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On integer solutions to x2 − dy2 = 1, z2 − 2dy2 = 1

by

P. G. Walsh (Ottawa, Ont.)

1. Introduction. Let d denote a positive integer. In [7] Ono proves
that if the number of representations of d by the form 2a2 + b2 + 8c2 equals
twice the number of representations of d by the form 2a2 + b2 + 32c2, then
the system of simultaneous Pell equations

(1) x2 − dy2 = 1, z2 − 2dy2 = 1

has no solutions in positive integers x, y, z. This is achieved by showing that
when the stated condition holds, the associated elliptic curve Y 2 = X3 +
3dX2 + 2d2X has rank equal to zero, whereas a positive integer solution to
(1) would give rise to a point of infinite order on this curve. Heuristics show
that this condition only applies for a set of integers which has asymptotic
density less than 1/2. This is in contrast to the fact, which we prove under
the hypothesis of the abc conjecture, that the set of squarefree integers d for
which (1) has a nontrivial solution grows exponentially. Furthermore, there
does not seem to be any obviously fast method of checking this condition,
at least from the point of view of computational complexity.

The purpose of this paper is to prove several results concerning the
solvability of (1) in positive integers x, y, z. We will refer to such solutions as
nontrivial. In our first result we describe the set of squarefree integers d for
which (1) has a nontrivial solution. Moreover, using a recent result of Cohn
on the Diophantine equation X4− dY 2 = 1, we show that at most one such
solution can exist for a given d, and describe that solution explicitly. We
remark that Bennett [1] has recently shown that systems of simultaneous
Pell equations of the form

x2 −my2 = 1, z2 − ny2 = 1 (0 6= m 6= n 6= 0)

have at most 3 nontrivial solutions, and suggested that such systems have
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only one nontrivial solution, provided that they are not of a very specific
form which is described in [1]. Thus for the system above (with m = d and
n = 2d), we have a solution of Bennett’s problem.

We then prove that if d is squarefree and is a product of less than 5
primes, then a nontrivial solution to (1) exists only for d = 6, 210, 1785
and 60639. We also show that if a nontrivial solution exists for d squarefree,
then d is divisible by a prime of the form 4n + 3. These two results lead to
many cases not covered by the result of [7], and moreover, in many of these
cases the associated elliptic curve described above has nonzero rank, which
means that the method of [7] cannot be used to deal with these cases. As
a consequence of the latter result, we show that no nontrivial solution to
(1) exists if either of the fundamental units in Q(

√
d), Q(

√
2d) have norm

equal to −1. Another consequence is that if x, y, z is a nontrivial solution
to (1), then x + y

√
d is the fundamental unit in Q(

√
d). In the last part of

this paper we show that the sequence of squarefree integers {d1, d2, . . .} for
which (1) has a nontrivial solution grows exponentially if one assumes the
abc conjecture. This provides a (heuristic) polynomial-time algorithm for
deciding if (1) has a nontrivial solution when d is squarefree.

2. Finding the solutions. In this section we prove a rather simple
result which determines the integers d for which (1) has nontrivial solutions.
It is clear that we can restrict our attention to finding those squarefree
integers d for which (1) has a nontrivial solution. We begin by stating the
recent result in [4].

Theorem A (Cohn, 1996). Let the fundamental solution of the equation
v2 −Du2 = 1 be a + b

√
D. Then the only possible solutions of the equation

x4 −Dy2 = 1 are given by x2 = a and x2 = 2a2 − 1; both solutions occur in
only one case, D = 1785.

For a positive integer n we define the square class of n, denoted by 〈n〉,
to be the integer m, where m is squarefree and n = mx2 for some integer x.

Theorem 1. For k ≥ 0, let Tk and Uk be integers with Tk + Uk

√
2 =

(1 +
√

2)k, and define dk to be 〈(T 2
2k+1 − 1)/2〉. Then {dk}k≥1 is the set of

squarefree integers d for which (1) has a nontrivial solution. Moreover , if
(1) does have a nontrivial solution, then it is unique and given by

z = T2k+1, x = U2k+1, y = ((T 2
2k+1 − 1)/(2dk))1/2.

P r o o f. Assume that d is a squarefree integer, and that x, y, z is a
nontrivial solution to (1). We see that z2−1 = 2(x2−1), and so x, z satisfy
the Pell equation

(2) z2 − 2x2 = −1.
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All solutions in positive integers to (2) are (z, x) = (T2k+1, U2k+1), where Tk

and Uk are defined above. It follows that T 2
2k+1 − 1 = 2dy2, and therefore

d = dk. Conversely, if d = dk, then the preceding equations define a solution
of (1). To prove the uniqueness of this solution, first notice that the integers
x, y, z satisfy z4− d(2xy)2 = 1. By Theorem A, there is only one solution of
this equation for a given value of d, except for d = 1785. The fundamental
solution of X2 − 1785Y 2 = 1 is 132 + 4

√
1785, and its square is 2392 +

1352
√

1785. The proof is completed by noticing that only the second of
these leads to a solution (x, y, z, d) = (169, 4, 239, 1785) of (1).

To illustrate the above result, the first few values in the sequence {dk}
are given below:

d1 = 6,
d2 = 210,
d3 = 1785,
d4 = 60639,
d5 = 915530,
d6 = 184030,
d7 = 14066106,
d8 = 80753867670,
d9 = 10973017315470,

d10 = 372759573255306,
d11 = 351745902037915,
d12 = 11949006236698685.

The above list indicates that the sequence {dk}k≥1 may grow exponen-
tially. For the sake of interest, we will show in the final section that this
exponential growth can be proved under the hypothesis of the abc conjec-
ture.

3. The number of distinct prime factors of d. The purpose of this
section is to prove that, with only four exceptions, which we give explicitly,
(1) has no nontrivial solutions if d has less than 5 distinct prime factors. We
retain all notation from the previous section.

Theorem 2. For k ≥ 5, dk has at least 5 distinct prime factors.

P r o o f. From the definition of Tk and Uk, we find that for all k ≥ 0,

(3) 2Tk = τk + (−1/τ)k, 2Uk

√
2 = τk + (−1/τ)k,

where τ = 1 +
√

2. From these equations we deduce that for all k ≥ 0,

T 2
2k+1 − 1 = 8TkUkTk+1Uk+1.

By definition, dk is the square class of TkUkTk+1Uk+1. It is evident that no
two of these four terms have a common divisor. Therefore, we can write dk
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as

(5) dk = 〈Tk〉〈Uk〉〈Tk+1〉〈Uk+1〉.
Consider the case where k is even. Then Uk = 2Tk/2Uk/2, and it follows

that

dk = 2〈Tk〉〈Tk/2〉〈Uk/2〉〈Tk+1〉〈Uk+1〉,
or

dk = (1/2)〈Tk〉〈Tk/2〉〈Uk/2〉〈Tk+1〉〈Uk+1〉,
depending on whether the power of 2 properly dividing Uk/2 is even or odd
respectively. Our goal is to show that except for the cases stated above,
each of the square classes are nontrivial and not equal to 2. By the result
on p. 98 of [10], 〈Tn〉 = 1 only for n = 1. By the main result of [5], 〈Un〉 = 1
only for n = 1 and n = 7. By Theorem 1 of [8], 〈Un〉 = 2 only for n = 2.
From these results we deduce that the only possible values of k which may
not lead to a product of at least 5 primes are k = 2, 4, 6, 14. It is easily
verified that d6 and d14 each have at least 5 distinct prime factors, which
completes the proof in the case where k is even.

If k is odd, we find that

dk = 2〈Tk〉〈Uk〉〈Tk+1〉〈T(k+1)/2〉〈U(k+1)/2〉,
or

dk = (1/2)〈Tk〉〈Uk〉〈Tk+1〉〈T(k+1)/2〉〈U(k+1)/2〉,
depending on whether the power of 2 properly dividing U(k+1)/2 is even or
odd. We find in this case that the only possible values of k which may not
lead to a product of at least 5 distinct prime factors are k = 1, 3, 13. It is
easily verified that d13 has at least 5 distinct prime factors, which completes
the proof of the theorem.

This result shows for example that (1) has no nontrivial solutions for
d = 5. This is of interest since the associated elliptic curve Y 2 = X3 +
15X2 + 50X has nonzero rank, and so the method of [7] is not applicable.
It is fairly simple task to construct many more examples of this type.

4. The units in Q(
√

d) and Q(
√

2d). The purpose of this section is
to prove another sufficient condition for (1) to have no nontrivial solutions.
We retain all of the notation from the previous sections.

Theorem 3. For k ≥ 1, dk is divisible by a prime of the form 4n + 3.

P r o o f. It is easy to prove by induction that Tk ≡ 3 (mod 4) if k ≡ 2, 3
(mod 4), and Tk ≡ 1 (mod 4) if k ≡ 0, 1 (mod 4). Therefore, from (5)
the result is immediate for k ≡ 1, 2, 3 (mod 4). We must deal with k ≡ 0
(mod 4). Let k = 2al, where a ≥ 2, and l is odd. It is easily proved by
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induction that Uk = 2aUlTlT2l . . . T2a−1l. In fact, it is actually the case that
〈Uk〉 = 2b〈Ul〉〈Tl〉〈T2l〉 . . . 〈T2a−1l〉, where b is either 0 or 1. This follows
from the fact that for all positive integers t and l, Ul divides Utl, Tl divides
U2tl, and gcd(Tl, Ul) = 1. Since 〈T2l〉 ≡ 3 (mod 4), it follows that 〈Uk〉 is
divisible by a prime of the form indicated in the statement of the result.

As in Theorem 2, this result provides a method to find many values of d
for which (1) has no nontrivial solution, and for which the associated elliptic
curve has nonzero rank, thereby prohibiting the method of [7] to apply. For
example, this result gives a second proof that (1) has no nontrivial solutions
for d = 5.

A special case of Theorem 3 is the following result.

Corollary 1. If either of the fundamental units εd and ε2d of Q(
√

d)
and Q(

√
2d) respectively have norm −1, then (1) has no nontrivial solutions.

P r o o f. Let m = d or 2d so that the norm of the fundamental unit in
Q(
√

m) is −1. Then there are integers X, Y such that X2 − mY 2 = −1,
and so mY 2 is a sum of two squares which are coprime. It follows that m,
and hence d, is not divisible by any prime of the form 4n + 3, and so by
Theorem 3, (1) has no nontrivial solutions.

Corollary 2. Let (x, y, z) be a nontrivial solution to (1). Then x+y
√

d
is the fundamental unit of Q(

√
d).

P r o o f. We have z2 +(2xy)
√

d = (x+y
√

d)2, so by Theorem A, x+y
√

d
is the fundamental solution to the Pell equation X2−dY 2 = 1. By Corollary
1, the Pell equation X2 − dY 2 = −1 is not solvable, so that x + y

√
d is the

fundamental unit of Q(
√

d) or its third power (see p. 64 of [9]). We must
show that this latter possibility cannot occur. If x+ y

√
d is the third power

of the fundamental unit εd, then εd = (a + b
√

d)/2, where a2− b2d = 4. Let
(ak + bk

√
d)/2 = ((a + b

√
d)/2)k; then a6 = 2z2. By Theorem 2 of [3], this

forces d = 29. By Theorem 2 above, (1) has no solutions for d = 29.

The following result diverges somewhat from the main topic at hand,
but nevertheless follows from what has been done so far, and seems to be of
interest for its own sake. It would be interesting to know whether a similar
result is true for discriminants other than 2.

Corollary 3. For k ≥ 1, let Tk + Uk

√
2 = (1 +

√
2)k be as above, and

for k > 1 let U2
k + (−1)k = mkV 2

k with mk squarefree. Then, except for
k = 2, 6, Uk + Vk

√
mk is the fundamental unit in Q(

√
mk). For k = 2, 6,

Uk + Vk
√

mk is the third power of the fundamental unit in Q(
√

mk).

P r o o f. For k odd we actually have mk = d(k−1)/2, and the result
follows from Corollary 2. We must deal with the case where k is even. In
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this case, T 2
k − 2U2

k = 1, and it follows from this and U2
k + 1 = mkV 2

k that
T 2

k + 1 = 2mkV 2
k . Therefore,

T 4
k − (2UkVk)2mk = 1.

By Theorem A, T 2
k + 2UkVk

√
mk is the fundamental solution of the Pell

equation X2 − mkY 2 = 1, and so X = Uk, Y = Vk is the solution of the
Pell equation X2 − mkY 2 = −1 with smallest possible positive values X
and Y . It follows that Uk + Vk

√
mk is the fundamental unit of Q(

√
mk) or

its third power. By the results of [2] and [3], the latter case can only occur
if mk = 5 or 29, which are precisely the cases k = 2 and k = 6.

5. The growth of {dk}. As was shown in Section 2, the set {dk}
appears to be growing exponentially, at least for the first few values. We
cannot prove this result unconditionally, but we can prove this under the
hypothesis of the abc conjecture. Proving exponential growth uncondition-
ally seems to be intractable with current methods. In fact, Stewart [11] has
proved a result using the theory of linear forms in the logarithms of algebraic
numbers which implies that the sequence {dk} grows at least linearly with
k, which is certainly very far from the truth.

Conjecture 1 (Oesterlé–Masser). Given ε > 0 there exists a positive
constant C = C(ε) depending only on ε such that for all triples (a, b, c) of
positive integers with a = b + c and gcd(a, b, c) = 1,

a < C
( ∏

p|abc

p
)1+ε

.

Using this conjecture we can prove the following result. Once again we
use the notation given in Theorem 1 and its proof.

Theorem 4 (assuming the abc conjecture). If τ = 1+
√

2, then for any
δ with 0 < δ < 2 there exists a positive constant C = C(δ) depending only
on δ such that for all k ≥ 1,

C(δ)τ (4−δ)k < dk < τ4k.

P r o o f. We first prove the second inequality. We know by definition that
T 2

2k+1 = 2dky2 + 1, and so we have dk < (1/2)T 2
2k+1. Also, T 2

2k = 2U2
2k + 1,

and so
√

2U2k < T2k. Let c be a positive number satisfying 1 + τ−4 < c <
2
√

2/τ . Then

T2k+1 = T2k + 2U2k < (1 +
√

2)T2k =
1 +

√
2

2
((3 + 2

√
2)k + (3− 2

√
2)k)

<
c(1 +

√
2)

2
(3 + 2

√
2)k =

c

2
τ2k+1,
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and so by our choice of c,

dk < (1/2)T 2
2k+1 <

c2

8
τ4k+2 < τ4k.

For the first inequality, recall from the proof of Theorem 1 that T2k+1 satis-
fies T 4

2k+1 = dk(2xy)2 +1, so by the abc conjecture we find that for all ε > 0
there exists a positive constant C1(ε) such that

T 4
2k+1 < C1(ε)(dkT2k+1xy)1+ε.

Fix δ and put ε = δ/(8 − δ), with 0 < ε < 1/3, so that 0 < δ < 2. Since
T 2

2k+1 + 1 = 2x2, we know that T2k+1 ≥ x, and so it follows that

T 2−2ε
2k+1 < C1(ε)(dky)1+ε.

Since T 2
2k+1 = 2dky2 + 1, we know that T2k+1 >

√
2d

1/2
k y, and so because

δ = 8ε/(ε + 1), it follows that there is a positive constant C2(δ) such that
for all k ≥ 1 the inequality

C2(δ)T 2−δ
2k+1 < dk

holds. Since

T2k+1 = T2k + 2U2k > (2 +
√

2)U2k =
(2 +

√
2)

2
√

2
((3 + 2

√
2)k − (3− 2

√
2)k)

= (1/2)(τ2k+1 − τ−2k+1) > (1/4)τ2k+1,

the result follows by putting C(δ) = (1/4)C2(δ).

Note that this provides an efficient (although heuristic) method for de-
termining for a squarefree positive integer d whether a nontrivial solution to
(1) exists. One simply computes d1, . . . , dk, where dk is a few decimal digits
larger than d, and checks if d is in the computed list. It is easy to see that
the computation of d1, . . . , dk can be performed in time which is polynomial
in the number of bits of d.
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