Errata to the paper

“On a functional equation satisfied by certain Dirichlet series”

by

E. Carletti and G. Monti Bragadin (Genova)

We have to point out that formula (5) in [1] is wrong, as well as the formula for \(\Phi_L(s) \) given in the statement of the Theorem in [1]. The following lemma will take the place of formula (5) in [1].

Lemma 0.1. The following formula for derivatives of higher order of \(z^{\nu}I_\nu(z) \) holds:

\[
\frac{d^p}{dz^p}(z^{\nu}I_\nu(z)) = \sum_{l=0}^{\lfloor p/2 \rfloor} (2l-1)!! \left(\frac{p}{2l}\right) z^{\nu-l}I_{\nu-(p-l)}(z)
\]

if we put \((-1)!! = 1\).

Proof. From the well known formula (see [2])

\[
\frac{d}{dz}(z^{\nu}I_\nu(z)) = z^{\nu}I_{\nu-1}(z)
\]

we derive, by induction, that if \(p \geq 1 \) then

\[
\frac{d^p}{dz^p}(z^{\nu}I_\nu(z)) = \sum_{l=0}^{\lfloor p/2 \rfloor} \beta_{p,l} z^{\nu-l}I_{\nu-(p-l)}(z).
\]

By a direct computation we get \(\beta_{p,0} = 1 \) for all \(p \geq 1 \). Comparing

\[
\frac{d^{p+1}}{dz^{p+1}}(z^{\nu}I_\nu(z)) = \sum_{l=0}^{\lfloor (p+1)/2 \rfloor} \beta_{p+1,l} z^{\nu-l}I_{\nu-(p+1-l)}(z)
\]

with

\[
\frac{d}{dz}\left(\frac{d^p}{dz^p}(z^{\nu}I_\nu(z))\right)
\]
developed by (0.2) from (0.3), we obtain the following recurrence formula:

\[\beta_{p+1,t} = (p - 2t + 2)\beta_{p,t-1} + \beta_{p,t}, \]

where \(p \geq 1 \), \(0 \leq t \leq \lfloor (p + 1)/2 \rfloor \) and \(\beta_{p,i} = 0 \) if \(i > \lfloor p/2 \rfloor \) or \(i < 0 \). From (0.4) for \(t \geq 2 \) due to the well known formula

\[\sum_{k=0}^{m} \binom{n+k}{n} = \binom{n+m+1}{n+1} \]

we obtain, for all \(p \geq 1 \),

\[\beta_{p+1,t} = (2t - 1)!! \binom{p+1}{2t}. \]

We note that \(\beta_{1,0} = 1 \), so (0.5) holds if \(p = 0 \). If \(t = 0 \), taking \((-1)!! = 1\) the above formula holds by a direct computation. For \(t = 1 \), (0.5) follows directly from (0.4). ✷

By using formula (0.1) we obtain the corrected form for the function \(\Phi_L(s) \) given in the statement of the Theorem in [1].

In the proof of the Theorem of [1] we have to replace page 270, from the fifth line starting with “By Cauchy’s theorem . . .” up to the end of the page, with the following:

By Cauchy’s theorem we have

\[I_N(s) = -\sum_{-N \leq 2n \leq N, n \neq 0} \text{Res} \left(H(z)I_{s-1/2} \left(\frac{\delta}{2} z \right) z^{s-1/2} ; 2\pi ni \right). \]

If we put

\[A(z) = I_{s-1/2} \left(\frac{\delta}{2} z \right) z^{s-1/2}, \]

its Taylor series at \(s = 2\pi ni, n \neq 0 \), is

\[A(z) = \sum_{m=0}^{\infty} \frac{1}{m!} A^{(m)}(2\pi ni)(z - 2\pi ni)^m. \]

Then we have

\[\text{Res}(H(z)A(z); 2\pi ni) \]

\[= \sum_{p=1}^{d} \sum_{l=0}^{(d+1)} \frac{1}{l!} \alpha_p A^{(l)}(2\pi ni) = \sum_{p=0}^{d} \frac{1}{p!} \alpha_p A^{(p)}(2\pi ni). \]
By (0.1),

\[A(p)(z) = \sum_{l=0}^{[p/2]} (2l - 1)!! \left(\frac{p}{2l} \right) \left(\frac{\delta}{2} \right)^{p-l} p^{s-1/2-l} I_{s-1/2-(p-l)} \left(\frac{\delta}{2} \right)^{p-l} z^{s-1/2-l}. \]

Therefore

\[I_N(s) = -\sum_{n \in \mathbb{Z}} \sum_{p=0}^{d} \sum_{l=0}^{[p/2]} \sum_{n \neq 0}^{\frac{p}{2l}} \frac{(2l - 1)!!}{p!} \left(\frac{p}{2l} \right) \left(\frac{\delta}{2} \right)^{p-l} \times \alpha_{n-p-1}^{n} (2n\pi i)^{s-1/2-l} I_{s-1/2-(p-l)} (\delta n\pi i). \]

By (2) and (3) of [1] the series

\[\sum_{n \neq 0}^{\frac{p}{2l}} \alpha_{n-p-1}^{n} (2n\pi i)^{s-1/2-l} I_{s-1/2-(p-l)} (\delta n\pi i) \]

converges absolutely and uniformly on compact subsets of \(\sigma < 0 \). Thus, for \(\sigma < 0 \), we have

\[I(s) = -\sum_{n \in \mathbb{Z}} \sum_{p=0}^{d} \sum_{l=0}^{[p/2]} \frac{(2l - 1)!!}{p!} \left(\frac{p}{2l} \right) \left(\frac{\delta}{2} \right)^{p-l} \times \alpha_{n-p-1}^{n} (2n\pi i)^{s-1/2-l} I_{s-1/2-(p-l)} (\delta n\pi i). \]

Then we derive the final formula for \(\Phi_L(s) \) in \(\sigma > 1 \):

\[\Phi_L(s) = I(1 - s) = -\sum_{p=0}^{d} \sum_{l=0}^{[p/2]} \sum_{n \neq 0}^{\frac{p}{2l}} \frac{(2l - 1)!!}{p!} \left(\frac{p}{2l} \right) \left(\frac{\delta}{2} \right)^{p-l} \times \alpha_{n-p-1}^{n} (2\pi n\pi i)^{1/2-s-l} I_{1/2-s-(p-l)} (\delta n\pi i). \]

References

Dipartimento di Matematica
Università di Genova
Via Dodecaneso 35
I-16146 Genova, Italy
E-mail: carletti@dima.unige.it
monti@dima.unige.it

Received on 8.10.1996