A note on Sinnott's index formula

by
Kazuhiro Dohmae (Tokyo)

0. Introduction. Let k be an imaginary abelian number field with exactly two ramified primes. The letters E and C denote the group of units and the group of circular units in k respectively. Sinnott's index formula for this case is the following (see Proposition 4.1, Theorem 4.1 and Theorem 5.1 in [6]).

Theorem A (Sinnott). Let k be an imaginary abelian number field with conductor $m=p_{1}^{e_{1}} p_{2}^{e_{2}}$, where p_{1} and p_{2} are distinct prime numbers and both e_{1} and e_{2} are positive integers. Denote by $k_{i}(i=1,2)$ the maximal subfield of k which is unramified outside $p_{i} \infty$. Let G be the Galois group of k over \mathbb{Q}. Further, $T_{p_{i}}$ and $D_{p_{i}}$ denote the inertia group and the decomposition group of p_{i} in $G(i=1,2)$. Then the group C has finite index in E, and

$$
\begin{equation*}
[E: C]=\frac{\left[k_{1}: \mathbb{Q}\right]\left[k_{2}: \mathbb{Q}\right]}{[k: \mathbb{Q}]} \cdot 2^{-g^{\prime}} \cdot 2^{\varepsilon_{1}\left[G: D_{p_{1}}\right]+\varepsilon_{2}\left[G: D_{p_{2}}\right]+\delta_{1}+\delta_{2}-1} \cdot Q h^{+}, \tag{1}
\end{equation*}
$$

where Q is the unit index of k, h^{+}the class number of the maximal real subfield of k and g^{\prime} some rational integer. Moreover, ε_{i} and δ_{i} are defined by

$$
\begin{aligned}
& \varepsilon_{i}= \begin{cases}0 & \text { if } k_{3-i} \text { is imaginary, } \\
1 & \text { otherwise },\end{cases} \\
& \delta_{i}= \begin{cases}0 & \text { if } k_{3-i} \text { is real and }\left[D_{p_{i}}: T_{p_{i}}\right] \text { is odd, } \\
1 & \text { otherwise },\end{cases}
\end{aligned}
$$

for $i=1,2$. Finally, the rational integer g^{\prime} satisfies $\mu \leq g^{\prime} \leq \nu$, where

$$
\begin{aligned}
\mu & =\sharp\left\{1 \leq i \leq 2: k_{i} \text { is imaginary }\right\}, \\
\nu & =\sharp\left\{1 \leq i \leq 2:\left[k_{i}: \mathbb{Q}\right] \text { is even }\right\} .
\end{aligned}
$$

In general, the formula (1) contains the unknown factor $2^{-g^{\prime}}$. But if both k_{1} and k_{2} are imaginary, then we have $\mu=\nu=2$ and $g^{\prime}=2$. Hence,

[^0]in this case, (1) reads
\[

$$
\begin{equation*}
[E: C]=\frac{\left[k_{1}: \mathbb{Q}\right]\left[k_{2}: \mathbb{Q}\right]}{[k: \mathbb{Q}]} \cdot 2^{-1} \cdot Q h^{+} \tag{2}
\end{equation*}
$$

\]

In a previous paper [1], we gave another proof of (2) by constructing a system of fundamental circular units (i.e., a basis of the free part of C) of k. It is the main purpose of this note to prove the following completely explicit version of Theorem A.

Theorem B. Let the notation be as in Theorem A. Then

$$
\begin{equation*}
[E: C]=\frac{\left[k_{1}: \mathbb{Q}\right]\left[k_{2}: \mathbb{Q}\right]}{[k: \mathbb{Q}]} \cdot 2^{\varepsilon_{1}\left[G: D_{p_{1}}\right]+\varepsilon_{2}\left[G: D_{p_{2}}\right]-1} \cdot Q h^{+} . \tag{3}
\end{equation*}
$$

The proof includes the explicit construction of a system of fundamental circular units of k. By the way, comparing (1) with (3), we obtain

$$
\begin{equation*}
g^{\prime}=\delta_{1}+\delta_{2} \tag{4}
\end{equation*}
$$

Kučera kindly wrote me a direct proof of the inequality $g^{\prime} \geq \delta_{1}+\delta_{2}$. But I have never found any direct proof of (4).

In the last section, we also mention our result on a real abelian number field with exactly two ramified primes.

1. Notation. Let k be an imaginary abelian number field of conductor $m=p_{1}^{e_{1}} p_{2}^{e_{2}}$. We note that k is a subfield of the m th cyclotomic field $K=$ $\mathbb{Q}\left(\zeta_{m}\right)$, where $\zeta_{m}=e^{2 \pi \sqrt{-1} / m}$. Let N be the subgroup of $T=(\mathbb{Z} / m \mathbb{Z})^{\times}$ which corresponds to $\operatorname{Gal}(K / k)$ under the natural isomorphism

$$
(\mathbb{Z} / m \mathbb{Z})^{\times} \ni t \bmod m \mapsto(t, K) \in \operatorname{Gal}(K / \mathbb{Q}),
$$

where the automorphism (t, K) maps ζ_{m} to ζ_{m}^{t}. Throughout this paper, we use the following symbols:

- $q_{1}=p_{1}^{e_{1}}, q_{2}=p_{2}^{e_{2}} ;$
- $\zeta=\zeta_{m}$;
- $K_{1}=\mathbb{Q}\left(\zeta_{q_{1}}\right), K_{2}=\mathbb{Q}\left(\zeta_{q_{2}}\right)$;
- $k_{1}=k \cap K_{1}, k_{2}=k \cap K_{2}$;
- W is the group of roots of unity in k;
- $D\left(q_{1}\right)=\left\langle-1, \mathrm{~N}_{K_{1} / k_{1}}\left(1-\zeta^{a q_{2}}\right): 1 \leq a<q_{1} \wedge\left(a, p_{1}\right)=1\right\rangle$;
- $D\left(q_{2}\right)=\left\langle-1, \mathrm{~N}_{K_{2} / k_{2}}\left(1-\zeta^{q_{1} b}\right): 1 \leq b<q_{2} \wedge\left(b, p_{2}\right)=1\right\rangle$;
- $D(m)=\left\langle-1, \mathrm{~N}_{K / k}\left(1-\zeta^{x}\right): 1 \leq x<m \wedge\left(x, p_{1}\right)=\left(x, p_{2}\right)=1\right\rangle$;
- $D=D\left(q_{1}\right) D\left(q_{2}\right) D(m)$;
- $C=D \cap E$ is the group of circular units in k;
- $T_{1}=\left\{a(=a \bmod m) \in T: a \equiv 1 \bmod q_{2}\right\} ;$
- $T_{2}=\left\{b(=b \bmod m) \in T: b \equiv 1 \bmod q_{1}\right\} ;$
- $T_{1}^{\prime}=\left\{a \in T_{1}\right.$: there exists $b \in T_{2}$ such that $\left.a b \in N\right\} ;$
- $T_{2}^{\prime}=\left\{b \in T_{2}\right.$: there exists $a \in T_{1}$ such that $\left.a b \in N\right\} ;$
- $J=-1 \bmod m \in T$;
- $J_{1} \equiv-1 \bmod q_{1} \wedge J_{1} \equiv 1 \bmod q_{2}$;
- $J_{2} \equiv 1 \bmod q_{1} \wedge J_{2} \equiv-1 \bmod q_{2}$.

Lemma 1. With the above notation we have:
(1) $\operatorname{Gal}\left(K_{1} / k_{1}\right)=T_{1}^{\prime}$,
(2) $\operatorname{Gal}\left(K_{2} / k_{2}\right)=T_{2}^{\prime}$,
(3) $\operatorname{Gal}\left(k / k_{1}\right)=T_{1}^{\prime} T_{2} / N$,
(4) $\operatorname{Gal}\left(k / k_{2}\right)=T_{1} T_{2}^{\prime} / N$.

Proof. Easy.
Remark. By the statements (1) and (2) of Lemma 1, we can see that k_{i} is imaginary if and only if $J_{i} \notin T_{i}^{\prime}(i=1,2)$.

In order to prove the theorem, we have to consider the following four cases separately:
I. Both k_{1} and k_{2} are imaginary $\left(\Leftrightarrow J_{1} \notin T_{1}^{\prime} \wedge J_{2} \notin T_{2}^{\prime}\right)$;
II. k_{1} is imaginary and k_{2} is real ($\Leftrightarrow J_{1} \notin T_{1}^{\prime} \wedge J_{2} \in T_{2}^{\prime}$);

II'. k_{1} is real and k_{2} is imaginary $\left(\Leftrightarrow J_{1} \in T_{1}^{\prime} \wedge J_{2} \notin T_{2}^{\prime}\right)$;
III. Both k_{1} and k_{2} are real $\left(\Leftrightarrow J_{1} \in T_{1}^{\prime} \wedge J_{2} \in T_{2}^{\prime}\right)$.

But case I was treated in [1], and cases II and II' are similar. So it is sufficient to consider cases II and III. In case II, we use the following symbols:

- $a_{1}(=1), a_{2}, \ldots, a_{r_{1}}$ a system of representatives for $T_{1} /\left\langle J_{1}\right\rangle T_{1}^{\prime} ;$
- $b_{1}(=1), b_{2}, \ldots, b_{r_{2}}$ a system of representatives for T_{2} / T_{2}^{\prime};
- $d_{1}(=1), d_{2}, \ldots, d_{s}$ a system of representatives for $T_{1}^{\prime} T_{2}^{\prime} / N$;
- $Y=\left\{a_{i_{1}} b_{i_{2}} d_{j}: 1 \leq i_{1} \leq r_{1} \wedge 1 \leq i_{2} \leq r_{2} \wedge 1 \leq j \leq s\right\} ;$
- $Y^{\prime}=Y-\left\{1, a_{2}, \ldots, a_{r_{1}}, b_{2}, \ldots, b_{r_{2}}\right\}$;
- $M=\left\{a_{i_{1}} q_{2}: 2 \leq i_{1} \leq r_{1}\right\} \cup\left\{q_{1} b_{i_{2}}: 2 \leq i_{2} \leq r_{2}\right\} \cup Y^{\prime}$;
- $M^{\prime}=M \cup\{0\}$.

And, in case III, we use the following ones:

- $a_{1}(=1), a_{2}, \ldots, a_{r_{1}}$ a system of representatives for T_{1} / T_{1}^{\prime};
- $b_{1}(=1), b_{2}, \ldots, b_{r_{2}}$ a system of representatives for T_{2} / T_{2}^{\prime};
- $d_{1}(=1), d_{2}, \ldots, d_{s}$ a system of representatives for $T_{1}^{\prime} T_{2}^{\prime} /\langle J\rangle N$;
- $Y=\left\{a_{i_{1}} b_{i_{2}} d_{j}: 1 \leq i_{1} \leq r_{1} \wedge 1 \leq i_{2} \leq r_{2} \wedge 1 \leq j \leq s\right\}$;
- $Y^{\prime}=Y-\left\{1, a_{2}, \ldots, a_{r_{1}}, b_{2}, \ldots, b_{r_{2}}\right\}$;
- $M=\left\{a_{i_{1}} q_{2}: 2 \leq i_{1} \leq r_{1}\right\} \cup\left\{q_{1} b_{i_{2}}: 2 \leq i_{2} \leq r_{2}\right\} \cup Y^{\prime}$;
- $M^{\prime}=M \cup\{0\}$.

Remark. We note that Y is a system of representatives for $T /\langle J\rangle N$. Further, the cardinality of M is equal to $\frac{1}{2}[k: \mathbb{Q}]-1$, which is the unit rank of k.

Now let $l: k^{\times} \rightarrow \mathbb{R}[G]$ be the G-module homomorphism defined by

$$
l: k^{\times} \ni \alpha \mapsto \sum_{\sigma \in G} \log \left|\alpha^{\sigma}\right| \cdot \sigma^{-1} \in \mathbb{R}[G] .
$$

It is easy to see that $\operatorname{Ker} l \cap E=\operatorname{Ker} l \cap C=W$. Hence

$$
[E: C]=[l(E): l(C)]
$$

Furthermore, any finite subset $\left\{v_{1}, \ldots, v_{r}\right\}$ of C is a system of fundamental circular units of k if and only if $\left\{l\left(v_{1}\right), \ldots, l\left(v_{r}\right)\right\}$ is a \mathbb{Z}-basis of $l(C)$.

For any $a, b, y \in T$, we define circular units $v_{a q_{2}}, v_{q_{1} b}, v_{y}$ by
$v_{a q_{2}}=\mathrm{N}_{K_{1} / k_{1}}\left(\frac{1-\zeta^{a q_{2}}}{1-\zeta^{q_{2}}}\right), \quad v_{q_{1} b}=\mathrm{N}_{K_{2} / k_{2}}\left(\frac{1-\zeta^{q_{1} b}}{1-\zeta^{q_{1}}}\right), \quad v_{y}=\mathrm{N}_{K / k}\left(1-\zeta^{y}\right)$.
Then we notice the following facts:
(1) If $a \equiv a^{\prime} \bmod T_{2} N$, then $v_{a q_{2}}=v_{a^{\prime} q_{2}}$.
(2) If $b \equiv b^{\prime} \bmod T_{1} N$, then $v_{q_{1} b}=v_{q_{1} b^{\prime}}$.
(3) If $y \equiv y^{\prime} \bmod N$, then $v_{y}=v_{y^{\prime}}$.

Let C^{\prime} be the subgroup of C generated by $\left\{v_{x}: x \in M\right\}$. Later, we shall see that $l\left(C^{\prime}\right)$ has finite index in $l(C)$ and $l(E)$. Hence we have

$$
[E: C]=[l(E): l(C)]=\frac{\left[l(E): l\left(C^{\prime}\right)\right]}{\left[l(C): l\left(C^{\prime}\right)\right]} .
$$

2. Computation of $\left[l(C): l\left(C^{\prime}\right)\right]$. First, from the definition of C^{\prime}, we can easily see the following lemma.

Lemma 2. $l\left(C^{\prime}\right)$ is generated by $\left\{l\left(v_{x}\right): x \in M\right\}$.
We choose two integers l_{1} and l_{2} such that

$$
\begin{aligned}
l_{1} & \equiv 1 \bmod q_{1}, & p_{1} l_{1} & \equiv 1 \bmod q_{2}, \\
p_{2} l_{2} & \equiv 1 \bmod q_{1}, & l_{2} & \equiv 1 \bmod q_{2} .
\end{aligned}
$$

Then $l_{1} \in T_{2}$ and $l_{2} \in T_{1}$. We define f_{1}, g_{1}, f_{2} and g_{2} by

$$
\begin{aligned}
f_{1} & =\left[\left\langle l_{1}\right\rangle T_{2}^{\prime}: T_{2}^{\prime}\right], \\
f_{2} & =\left[\left\langle l_{2}\right\rangle T_{1}^{\prime}: T_{1}^{\prime}\right],
\end{aligned} g_{2}=\left[T_{2}:\left\langle l_{1}\right\rangle T_{1}:\left\langle l_{2}^{\prime}\right\rangle T_{1}^{\prime}\right], .
$$

Let $\left\{1, s_{2}, \ldots, s_{g_{1}}\right\}$ and $\left\{1, t_{2}, \ldots, t_{g_{2}}\right\}$ be systems of representatives for $T_{2} /\left\langle l_{1}\right\rangle T_{2}^{\prime}$ and $T_{1} /\left\langle l_{2}\right\rangle T_{1}^{\prime}$ respectively.

Proposition 3. In case II, l(C) is generated by

$$
l\left(v_{a_{i_{1}} q_{2}}\right) \quad\left(2 \leq i_{1} \leq r_{1}\right), \quad l\left(v_{y}\right) \quad\left(y \in Y^{\prime}\right)
$$

and

$$
\frac{1}{2} l\left(v_{q_{1} l_{1}}\right), \ldots, \frac{1}{2} l\left(v_{q_{1} l_{1}^{f_{1}-1}}\right),
$$

$$
\begin{aligned}
& l\left(v_{q_{1} s}\right), \frac{1}{2}\left(l\left(v_{q_{1} s}\right)-l\left(v_{q_{1} s l_{1}}\right)\right), \ldots, \frac{1}{2}\left(l\left(v_{q_{1} s l_{1}^{f_{1}-2}}\right)-l\left(v_{\left.q_{1} s l_{1}^{f_{1}-1}\right)}\right)\right. \\
&\left(s=s_{2}, \ldots, s_{g_{1}}\right) .
\end{aligned}
$$

Moreover, $\left[l(C): l\left(C^{\prime}\right)\right]=2^{r_{2}-g_{1}}$.
Proposition 4. In case III, $l(C)$ is generated by

$$
l\left(v_{y}\right) \quad\left(y \in Y^{\prime}\right)
$$

and

$$
\begin{gathered}
\frac{1}{2} l\left(v_{q_{1} l_{1}}\right), \ldots, \frac{1}{2} l\left(v_{q_{1} l_{1}^{f_{1}-1}}\right), \\
\left.l\left(v_{q_{1} s}\right), \frac{1}{2}\left(l\left(v_{q_{1} s}\right)-l\left(v_{q_{1} s l_{1}}\right)\right), \ldots, \frac{1}{2} l\left(v_{q_{1} s l_{1}^{f_{1}-2}}\right)-l\left(v_{q_{1} s l l_{1}^{f_{1}-1}}\right)\right) \\
\left(s=s_{2}, \ldots, s_{g_{1}}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\frac{1}{2} l\left(v_{l_{2} q_{2}}\right), \ldots, \frac{1}{2} l\left(v_{l_{2}^{f_{2}-1} q_{2}}\right), \\
l\left(v_{t q_{2}}\right), \frac{1}{2}\left(l\left(v_{t q_{2}}\right)-l\left(v_{t l_{2} q_{2}}\right)\right), \ldots, \frac{1}{2}\left(l\left(v_{t l_{2}^{f_{2}-2} q_{q_{2}}}\right)-l\left(v_{t l_{2}^{f_{2}-1} q_{2}}\right)\right) \\
\left(t=t_{2}, \ldots, t_{g_{2}}\right) .
\end{gathered}
$$

Moreover, $\left[l(C): l\left(C^{\prime}\right)\right]=2^{r_{1}+r_{2}-g_{1}-g_{2}}$.
Remark. In the next section, we shall see that $l\left(C^{\prime}\right)$ has finite index in $l(E)$. Hence

$$
\operatorname{rank}_{\mathbb{Z}} l\left(C^{\prime}\right)=\operatorname{rank}_{\mathbb{Z}} l(C)=\operatorname{rank}_{\mathbb{Z}} l(E) .
$$

On the other hand, we notice that the cardinality of every system of generators for $l\left(C^{\prime}\right)$ or $l(C)$ stated in the above propositions is equal to the unit rank of k. This implies that these systems of generators are bases.

We can prove Propositions 3 and 4 in a similar fashion. So we only prove Proposition 3. Let L be the subgroup of $\mathbb{R}[G]$ generated by the elements stated in the proposition.

First we prove $L \subset l(C)$. Fix a $b_{i_{2}}\left(1 \leq i_{2} \leq r_{2}\right)$. Then

$$
\begin{aligned}
& \sum_{\substack{1 \leq i_{1} \leq r_{1} \\
1 \leq j \leq s}} l\left(v_{a_{i_{1}} b_{i_{2}} d_{j}}\right) \\
& \quad=\sum_{\substack{1 \leq i_{1} \leq r_{1} \\
1 \leq j \leq s}} l\left(\mathrm{~N}_{K / k}\left(1-\zeta^{a_{i_{1}} b_{i_{2}} d_{j}}\right)\right) \\
& \quad=\frac{1}{2} \sum_{\substack{1 \leq i_{1} \leq r_{1} \\
1 \leq j \leq s}} l\left(\mathrm{~N}_{K / k}\left(1-\zeta^{a_{i_{1}} b_{i_{2}} d_{j}}\right)\right)+\frac{1}{2} \sum_{\substack{1 \leq i_{1} \leq r_{1} \\
1 \leq j \leq s}} l\left(\mathrm{~N}_{K / k}\left(1-\zeta^{J_{1} a_{i_{1}} b_{i_{2}} d_{j}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \sum_{\substack{0 \leq h_{1} \leq 1 \\
1 \leq i_{1} \leq r_{1} \\
1 \leq j \leq s}} l\left(\mathrm{~N}_{K / k}\left(1-\zeta^{J_{1}^{h_{1}} a_{i_{1}} b_{i_{2}} d_{j}}\right)\right) \\
& =\frac{1}{2} l\left(\prod_{\substack{0 \leq h_{1} \leq 1 \\
1 \leq \leq i_{1} \leq r_{1} \\
1 \leq j \leq s}} \mathrm{~N}_{K / k}\left(1-\zeta^{J_{1}^{h_{1}} a_{i_{1}} b_{i_{2}} d_{j}}\right)\right) .
\end{aligned}
$$

Now, by Lemma 1(4), we have

$$
\prod_{\substack{0 \leq h_{1} \leq 1 \\ 1 \leq i_{1} \leq r_{1} \\ 1 \leq j \leq s}} \mathrm{~N}_{K / k}\left(1-\zeta^{J_{1}^{h_{1}} a_{i_{1}} b_{i_{2}} d_{j}}\right)=\mathrm{N}_{k / k_{2}}\left(\mathrm{~N}_{K / k}\left(1-\zeta^{b_{i_{2}}}\right)\right)
$$

So we get

$$
\begin{aligned}
& \sum_{\substack{1 \leq i_{1} \leq r_{1} \\
1 \leq j \leq s}} l\left(v_{a_{i_{1}} b_{i_{2}} d_{j}}\right) \\
&=\frac{1}{2} l\left(\mathrm{~N}_{k / k_{2}}\left(\mathrm{~N}_{K / k}\left(1-\zeta^{b_{i_{2}}}\right)\right)\right) \\
&=\frac{1}{2} l\left(\mathrm{~N}_{K_{2} / k_{2}}\left(\mathrm{~N}_{K / K_{2}}\left(1-\zeta^{b_{i_{2}}}\right)\right)\right) \\
& \quad=\frac{1}{2} l\left(\mathrm{~N}_{K_{2} / k_{2}}\left(\frac{1-\zeta^{q_{1} b_{i_{2}}}}{1-\zeta^{q_{1} l_{1} b_{i_{2}}}}\right)\right) \\
& \quad=\frac{1}{2} l\left(\mathrm{~N}_{K_{2} / k_{2}}\left(\frac{1-\zeta^{q_{1} b_{i_{2}}}}{1-\zeta^{q_{1}}}\right)\right)-\frac{1}{2} l\left(\mathrm{~N}_{K_{2} / k_{2}}\left(\frac{1-\zeta^{q_{1} l_{1} b_{i_{2}}}}{1-\zeta^{q_{1}}}\right)\right) \\
& \quad=\frac{1}{2}\left(l\left(v_{q_{1} b_{i_{2}}}\right)-l\left(v_{q_{1} l_{1} b_{i_{2}}}\right)\right) .
\end{aligned}
$$

Hence

$$
\frac{1}{2}\left(l\left(v_{q_{1} b_{i_{2}}}\right)-l\left(v_{q_{1} l_{1} b_{i_{2}}}\right)\right) \in l(C)
$$

From this, we can easily deduce that $L \subset l(C)$.
Next we prove $l(C) \subset L$. For this purpose, it is sufficient to prove that $l\left(v_{y}\right) \in L$ for $y \in Y-Y^{\prime}$, because it is obvious that $l\left(v_{q_{1} b_{i_{2}}}\right) \in L$ for $2 \leq i_{2} \leq r_{2}$. Fix an $a_{i_{1}}\left(2 \leq i_{1} \leq r_{1}\right)$. Then

$$
\begin{aligned}
\sum_{\substack{1 \leq i_{2} \leq r_{2} \\
1 \leq j \leq s}} l\left(v_{a_{i_{1}} b_{i_{2}} d_{j}}\right) & =l\left(\mathrm{~N}_{k / k_{1}}\left(\mathrm{~N}_{K / k}\left(1-\zeta^{a_{i_{1}}}\right)\right)\right) \\
& =l\left(\mathrm{~N}_{K_{1} / k_{1}}\left(\mathrm{~N}_{K / K_{1}}\left(1-\zeta^{a_{i_{1}}}\right)\right)\right) \\
& =l\left(\mathrm{~N}_{K_{1} / k_{1}}\left(\frac{1-\zeta^{a_{i_{1}} q_{2}}}{1-\zeta^{a_{1} q_{2} l_{2}}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =l\left(\mathrm{~N}_{K_{1} / k_{1}}\left(\frac{1-\zeta^{a_{i_{1}} q_{2}}}{1-\zeta^{q_{2}}}\right)\right)-l\left(\mathrm{~N}_{K_{1} / k_{1}}\left(\frac{1-\zeta^{a_{i_{1}} q_{2} l_{2}}}{1-\zeta^{q_{2}}}\right)\right) \\
& =l\left(v_{a_{i_{1}} q_{2}}\right)-l\left(v_{a_{i_{1}} q_{2} l_{2}}\right) \in L
\end{aligned}
$$

If $a_{i_{1}} b_{i_{2}} d_{j} \neq a_{i_{1}}$, then $a_{i_{1}} b_{i_{2}} d_{j} \in Y^{\prime}$ by the definition of Y^{\prime}. Hence $l\left(v_{a_{i_{1}}}\right) \in$ L. Now we fix a $b_{i_{2}}\left(1 \leq i_{2} \leq r_{2}\right)$. Then, as we have seen above,

$$
\sum_{\substack{1 \leq i_{1} \leq r_{1} \\ 1 \leq j \leq s}} l\left(v_{a_{i_{1}} b_{i_{2}} d_{j}}\right)=\frac{1}{2}\left(l\left(v_{q_{1} b_{i_{2}}}\right)-l\left(v_{q_{1} l_{1} b_{2}}\right)\right) .
$$

If $a_{i_{1}} b_{i_{2}} d_{j} \neq b_{i_{2}}$, then $l\left(v_{a_{i_{1}} b_{i_{2}} d_{j}}\right) \in L$. Hence $l\left(v_{b_{i_{2}}}\right) \in L$. We have thus proved that $l(C) \subset L$.

Finally, by computing the determinant of the transition matrix, we can see that

$$
\left[l(C): l\left(C^{\prime}\right)\right]=\frac{1}{\left(\frac{1}{2}\right)^{f_{1}-1} \cdot\left(\left(\frac{1}{2}\right)^{f_{1}-1}\right)^{g_{1}-1}}=2^{f_{1} g_{1}-g_{1}}=2^{r_{2}-g_{1}} .
$$

This completes the proof of Proposition 3.
3. Computation of $\left[l(E): l\left(C^{\prime}\right)\right]$. For each $t \in T$, we let

$$
\begin{aligned}
c_{0} & =1, \\
c_{t q_{2}} & = \begin{cases}1 & \text { if } t \in T_{2} N, \\
0 & \text { otherwise, }\end{cases} \\
c_{t q_{1}} & = \begin{cases}1 & \text { if } t \in T_{1} N, \\
0 & \text { otherwise, }\end{cases} \\
c_{t} & = \begin{cases}1 & \text { if } t \in N, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Further, we define

$$
\begin{aligned}
b_{0, t}= & 2, \\
b_{a q_{2}, t}= & \left(c_{\left(a q_{2}\right) t}+c_{J\left(a q_{2}\right) t}\right)-\left(c_{t q_{2}}+c_{J t q_{2}}\right) \quad(a \in T), \\
b_{q_{1} b, t}= & \left(c_{\left(q_{1} b\right) t}+c_{J\left(q_{1} b\right) t}\right)-\left(c_{t q_{1}}+c_{J t q_{1}}\right) \quad(b \in T), \\
b_{y, t}= & \left(c_{y t}+c_{J y t}\right)-\frac{1}{\left[k: k_{2}\right]}\left(c_{y t l_{1} q_{1}}+c_{J y t l_{1} q_{1}}\right) \\
& -\frac{1}{\left[k: k_{1}\right]}\left(c_{y t l_{2} q_{2}}+c_{J y t l_{2} q_{2}}\right)+\frac{2}{[k: \mathbb{Q}]} \quad(y \in T) .
\end{aligned}
$$

We denote by $\sigma_{t}(t \in T)$ the automorphism of k over \mathbb{Q} which is the image of (t, K) under the canonical surjection

$$
\operatorname{Gal}(K / \mathbb{Q}) \rightarrow G=\operatorname{Gal}(k / \mathbb{Q}) .
$$

We omit the proof of the next lemma because it is just the same as those of Lemmas 3.5 and 3.6 in [1].

Lemma 5. Let Q be the unit index of k and h^{+}the class number of k^{+}. Then

$$
\left[l(E): l\left(C^{\prime}\right)\right]=\frac{1}{[k: \mathbb{Q}]} \cdot\left|\operatorname{det}\left(b_{x, t}\right)_{x \in M^{\prime}, t \in Y}\right| \cdot Q h^{+} .
$$

In what follows, we compute the determinant of the matrix $\left(b_{x, t}\right)_{x \in M^{\prime}, t \in Y}$. We define

$$
A=\left\{J_{1}^{h_{1}} a_{i_{1}} q_{2}: 0 \leq h_{1} \leq 1 \wedge 1 \leq i_{1} \leq r_{1}\right\}, \quad B=\left\{q_{1} b_{i_{2}}: 1 \leq i_{2} \leq r_{2}\right\}
$$

in case II, and

$$
A=\left\{a_{i_{1}} q_{2}: 1 \leq i_{1} \leq r_{1}\right\}, \quad B=\left\{q_{1} b_{i_{2}}: 1 \leq i_{2} \leq r_{2}\right\}
$$

in case III. Then it is easy to see that

$$
\sum_{y \in A} c_{y t}=\sum_{y \in B} c_{y t}=1
$$

for any $t \in T$.
Lemma 6. (1) For any $x \in A$, there exist rational numbers $\alpha_{i_{1}}\left(1 \leq i_{1}\right.$ $\leq r_{1}$) such that

$$
c_{x t}+c_{J x t}=\alpha_{1}\left(c_{0}+c_{0}\right)+\sum_{i_{1}=2}^{r_{1}} \alpha_{i_{1}}\left(c_{\left(a_{i_{1}} q_{2}\right) t}+c_{J\left(a_{i_{1}} q_{2}\right) t}\right)
$$

for any $t \in T$.
(2) For any $x \in B$, there exist rational numbers $\beta_{i_{2}}\left(1 \leq i_{2} \leq r_{2}\right)$ such that

$$
c_{x t}+c_{J x t}=\beta_{1}\left(c_{0}+c_{0}\right)+\sum_{i_{2}=2}^{r_{2}} \beta_{i_{2}}\left(c_{\left(q_{1} b_{i_{2}}\right) t}+c_{J\left(q_{1} b_{i_{2}}\right) t}\right)
$$

for any $t \in T$.
Proof. As cases II and III are similar, we prove the lemma for case II. If $x \in M$, there is nothing to prove. So we suppose that $x \notin M$.
(1) Since

$$
c_{\left(J_{1} a_{i_{1}} q_{2}\right) t}+c_{J\left(J_{1} a_{i_{1}} q_{2}\right) t}=c_{\left(J_{1} a_{i_{1}} q_{2}\right) t}+c_{\left(a_{i_{1}} q_{2}\right) t}=c_{\left(a_{i_{1}} q_{2}\right) t}+c_{J\left(a_{i_{1}} q_{2}\right) t},
$$

it suffices to consider the case $x=q_{2}$. Let us define

$$
A_{0}=\left\{a_{i_{1}} q_{2}: 1 \leq i_{1} \leq r_{1}\right\}, \quad A_{1}=\left\{J_{1} a_{i_{1}} q_{2}: 1 \leq i_{1} \leq r_{1}\right\} .
$$

Then

$$
\sum_{y \in A_{0}}\left(c_{y t}+c_{J y t}\right)=\sum_{y \in A}\left(c_{y t}+c_{J y t}\right)-\sum_{y \in A_{1}}\left(c_{y t}+c_{J y t}\right) .
$$

On the other hand, we can see that

$$
\sum_{y \in A_{1}}\left(c_{y t}+c_{J y t}\right)=\sum_{y \in A_{1}}\left(c_{(J y) t}+c_{J(J y) t}\right)=\sum_{y \in A_{0}}\left(c_{y t}+c_{J y t}\right)
$$

Hence

$$
\sum_{y \in A_{0}}\left(c_{y t}+c_{J y t}\right)=\frac{1}{2} \sum_{y \in A}\left(c_{y t}+c_{J y t}\right)=\frac{1}{2}(1+1)=\frac{1}{2}\left(c_{0}+c_{0}\right)
$$

Consequently, we obtain

$$
c_{q_{2} t}+c_{J q_{2} t}=\frac{1}{2}\left(c_{0}+c_{0}\right)-\sum_{i_{1}=2}^{r_{1}}\left(c_{\left(a_{i_{1}} q_{2}\right) t}+c_{J\left(a_{i_{1}} q_{2}\right) t}\right) .
$$

(2) From $x \notin M$, we have $x=q_{1}$. Since

$$
\sum_{i_{2}=1}^{r_{2}}\left(c_{\left(q_{1} b_{i_{2}}\right) t}+c_{J\left(q_{1} b_{i_{2}}\right) t}\right)=1+1=c_{0}+c_{0}
$$

we get

$$
c_{q_{1} t}+c_{J q_{1} t}=\left(c_{0}+c_{0}\right)-\sum_{i_{2}=2}^{r_{2}}\left(c_{\left(q_{1} b_{i_{2}}\right) t}+c_{J\left(q_{1} b_{i_{2}}\right) t}\right)
$$

Using the above lemma, we can deduce that

$$
\left|\operatorname{det}\left(b_{x, t}\right)_{x \in M^{\prime}, t \in Y}\right|=r_{1} r_{2} \cdot\left|\operatorname{det}\left(c_{x t}+c_{J x t}\right)_{x \in M^{\prime}, t \in Y}\right|
$$

by the same argument as in the proof of Lemma 3.8 in [1]. So, in order to accomplish our purpose, we have to compute the determinant of the matrix $\left(c_{x t}+c_{J x t}\right)_{x \in M^{\prime}, t \in Y}$.

For each $t \in Y$, there exists exactly one $u \in Y$ such that $t u \in\langle J\rangle N$, because Y is a system of representatives for $T /\langle J\rangle N$. We denote this u by t^{\prime}. Then the map $Y \ni t \mapsto t^{\prime} \in Y$ is bijective.

Lemma 7. Suppose $x \in M, t \in Y$ and $c_{x t^{\prime}}+c_{J x t^{\prime}} \neq 0$. Then:
(1) if $x \in Y^{\prime}$, then $t=x$;
(2) if $x=a_{i_{1}} q_{2}\left(2 \leq i_{1} \leq r_{1}\right)$, then $t \in Y^{\prime}$ or $t=a_{i_{1}}$;
(3) if $x=q_{1} b_{i_{2}}\left(2 \leq i_{2} \leq r_{2}\right)$, then $t \in Y^{\prime}$ or $t=b_{i_{2}}$.

Proof. (1) Straightforward.
(2) If $c_{\left(a_{i_{1}} q_{2}\right) t^{\prime}}+c_{J\left(a_{i_{1}} q_{2}\right) t^{\prime}} \neq 0$, then $a_{i_{1}} t^{\prime} \in\langle J\rangle T_{2} N$. Hence there is a $y=b_{i_{2}} J^{h} d_{j}$ such that $a_{i_{1}} y t^{\prime}=a_{i_{1}} b_{i_{2}} J^{h} d_{j} t^{\prime} \in\langle J\rangle N$, and so we have $a_{i_{1}} b_{i_{2}} d_{j} t^{\prime} \in\langle J\rangle N$. Therefore $t=a_{i_{1}} b_{i_{2}} d_{j}$, and we obtain $t=a_{i_{1}}$ or $t \in Y^{\prime}$.
(3) In case III, the proof is similar to (2). So we consider case II. If $c_{\left(q_{1} b_{i_{2}}\right) t^{\prime}}+c_{J\left(q_{1} b_{i_{2}}\right) t^{\prime}} \neq 0$, then $b_{i_{2}} t^{\prime} \in\langle J\rangle T_{1} N$. Hence there is a $w=J_{1}^{h_{1}} a_{i_{1}} d_{j}$ such that $w b_{i_{2}} t^{\prime}=J_{1}^{h_{1}} a_{i_{1}} b_{i_{2}} d_{j} t^{\prime} \in\langle J\rangle N$, and so $a_{i_{1}} b_{i_{2}} J_{2}^{h_{1}} d_{j} t^{\prime} \in\langle J\rangle N$. As
$J_{2} \in T_{2}^{\prime}$, there exists a $d_{j^{\prime}}$ such that $J_{2}^{h_{1}} d_{j} \equiv d_{j^{\prime}} \bmod \langle J\rangle N$, and then $a_{i_{1}} b_{i_{2}} d_{j^{\prime}} t^{\prime} \in\langle J\rangle N$. Therefore $t=b_{i_{2}}$ or $t \in Y^{\prime}$.

From this, we can obtain the following conclusion.
Proposition 8. Let Q be the unit index of k and h^{+}the class number of k^{+}.
(1) In case II, we have

$$
\left[l(E): l\left(C^{\prime}\right)\right]=\frac{\left[k_{1}: \mathbb{Q}\right]\left[k_{2}: \mathbb{Q}\right]}{[k: \mathbb{Q}]} \cdot 2^{r_{2}-1} \cdot Q h^{+} .
$$

(2) In case III, we have

$$
\left[l(E): l\left(C^{\prime}\right)\right]=\frac{\left[k_{1}: \mathbb{Q}\right]\left[k_{2}: \mathbb{Q}\right]}{[k: \mathbb{Q}]} \cdot 2^{r_{1}+r_{2}-1} \cdot Q h^{+} .
$$

In particular, $l\left(C^{\prime}\right)$ and $l(C)$ have finite indices in $l(E)$.
4. Proof of Theorem B. First we consider case II. By Propositions 3 and 8(1), we have

$$
\begin{aligned}
{[E: C] } & =\frac{\left[l(E): l\left(C^{\prime}\right)\right]}{\left[l(C): l\left(C^{\prime}\right)\right]}=\frac{\left[k_{1}: \mathbb{Q}\right]\left[k_{2}: \mathbb{Q}\right]}{[k: \mathbb{Q}]} \cdot \frac{2^{r_{2}-1}}{2^{r_{2}-g_{1}}} \cdot Q h^{+} \\
& =\frac{\left[k_{1}: \mathbb{Q}\right]\left[k_{2}: \mathbb{Q}\right]}{[k: \mathbb{Q}]} \cdot 2^{g_{1}-1} \cdot Q h^{+} .
\end{aligned}
$$

Now, since $\sigma_{l_{1}}$ is the inverse of the Frobenius automorphism for p_{1} in k, we have

$$
g_{1}=\left[T:\left\langle l_{1}\right\rangle T_{1} N\right]=\left[G: D_{p_{1}}\right] .
$$

Therefore

$$
[E: C]=\frac{\left[k_{1}: \mathbb{Q}\right]\left[k_{2}: \mathbb{Q}\right]}{[k: \mathbb{Q}]} \cdot 2^{\left[G: D_{p_{1}}\right]-1} \cdot Q h^{+} .
$$

Next we consider case III. By Propositions 4 and 8(2), we have

$$
[E: C]=\frac{\left[k_{1}: \mathbb{Q}\right]\left[k_{2}: \mathbb{Q}\right]}{[k: \mathbb{Q}]} \cdot 2^{g_{1}+g_{2}-1} \cdot Q h^{+} .
$$

As also $g_{1}=\left[G: D_{p_{1}}\right]$ and $g_{2}=\left[G: D_{p_{2}}\right]$, we obtain

$$
[E: C]=\frac{\left[k_{1}: \mathbb{Q}\right]\left[k_{2}: \mathbb{Q}\right]}{[k: \mathbb{Q}]} \cdot 2^{\left[G: D_{p_{1}}\right]+\left[G: D_{p_{2}}\right]-1} \cdot Q h^{+} .
$$

This completes the proof of the theorem.
5. The real case. Let k be a real abelian number field with conductor $p_{1}^{e_{1}} p_{2}^{e_{2}}$. Let $T_{1}, T_{2}, T_{1}^{\prime}, T_{2}^{\prime}, N$ be the same as in Section 1, and
$\left\{a_{i_{1}}\right\},\left\{b_{i_{2}}\right\},\left\{d_{j}\right\}$ be systems of representatives for $T_{1} / T_{1}^{\prime}, T_{2} / T_{2}^{\prime}, T_{1}^{\prime} T_{2}^{\prime} / N$ respectively. Then

$$
\left\{v_{a_{i_{1}} q_{2}}: 2 \leq i_{1} \leq r_{1}\right\} \cup\left\{v_{q_{1} b_{i_{2}}}: 2 \leq i_{2} \leq r_{2}\right\} \cup\left\{v_{y}: y \in Y^{\prime}\right\}
$$

is a system of fundamental circular units of k, where

$$
\begin{aligned}
Y^{\prime}= & \left\{a_{i_{1}} b_{i_{2}} d_{j}: 1 \leq i_{1} \leq r_{1} \wedge 1 \leq i_{2} \leq r_{2} \wedge 1 \leq j \leq s\right\} \\
& -\left\{1, a_{2}, \ldots, a_{r_{1}}, b_{2}, \ldots, b_{r_{2}}\right\}
\end{aligned}
$$

We can deduce Sinnott's index formula

$$
[E: C]=\frac{\left[k_{1}: \mathbb{Q}\right]\left[k_{2}: \mathbb{Q}\right]}{[k: \mathbb{Q}]} \cdot 2^{[k: \mathbb{Q}]-1} \cdot h
$$

by computing the regulator of the system of fundamental units. We omit the proof because it is very similar to that of the imaginary case.

Acknowledgments. I am grateful to Radan Kučera for many helpful comments and suggestions for improving an earlier version of this note. I would like to thank the referee for his careful reading of the manuscript and valuable suggestions.

References

[1] K. Dohmae, On bases of groups of circular units of some imaginary abelian number fields, J. Number Theory 61 (1996), 343-364.
[2] R. Gold and J. Kim, Bases for cyclotomic units, Compositio Math. 71 (1989), 13-28.
[3] R. Kučera, On bases of odd and even universal ordinary distributions, J. Number Theory 40 (1992), 264-283.
[4] -, On bases of the Stickelberger ideal and of the group of circular units of a cyclotomic field, ibid., 284-316.
[5] W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. 108 (1978), 107-134.
[6] -, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234.
[7] L. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, New York, 1980.

Department of Mathematics
Tokyo Metropolitan University
Minami-Ohsawa 1-1, Hachioji-shi
Tokyo 192-03, Japan
E-mail: dohmae@math.metro-u.ac.jp

[^0]: 1991 Mathematics Subject Classification: Primary 11R27.

