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On decimal and continued fraction
expansions of a real number

by

C. FAIVRE (Marseille)

0. Introduction. Let x be an irrational number. We deal with the
problem of finding from the decimal expansion of x, the first k£ (where & is a
given integer) partial quotients of the regular continued fraction expansion
of x. More precisely, for each n > 1, denote by z,,y, with z, < z < y,
the two consecutive nth decimal approximations of z. We assume that the
integer n is such that the numbers x,, and y, have finite continued fraction
expansions which coincide up to order k, i.e., z,, = [ag; a1, ..., ak,...] and
Yn = [ao;aq,...,ak,...] for some integers «;. Since the set of numbers
which have a continued fraction which begins with ag, ..., ay is an interval,
it follows that z = [ap;aq,...,ak,...], in other words ag,aq,...,qp are
precisely the first k£ partial quotients of x. Writing the two rationals x,,, y,
as a quotient p/q of two integers, i.e., writing

n

Tn = [1100nx] and Yn = Tn + 107717
where [y] denotes the largest integer < y for each real number y, their con-
tinued fraction expansion may be computed exactly. In fact, for a rational
number p/q, the continued fraction algorithm shows that we only have to
perform operations on integers. This gives a practical method to compute
the first k partial quotients of an irrational number if we know as above the
n digits of its decimal expansion.

We can believe that for most irrational numbers z, the integer n must
be very large compared to k. Denote precisely by k, = k,(x) the largest

integer k > 0 such that we can write z,, = [ag;1,...,qk,...] and y, =
[o; Q... ay,...] for some integers a; with ap = [z]. Note that such a
representation is always possible. In fact, [x,] = [x] = ap and [y,] = ap or
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Yn = oo + 1 and in this last case we can write y,, = [ao;1]. Hence, z,, y,
will give k,, partial quotients of x.
In [2] Lochs has proved the following beautiful and surprising result.

THEOREM (Lochs). For almost all irrationals x, with respect to Lebesgue
measure, we have

kn(z)  6log10log2

lim 5

~ 0.9702.

Since the constant 0.9702... of the above theorem is rather close to 1,
one can almost say that for large n, the n decimals determine the n first
partial quotients.

Consider two examples. For z = ¥/2 = 1.259921 ..., we have

rs = 1.25992 and y; = 1.25993.
A computation shows that
Ts = [1;371757171)4)27571’3] and Ys = [1;3)1)5715155555172317473]'

Therefore k5(x) = 5 and = = [1;3,1,5,1,1,...]. Thus we obtain from the
five decimals of = the first five partial quotients. As another example, the
first 1000 decimals of 7 give exactly 968 partial quotients (see [3]).

In this paper we improve the above theorem of Lochs.

Denote by zy the constant (6log 101log2)/72. As probability measure on
[0,1] we will consider the Lebesgue measure denoted by P in this paper. We
prove the following theorem.

THEOREM 1 (main theorem). For all € > 0, the probability of the set of x
for which the distance of k,(z)/n to zy is greater than or equal to € decreases
geometrically to 0, i.e., there exist positive constants C, X (depending on ¢)
with 0 < A < 1 such that

b
g

n

Zs) < CA\"

for all integers n > 1.

The above theorem yields immediately that > P(|k,/n — z0| > €) < 00
for all € > 0. Then with the Borel-Cantelli lemma, we deduce easily as a
corollary the theorem of Lochs.

The proof of the main theorem will show more precisely that

n—oo N

1 kn,
limsuplogP<n <zy— 5) <0i(e) (0<e<z2),

1 n
limsuplogP(k > 20 —l—s) < bs(e),
n

n—oo 1
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with

1
nf ——(—tlogl0+ (20 —¢)logA\(2 —2t)) <0

0 = i
1) o<}e<1/2 t+1

and
Os(c) = iI;%(O&lOg 10 + (20 + ) log A(2 + 2c0)) < 0.

In the above formulas A(2 — 2t) and A(2 + 2a) are the dominant eigen-
values of some operators Lg, s > 1 (transfer operators) defined in Section 2.

The formulas giving 6; and 05 are interesting. If it is possible to extract
further information about the location of the eigenvalues of the operators
L, then we will have more precise estimates of 6; and 0,.

We will also prove a result on approximation. For some irrationals x
it may happen that some decimals x,, are better approximations of x than
Pn/n, i€, © — T, < |2 — pp/qn|. We may take for example z = /2 and
n =1,3,4,5. However, the probability of this to happen decreases quickly
to 0 as n — oo according to the following theorem.

THEOREM 2. There exist positive constants C,p with 0 < p < 1 such
that

Pn
xr — —
n

P(J:—:cng

) <ou"  (n>1).

The proof of the above theorem will show more precisely that

1
limsuplogP<x—:Un < x—lﬁ > <40
n—oo T qn
with
9:ér;foa+1(alog10+log)\(2—|—2a)) < 0.

The following sections are devoted to the proof of Theorems 1 and 2.

1. Conditional probabilities. If aq,...,q; are given integers > 1,
the set of numbers in [0, 1] which have a continued fraction expansion which
begins with «a,...,q; is an interval (a fundamental interval) denoted here
as I(aq,...,q;). More precisely,

Pi Pit+Pi1| ...
T if 7 is even,
I(ag,...,0;) = ZZ’ f; ‘h*pf
[1 ] if i is odd,
¢+ qi-1 G
where as usual
»;
= =1[0;01,...,q4].

qi
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In the following we will write I(a1,...,a;) = [b;,¢;] for short. Let r,; =
[10™b;] and 7}, = [10™¢;], thus
Tni Tns + 1 7"7,”» 7“7/“- + 1

i d <g¢
1on =S e A e 3G S T m

Let x € [0,1] be an irrational number. If z € [b;, ¢;], then k,,(z) > i only
when z,,,y, both belong to [b;,¢;]. If (rn; +1)/10™ > ¢; then y,, = (rpn; +
1)/10™, thus y,, & [bi,c;]. But if (rn; +1)/10™ < ¢;, we will have z,,,y, €
[bi, ¢i] only when z € [(rn; + 1)/10™,7},/10"] in the case r,;/10" < b; and

when x € [b;,r/,,/10"] in the case 7,;/10™ = b;. Since
1

T Gt 4

we see that the conditional probability

Pk, <i|lar=ag,...,a; = )
is given by
1 if T"{'OJ; Lo,
(Tnli(; Lo bi + ¢ — Ié;)%(ql +qi-1) if Tnlio—: ! < ¢; and ;8; < b,
<Ci - Ié;)QZ(QZ + gi—1) if rnli(;; ! < ¢ and IS:‘ = b;.

For all n > 1, let t,, and v,, be the functions defined by

tn(y) = 10"y — [10"y] and wv,(y) =1 —ta(y).

Since
Tni + 1 . b - Un(bi)
107 too1om
we can write P(k, <i|a; = a1,...,a; = ;) as
4
. i(Qi + qiz
1 if vn(bi)q(qlorlql) > 1,
qi(¢i + qi—1)
(vn (i) +%(Q))W
1) . qi(qi + qi—1) Tni
if vn(bi)loin <1 and 1o < b,
tn(ci)%‘(%‘ +qi—1) if v, (b;) qi(qi + qi—1) <1 and Tni _ b..
\ 10™ 10 10™
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Note that P(k, <i|a; = a1,...,a; = ;) is also equal to
. 9i(qi +qi—1)
1 f——=>1
T
i + qi— e 9ilqi + qi— Tni
@) S (b + (e BEE G g WL G) g g Tty
(g + ¢i—1) o 9i(gi +qi-1) Tni

In fact, if v, (b;)qi (¢ + qi—1)/10™ < 1 and ¢;(¢; + ¢i—1)/10™ > 1, or equiva-
lently if

107 <¢ and ¢ —b; < W7
then we will necessarily have r,; /10" < b; and (r,; +1)/10™ =/ ./10™, thus
’Un(bz) + tn(Ci) — e — b — 1
10m™ S qilg + gin)

Let T;,; be the random variable
Tni :P(k'n <i|a1,...,ai),
so, for the expectation of T},; we have

E(T,) = Py < i).

2. Transfer operators. Let £ = A, (D) be the Banach space of
bounded holomorphic functions on the disk D={z : |2—1| < 3/2}. The space
E is naturally endowed with the supremum norm || f||oc =sup,cp | f(2)|. For
each complex number s with Re(s) > 1, we consider the following operator
on I

L(NE =3 (njz)sf<niz> (e D).

n=1
Note that for s = 2, L is the “analogue in E” of the Perron—Frobenius
operator of the Gauss transformation of continued fractions.
We recall in the following theorem some known properties of these op-
erators Ly (see for example [4] and [1]).

THEOREM 3. (a) L, is a nuclear operator of order 0 (hence it is compact
in particular).

(b) For all real s > 1, Ly has a dominant eigenvalue \(s) > 0 of multi-
plicity 1.

(¢) The map s — A(s) is analytic.

(d) M(2) =1 and N (2) = —72/(1210g 2).
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A computation shows that the iterates of L, are given by the formula

. B 1 ZPn—1 1+ Pn
LY== Y (2qn_1 + qn)sf<2qn—1 + qn )

ki,....kn
where kq, ..., k, run over the integers > 1 and
P 100k, B

qn

In particular, we have
n L . (pn

nno = ¥ ()

sk I

Using the well-known formula

dn—1 = [0, k’n, .. .,k‘l],
dn

we see by inverting the order of summation that we also have

(3) o= 3 qlf(q)

kl?"'7k7L qn

We use the operators L to prove some probabilistic estimates about the
denominators of the convergents ¢, which will be useful later. The letter £
denotes as usual the expectation operator.

PROPOSITION 1. (i) For each o > 0, there ezists a constant C' = C
such that

E<q§a> <ON'(2a+2) (n>1).

n

(ii) For each t < 1/2, there exists a constant C = Cy such that
B(@ZhHh <ox(2-2t) (n>1).
Proof. (i) The expectation of 1/¢2% is given by

1 1 1
El—) = I S
<CI%°“> Z : 2 qn(gn + gn-1)

ki,...k

- ¥ s
k1,....kn q72lO‘+2 1+ qn—l/QH’
thus from (3), E(q,,**) = L3,,5(f)(0), where f(z) =1/(1+2). From (b) of
Theorem 3, we deduce that |L5, 5(f)(0)| < CA"(2a + 2) for some constant
C > 0, thus (i) is proved.
(ii) Following the lines of (i), the expectation of ¢3¢ is given by E(g2!) =
Ly _5,(f)(0) for t <1/2, with the same function f. This proves the result. m
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3. Proof of the main theorem. First part. Since 0 < T;,; < 1, we
have for all a > 0,

(4) E(Ty) <a+ P(Ty; > a).
From (1), we have

qi(qi + qi—1)

Thi < (vn(bi) +tn(ci)) o ;

thus

4q?
T < —%.
T
Note that E(g?) = co. Hence we cannot obtain a majorization of F(T,;)
directly from the above inequality by taking expectations. However, we
deduce

10m = 4
From the Markov inequality, for all ¢ > 0,

P i>g < é tlofntE( 2t)
10" = 1) = \a %)

Hence from (4) and Proposition 1, where we restrict 0 < t < 1/2, we get
the inequality

2
P(Tpi > a) < P( 4 a).

C4110~™ N (2 — 2t)
+ ; .
a
Taking a = AY ¢+ with A = C4'107™\¥(2 — 2t), we obtain
Pk, < i) < 24D,

Let (i,,) be a sequence of integers > 1 such that

Pk, <i) = E(Tw) <a

. p
lim — =2y —¢
n—oo N
and
in

— >zg—e foralln>1.
n

From the last inequality for P(k, < i) we obtain for all 0 < t < 1/2,

1 1
lim sup — log P(k,, < ip) < m(—tlog 10+ (20 — €) log A(2 — 2t)).

n—oo

Thus
. 1 kp,
limsup —log P| — < zg—¢e | < 0(¢)
n

n—oo N
with

01(g) (—tlog 10 + (29 — &) log A\(2 — 2t)),

= inf ——
o<t<1/2t+1
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since P(k,/n < zy —e) < P(k,, < i,) from the choice of (i,,). Now we show
that 61(¢) < 0. In fact, consider for v < 1/2 the function h defined by
h(u) = —ulog 10 + (20 — &) log A\(2 — 2u).

By (d) of Theorem 3, h(0) = 0 and 2/(0) = —log 10+ (z0—¢)7?/(6log 2) < 0.
Thus if ¢ is sufficiently small, then h(t) < 0, which implies that 6;(¢) < 0 as
asserted.

4. Proof of the main theorem. Second part. From (2) we have
P<‘M%1Jgfi‘1) > 1> < P(Thi = 1) < E(Ty) = Pkn < i),
thus
10"
Pk, > i) < P< > 1).

¢i(qi + qi—1)
This last inequality can also be proved by noticing that if k,, > ¢ then z,,, y,,
are in the same i-fundamental interval as x, thus

1 1

Yn — Tn = 7 S T
10" = qi(qi + gi—1)

and this gives as above

1 n

Plhy > i) < p(o > 1>.
qi(qi + qi-1)
We can write
, 10"
Pk, >i) <P = >1).
q.

(3
From the Markov inequality and Proposition 1, we get for all a > 0,

1 .

[e3%
1

Now take a sequence (i,) of integers > 1 such that

.1
lim = =zy+¢

n—oo N
and
In <zy+e foralln>2.
n
We have
: 1 kn,
limsup —log P| — > zg+¢ | < 05(¢)
n—oo N n
with

O2(e) = info(a log 10 + (20 + €) log A\(2 + 2av)).

a>
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Now we prove that 02(¢) < 0. As in the first part of the proof, consider
the function
h(u) = ulog10 + (z0 + &) log A(2 + 2u)  (u > —1/2),

and note that ~2(0) = 0 and h’(0) < 0, thus h(a) < 0 for « sufficiently close
to 0 and A5(e) < 0.

5. Proof of Theorem 2. From z — z,, = t,,(z)/10™ and

1
l‘—& <72,
dn dn

17’L
P<x—xn§ x—pn>§P<tn<02>.
qn dn

For all e > 0 and a > 0, we can write

10" 10" 10" \™ (2 4 2
P(tn<qo2>§P(tn§5)+P<2>5>§6+CO (2+20)

806

we deduce

n n

The last inequality follows from the Markov inequality, Proposition 1, and
the fact that for all n > 1, ¢, is distributed according to the uniform law
on [0,1]. Taking

e = (C10™*A™(2 4 2a) )Y/ (D)

we have
10"
P<tn < 2> < 2(C1O™ N (2 + 2a)) Y/ (e +D)
dn
thus
1 10"
lim sup — 1ogP(tn < 2> <4
n—oo N qn
with

9:ér;foa+1(alog10+log/\(2—|—2a)) <0,

which proves the theorem. m
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