \mathfrak{A}_m$ over K. Since

$$\operatorname{Gal}(G(X^d, u, y)) = \mathbb{Z}_d \wr \mathfrak{A}_m < \operatorname{Gal}(G(X^d, uy^{-1}Y, Y)) < \mathbb{Z}_d \wr \mathfrak{A}_m,$$

the polynomial $G(X^d, uy^{-1}Y, Y)$ has Galois group $\mathbb{Z}_d \wr \mathfrak{A}_m$ over K(Y). The splitting field of $G(((uy^{-1}Y)^2 - 2)X, uy^{-1}Y, Y)$ over K(Y) is a regular extension of K(Y). Since t is even, $G(0, uy^{-1}Y, Y) \notin \overline{K}(Y)^{\star 2}$. Hence the splitting field of $G(X^d, uy^{-1}Y, Y)$ is a regular extension of K(Y). Set $L = K(Y)[X]/(G(X^d, uy^{-1}Y, Y))$. Proposition 8 gives

$$w_2\langle L\rangle = ((uy^{-1}Y)^2 - 2, 2^f)_{K(Y)} = (\operatorname{dis}(G(X^d, uy^{-1}Y, Y)), 2^f)_{K(Y)} = 0,$$

since $-1 \in K^{*2}$. Hence $e^*(s_{md}^{\pm}) = 0$.

Now consider the double cover $(\omega^{d/4}, \omega, \omega) = (0, \omega, 0) + (\omega^{d/4}, 0, \omega) = (0, \omega, 0) + \text{res}(\mathfrak{S}_{md}^-)$. Set

$$L' = K(Y)[X]/(F(X,Y)), \qquad L := K(Y)[X]/(F(X^d,Y))$$

if m is even and L' = K(Y)[X]/(G(X,Y)), $L := K(Y)[X]/(G(X^d,Y))$ if m is odd. Let N, N' be normal closures of L/K(Y), L'/K(Y) resp. By the above N/K(Y) and N'/K(Y) are regular extensions. We further know $G(N'/K(Y)) \simeq \mathfrak{A}_m$ and $G(N/K(Y)) \simeq \mathbb{Z}_d \wr \mathfrak{A}_m$. Since $-1 \in K^{\star 2}$, Proposition 8 gives $w_2\langle L' \rangle = 0$. Hence N'/K(Y) is contained in a regular Galois extension $\widetilde{N}/K(Y)$ with Galois group $\widetilde{\mathfrak{A}}_m$. By Proposition 5, $\widetilde{N}N/K(Y)$ is a solution of the embedding problem defined by N/K(Y) and $(0, \omega, 0)$. We get $\inf((0, \omega, 0)) = 0$. From $w_2\langle L \rangle = 0$ we conclude $\inf((\omega^{d/4}, 0, \omega)) = 0$. Hence $(\omega^{d/4}, \omega, \omega)$ is in the kernel of the inflation map induced by $F(X^d, Y)$ resp. $G(X^d, Y)$.

(a) Consider
$$(\mathbb{Z}_2 \wr \mathfrak{A}_m)^0$$
. If $m \equiv 0 \mod 2$, choose $a, b, c \in \mathbb{Q}^*$ with

$$a^2 + b^2 = (m - l)l^l - c^2$$

and set

$$V = (l^l + (-1)^{m/2}(m-l)T^2)^{-1}$$
 and $T = (m-l)^{-1}\frac{((Y^2 - 1)a - 2bY)^2}{(Y^2 + 1)^2}$.

Then

$$(m-l)V^{-1} = c^2 + \frac{((Y^2-1)b+2aY)^2}{(Y^2+1)^2} \notin \overline{\mathbb{Q}}[Y]^{*2},$$

since $-1 \notin \mathbb{Q}^{*2}$. Thus $((m-l)V, -1)_{K(Y)} = 0$. Now consider $F(X^2, Y) = H(X^2, 1, V)$.

If $m \equiv 1 \mod 2$, then use the polynomial $H(X^2, -(m-l)(U^2+1), V)$, t even, $V = (-1)^{(m-1)/2} l^l m Y^2 - l^{-l}$ and proceed as in (c).

10. Central extensions of $\mathbb{Z}_d \wr \mathfrak{A}_m$, d odd. The unique non-trivial double cover of $\mathbb{Z}_d \wr \mathfrak{A}_m$, where d is odd and m > 7, is a covering group of $\mathbb{Z}_d \wr \mathfrak{A}_m$. Following the arguments of Kotlar, Schacher and Sonn [8], we can reduce the question whether all central extensions of $\mathbb{Z}_d \wr \mathfrak{A}_m$, d odd and m > 7, are Galois groups over an algebraic number field to certain pull-backs. This method gives an affirmative answer to the problem.

The central extension $1 \to \mathcal{A} \to \mathcal{E} \to \mathcal{G} \to 1$ is called a *stem extension* of \mathcal{G} if $\mathcal{A} \subset \mathcal{E}'$. If in addition $\mathcal{A} \simeq M(\mathcal{G})$, then we call it a *stem cover* of \mathcal{G} . Theorem 6 of [8] generalizes as follows.

Proposition 9. Let \mathcal{G} be a group satisfying

- 1. G' = G''.
- 2. \mathcal{G}/\mathcal{G}' is cyclic of order d and there is an element $\sigma \in \mathcal{G}$ of order d which generates \mathcal{G}/\mathcal{G}' .

Let K be a (rational function) field with the following properties.

- 1. If the finite group \mathcal{H} is the Galois group of a (regular) extension of K, then so is $\mathcal{H} \times \mathcal{A}$ for every finite abelian group \mathcal{A} .
- 2. Every factor group of the Galois group of a (regular) extension of K is the Galois group of a (regular) extension of K.

If for every stem cover $\widetilde{\mathcal{G}}$ of \mathcal{G} and every d' with $d \mid d'$ and such that $p \mid d'$ iff $p \mid d$ the pull-back

$$\widetilde{\mathcal{G}} \times_{\mathcal{G}/\mathcal{G}'} \mathbb{Z}_{d'}$$

is the Galois group of a (regular) extension of K, then every central extension of \mathcal{G} is the Galois group of a (regular) extension of K.

Here $\widetilde{\mathcal{G}} \times_{\mathcal{G}/\mathcal{G}'} \mathbb{Z}_{d'}$ stands for the pull-back of $\widetilde{\mathcal{G}}$ and $\mathbb{Z}_{d'}$ along the homomorphisms $\widetilde{\mathcal{G}} \to \mathcal{G} \to \mathcal{G}/\mathcal{G}'$ and $\mathbb{Z}_{d'} \to \mathbb{Z}_d \simeq \mathcal{G}/\mathcal{G}'$. We just have to imitate the proof of Theorem 6 in [8].

Proof of Theorem 3. $\sigma = (0, \ldots, 0, 1; \mathrm{id}) \in \mathbb{Z}_d \wr \mathfrak{A}_m$ has order d and generates $(\mathbb{Z}_d \wr \mathfrak{A}_m)/(\mathbb{Z}_d \wr \mathfrak{A}_m)'$. Hence we can apply Proposition 9 (see [10, Zusatz 1, p. 226]). Let $d' \in \mathbb{N}$ be any odd integer with $d \mid d'$. By Lemma 3 and Section 4 the pull-back $\widetilde{\mathfrak{A}}_m \times_{\mathfrak{A}_m} (\mathbb{Z}_d \wr \mathfrak{A}_m)$ is the unique stem cover of $\mathbb{Z}_d \wr \mathfrak{A}_m$. We already know that there is a regular Galois extension L/K with Galois group \mathfrak{A}_m , contained in regular Galois extensions \widetilde{N}/K , M/K with $G(\widetilde{N}/K) \simeq \widetilde{\mathfrak{A}}_m$ and $G(M/K) \simeq \mathbb{Z}_{d'} \wr \mathfrak{A}_m$. We get $\widetilde{N} \cap M = L$ and $G(\widetilde{N}M/K) \simeq \widetilde{\mathfrak{A}}_m \times_{\mathfrak{A}_m} (\mathbb{Z}_{d'} \wr \mathfrak{A}_m)$. Set $M_{ab} = M^{(\mathbb{Z}_{d'} \wr \mathfrak{A}_m)'}$ and $M_0 = M^{\mathcal{U}}$, $\mathcal{U} = \{(t_1, \ldots, t_m; \mathrm{id}) \mid t_i \in \ker(\mathbb{Z}_{d'} \to \mathbb{Z}_d)\}$. Then $G(M_0/K) \simeq \mathbb{Z}_d \wr \mathfrak{A}_m$. We further get

$$M_0\cap M_{ab}=M^{\mathcal{U}\cdot(\mathbb{Z}_{d'}\mathfrak{l}\mathfrak{A}_m)'}=M_0^{(\mathbb{Z}_{d}\mathfrak{l}\mathfrak{A}_m)'}.$$

The Galois extension $\widetilde{N}M_{ab}/K$ has Galois group $(\widetilde{\mathfrak{A}}_m \times_{\mathfrak{A}_m} (\mathbb{Z}_d \wr \mathfrak{A}_m)) \times_{\mathbb{Z}_d} \mathbb{Z}_{d'}$.

References

- K. S. Brown, Cohomology of Groups, Grad. Texts in Math. 87, Springer, New York, 1982.
- [2] M. Epkenhans, On the Galois group of $f(X^d)$, Comm. Algebra, to appear.
- [3] —, Trace forms of trinomials, J. Algebra 155 (1993), 211–220.

- [4] M. Epkenhans, On double covers of the generalized symmetric group $\mathbb{Z}_d \wr \mathfrak{S}_m$ as Galois groups over algebraic number fields K with $\mu_d \subset K$, J. Algebra 163 (1994), 404-423.
- [5] B. Huppert, Endliche Gruppen I, Grundlehren Math. Wiss. 137, Springer, Berlin, 1967.
- [6] M. Ikeda, Zur Existenz eigentlicher galoisscher Körper beim Einbettungsproblem für galoissche Algebren, Abh. Math. Sem. Univ. Hamburg 24 (1960), 126-131.
- [7] G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monographs (N.S.), Clarendon Press, London, 1987.
- [8] D. Kotlar, M. Schacher and J. Sonn, Central extension of symmetric groups as Galois groups, J. Algebra 124 (1989), 183-198.
- [9] S. Lang, Introduction to Algebraic Geometry, Addison-Wesley, 1972.
- [10] B. H. Matzat, Konstruktive Galoistheorie, Lecture Notes in Math. 1284, Springer, Berlin, 1987.
- [11] J. F. Mestre, Extensions régulières de $\mathbb{Q}(T)$ de groupe de Galois \tilde{A}_n , J. Algebra 131 (1990), 483-495.
- [12] O. T. O'Meara, Introduction to Quadratic Forms, Springer, Berlin, 1963.
- [13] M. Schacher and J. Sonn, Double covers of the symmetric groups as Galois groups over number fields, J. Algebra 116 (1988), 243-250.
- [14] J. P. Serre, Corps Locaux, Hermann, Paris, 1968.
- [15] —, L'invariant de Witt de la forme $Tr(x^2)$, Comment. Math. Helv. 59 (1984), 651-676.
- [16] —, Topics in Galois Theory, 1, Res. Notes in Math. 1, Jones and Bartlett, Boston, 1992.
- [17] J. Sonn, Central extensions of S_n as Galois groups via trinomials, J. Algebra 125 (1989), 320-330.
- [18] —, Central extensions of S_n as Galois groups of regular extensions of $\mathbb{Q}(T)$, ibid. 140 (1991), 355–359.
- [19] N. Vila, On central extensions of A_n as Galois group over \mathbb{Q} , Arch. Math. (Basel) 44 (1985), 424–437.
- [20] —, On stem extensions of S_n as Galois group over number fields, J. Algebra 116 (1988), 251–260.
- [21] H. Völklein, Central extensions as Galois groups, ibid. 146 (1992), 144-152.

Fb Mathematik

Universität-Gesamthochschule Paderborn

D-33095 Paderborn, Germany

E-mail: martine@uni-paderborn.de

Received on 8.6.1996

(3002)