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A note on Sinnott’s index formula
by

KAzUuHIRO DOHMAE (Tokyo)

0. Introduction. Let k be an imaginary abelian number field with
exactly two ramified primes. The letters F and C' denote the group of units
and the group of circular units in k respectively. Sinnott’s index formula for
this case is the following (see Proposition 4.1, Theorem 4.1 and Theorem 5.1
in [6]).

THEOREM A (Sinnott). Let k be an imaginary abelian number field with
conductor m = pi'ps?, where py and p2 are distinct prime numbers and
both ey and ey are positive integers. Denote by k; (i = 1,2) the maximal
subfield of k which is unramified outside p;oo. Let G be the Galois group of
k over Q. Further, T),, and D,, denote the inertia group and the decompo-
sition group of p; in G (i =1,2). Then the group C has finite index in E,
and
1) [E:C]= w .9=9" . 91[G:Dpy [+e2[G:Dp, [+81 4651 Qh™,

[k : Q]
where Q is the unit index of k, h™ the class number of the mazimal real
subfield of k and ¢’ some rational integer. Moreover, €; and §; are defined

by
- 0 if ks_; is imaginary,
11 otherwise,
5. =10 if ks—i is real and [D,, : T},,] is odd,
! 1 otherwise,
fori=1,2. Finally, the rational integer ¢’ satisfies p < g’ < v, where
pw=1t{1<i<2:k; is imaginary},
v=1{1<i<2:[k;:Q)] is even}.
In general, the formula (1) contains the unknown factor 279, But if
both k1 and ks are imaginary, then we have y = v = 2 and ¢’ = 2. Hence,
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in this case, (1) reads

[Iﬁ : Q]UQ : Q] 9
[k : Q]

In a previous paper [1], we gave another proof of (2) by constructing a

system of fundamental circular units (i.e., a basis of the free part of C) of k.

It is the main purpose of this note to prove the following completely explicit
version of Theorem A.

2) [E:C] = L.Qnt

THEOREM B. Let the notation be as in Theorem A. Then

(3) [E . C} — [kl : Q] [k2 : Q] . 251[G:DP1}+52[G:DI,2]—1 . Qh+
[k : Q]
The proof includes the explicit construction of a system of fundamental
circular units of k. By the way, comparing (1) with (3), we obtain

(4) g =61+ 6.

Kucera kindly wrote me a direct proof of the inequality ¢’ > 01 + d2. But I
have never found any direct proof of (4) .

In the last section, we also mention our result on a real abelian number
field with exactly two ramified primes.

1. Notation. Let k£ be an imaginary abelian number field of conductor

= pi'p52. We note that k is a subfield of the mth cyclotomic field K =
Q(Cm), where ¢, = 2™~/ Let N be the subgroup of T' = (Z/mZ)*
which corresponds to Gal(K/k) under the natural isomorphism

(Z/mZ)* >t mod m — (t,K) € Gal(K/Q),

where the automorphism (¢, K) maps (,, to ¢!,. Throughout this paper, we
use the following symbols:

* q1 =pi', @2 =p5%;

® (= (m;

o Ky = Q(Clh)v Ky = Q(Cth);

Oklzk’mKl, k’gzkﬂKQ;

o W is the group of roots of unity in k;

.D(ql) ( 1 NKl/kl(l—C‘“I?):1§a<q1/\(a,p1):1>;

¢ Dla2) = (1 Niey, (1= C) 10 < g (bpa) = 1)
D(m) = (~1 Ny k(1 — %) 11 < 2 < mA (5,p1) = (2,p2) = 1);

. D D(q1)D(g2)D(m);

e U = DN E is the group of circular units in k;

ey ={a(=amodm)eT:a=1mod ¢};

eh={b(=bmodm) €T :b=1mod ¢ };

o 7] = {a € Ty : there exists b € T, such that ab € N},

o T = {b € Ty : there exists a € T such that ab € N};
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e J=—1modmeT,;
e Ji =—1mod g AJi =1mod ¢o;
e Jo=1mod ¢; A Jys =—1mod ¢o.

LEMMA 1. With the above notation we have:

(1) Gal(K1/ki) =17,
( ) Gal(Kg/kQ) = T2/7
(3) Gal(k/k1) = T{T>/N,
(4) Gal(k/kg) = ThTy/N.

Proof. Easy. =

Remark. By the statements (1) and (2) of Lemma 1, we can see that
k; is imaginary if and only if J; € T (1 = 1,2).

In order to prove the theorem, we have to consider the following four
cases separately:

I. Both &y and ko are imaginary (& J1 &€ TY A Jo & T3);
II. k4 is imaginary and ks is real (< J1 € T1 A Jo € T3);
IT'. kq is real and ko is imaginary (< J1 € T1 A Jo & T3);
III. Both ky and ks are real (& J; € Ty A Jo € T).

But case I was treated in [1], and cases II and II’ are similar. So it
is sufficient to consider cases II and III. In case II, we use the following
symbols:

e a1(=1),as,...,a,, asystem of representatives for Ty /(J1)T7;
e b1(=1),ba,...,b., asystem of representatives for Ty /T5;

e di(=1),dsy,...,ds asystem of representatives for 7775 /N;
oY:{ailbizdjzlgil§r1/\1§i2§r2/\1§j§s};

oY' =Y —{l,a9,...,ay,,b2,...,b., };

o M ={a;,q2:2<iy <ri}U{qibs, 12 <ip <ry}UY";

o M' = M U{0}.

And, in case III, we use the following ones:

e ai(=1),as,...,a,, asystem of representatives for T3 /T7;

e bi(=1),ba,...,b., asystem of representatives for Ts/T5;

e di(=1),ds,...,ds a system of representatives for 17174 /(J)N;
oY:{ailbizdj:1§i1§7’1/\1§i2§r2/\1§j§3};

o Y' =Y —{l,a9,...,ap,,b2,...,b.,};

o M ={a;,q2:2<iy <rm}U{qbi, :2<is <r}UY";

o M’ = MU{0}.

Remark. We note that Y is a system of representatives for 7'/(J)N

Further, the cardinality of M is equal to %[k : Q]—1, which is the unit rank
of k.
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Now let I : k* — R[G] be the G-module homomorphism defined by

ik >am Z log|a?|- o~ € R[G].
ceG
It is easy to see that Ker{N E = Kerl NC = W. Hence
[E:Cl=[(F):lC).
Furthermore, any finite subset {v1,...,v,} of C is a system of fundamental

circular units of £ if and only if {l(v1),...,l(v,)} is a Z-basis of I(C).
For any a,b,y € T, we define circular units v,g,, V¢,5, vy by

1 — ¢ae 1— qub
Vags =Nk, /k, (1_@2)7 V1o =N, /1y <1_qu>, vy =N /(1 —¢Y).
Then we notice the following facts:

(1) If @ = o’ mod To N, then vgq, = Vg, -
(2) If b =V mod T\ N, then vy, p = vg,pr-
(3) If y =3’ mod N, then v, = vy.

Let C’ be the subgroup of C' generated by {v, : © € M}. Later, we shall
see that {(C”) has finite index in {(C) and I(E). Hence we have
[L(E) : 1(C")]

[E:C]=[U(F):(C)]= 1C) 1)

2. Computation of [I(C) : [(C")]. First, from the definition of C’, we
can easily see the following lemma.

LEMMA 2. [(C") is generated by {l(vy) : x € M}.
We choose two integers [, and Iy such that
li1 =1mod ¢, pi1li =1 mod qo,
pals =1 mod ¢, l5 =1 mod gs.
Then [, € Ty and I € Ty. We define f1, g1, fo and g by
=TT, g1 =[T2: ()T,
fo=[)T{ : T}, g2 = [T : (I2)T7).

Let {1,s9,...,8¢,} and {1,t2,...,t5,} be systems of representatives for
T5/(l1)Ty and Ty /{l2)T] respectively.

PROPOSITION 3. In case 11, I(C) is generated by
l(vailth) (2 <5 < 7'1), l(vy) <y € Y/)

and

%l(vfhh)? ey %l(vqlliﬁ*l)’
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l(vqw)v %(l(vths) - l(vqwll))a RN %(l(vqlslfl_z) - l(vqlslfl_l))
(s = s9,
Moreover, [[(C) : 1(C")] = 27791,
PROPOSITION 4. In case 111, I(C) is generated by
l(vy) (ye Y,)
and
%l(vthh)’ EREE) %l(vqllflfl)a
l(vqw)v %(Z(U%S) - l(v¢11sl1>)> ceey %(l(vqlslflfg) - l(vqlslflfl))
(S - 827
and
%l('l}qu), s %l(vlg2—1q2)a
l(vtth)v %(l(thQ) - l(vtl2q2))) ey %(l(vtlngzqg) — l(vtl£271q2))
(t = to,

Moreover, [I(C) : [(C")] = 2rt7r2=91792,

Remark. In the next section, we shall see that {(C”) has
in [(E). Hence

ranky [(C") = ranky [(C) = ranky [(E).

61

ceySg1)-

Ctg).

finite index

On the other hand, we notice that the cardinality of every system of gener-
ators for [(C") or [(C) stated in the above propositions is equal to the unit
rank of k. This implies that these systems of generators are bases.

We can prove Propositions 3 and 4 in a similar fashion. So we only prove
Proposition 3. Let L be the subgroup of R[G] generated by the elements

stated in the proposition.
First we prove L C [(C). Fix a b;, (1 <i2 <r3). Then

Z l(vail biy dj )

1<i  <ry
1<j<s

= 3 I(Ngy(1l - ¢anbiad))
1<i1<ry
1<5<s

1

1<iy <ry 1<i1<rm
1<j<s 1<5<s

= 5 Z l(NK/k(]_ — Cailbigdj)) + % Z l(NK/k(l _ CJlailbide))
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1 h1
J a; bl d,‘
=3 Z I(Ngp(1 = ¢ @nP2%))
0<hi<1
1<i1 <ry
1<j<s

1
= §l( T Neuw(i- CJ?la”bide))
0<hy <1
1<ii<rq
I<j<s
Now, by Lemma 1(4), we have
Pl b ds )
H NK/k(l—C‘Jl allblzda) :Nk/kQ(NK/k(l—CbQ))-
0<h1<1
1<i1<ry
1<j<s
So we get

Z l(vail bigd; )

1<ii<r;
1<j<s

B %Z(Nk/kzz (Nge/i(1 = ¢"2)))

- %Z(NKz//ﬂz (Nk/r, (1= ¢"2)))

1 1— Cqﬂnz
= 2[<NK2/1€2 (1 _ qullbig >>

1 1— qubiz 1 1— CChllbiQ
_2Z<NK2/’”< - ¢ )) _2Z<NK2/’”< L= (o

= 5 (Uvgp,) = 1(vg1,1.,)).

N —

Hence
1
§(l(vthbi2) - l(UQlllbi2)) € Z(C)

From this, we can easily deduce that L C [(C).

Next we prove [(C) C L. For this purpose, it is sufficient to prove
that I(v,) € L for y € Y —Y’, because it is obvious that l(vg,s,,) € L for
2 <iy <ry. Fixan a;, (2 <i; <ry). Then

Z l(vailbiQd]’) = l(Nk/kl (NK/k:(l — Cail)))
1<ia<r2
1<j<s

= l(NKl/k1 (NK/K1 (1 - Cail )))

1— Ca7‘,1Q2
= l(NKl/kl (1 _ <a11q212>>
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_ (@192 _ (aiqq2l2
= (ven (55) ) (o (555))

= l(vaiqu) - l(van(hlz) € L.

If a;, bi,d; # ai,, then a;,b;,d; € Y’ by the definition of Y. Hence I(v,, ) €
L. Now we fix a b;, (1 <ig <ry). Then, as we have seen above,

1
Z l(vailbigd;j) = 5(“0(]11712) - l(vq1l1bi2))'
1<i1<ry
i<j<s
If a;,bi,d; # b;,, then l(vailbigdj) € L. Hence l(v%) € L. We have thus
proved that [(C) C L.
Finally, by computing the determinant of the transition matrix, we can
see that

1
(1) 1(C")] = —9figi—g1 _ 9r2—g1

DO

This completes the proof of Proposition 3.

3. Computation of [[(E) : I(C")]. For each t € T, we let
=1,

if t € Ty N,

otherwise,

if t € TUN,

otherwise,

ift e N,
otherwise.

Ctqy —

-
o
=

O oOor O

Further, we define
bos = 2,
bags,t (C(aqg)t + C-J(aqg)t) - (th2 + cthz) (ae€T),
bgib,t = (C(qubyt + Ca(gupye) = (Ctgr + i) (b ET),
= (

1
byt = (cye + cuye) — m(cythm + Coytiia)
— ;( + ) + L ( c T)
U{: . kl] Cytlage T CJytlags [k: : Q] Yy .
We denote by o (t € T') the automorphism of k£ over Q which is the image

of (¢, K) under the canonical surjection

Gal(K/Q) — G = Gal(k/Q).
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We omit the proof of the next lemma because it is just the same as those of
Lemmas 3.5 and 3.6 in [1].

LEMMA 5. Let Q be the unit index of k and h* the class number of k+.

Then
1

1E)  UC) = Gy et e aev |- @
In what follows, we compute the determinant of the matrix (by ¢)zenmtey-
We define
A={J"a;,q0:0<hy <1A1<i;1 <r}, B={qby:1<is<ry}
in case II, and
A={a;q2:1 <01 <1}, B={qbiy,:1<idy <y}

in case III. Then it is easy to see that
D= cp=1
yeEA yeB

forany t € T.

LEMMA 6. (1) For any x € A, there exist rational numbers a;, (1 < iy
< ry) such that

T1

Cot + Czt = Q1 (CO + CO) + Z Ay (C(a¢1Q2)t + CJ(G¢1Q2)t)

i =2
foranyteT.

(2) For any x € B, there exist rational numbers [(;, (1 < iz < r3) such
that

T2
Cot + Crot = Pr(co + co) + Z Bis (¢(qubiy)t + Ca(arbi,)t)
ia=2

foranyteT.

Proof. As cases Il and III are similar, we prove the lemma for case II.
If x € M, there is nothing to prove. So we suppose that z & M.

(1) Since

C(Jlailqg)t + CJ(Jla,jqu)t = C(Jlailqg)t + c(ailqg)t = C(ailqg)t + CJ(ailqg)tv
it suffices to consider the case x = ¢o2. Let us define

Ao ={as,q2:1<iy <}, Ar={J1a5,q2: 1 <iyp <}
Then
Z (cyt + coye) = Z(Cyt + Cayt) — Z (eyt + cuyt)-

yEAp yeA yeEA]
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On the other hand, we can see that

Z (cyt + coyt) = Z (clay)t + Ccayy) = Z (Cyt + Cryt)-

yEAL yeA ye€Ao
Hence
1 1 1
Z (Cyt + Cayt) = = Z(cyt +cgye) = =(1+1) = =(co + ¢o).
2 2 2
yE€Ao yEA

Consequently, we obtain
1 =
Cqpt T Clgpt = 5(00 + CO) - Z (C(an‘h)t + CJ(an‘h)t)‘
i1=2
(2) From x ¢ M, we have x = ¢;. Since
2

Z (C(qlbig)t + CJ(qlbig)t) =1+1=co+co,
=1
we get
T2
Cqyt —+ Clgit = (CO + CO) - Z (C(Q1bi2)t + CJ(lhbz'z)t)' u
ia=2

Using the above lemma, we can deduce that

|det(b$’t)$eM/’tey| =772 |det(C$t + CJJIt)IGM',tEY|
by the same argument as in the proof of Lemma 3.8 in [1]. So, in order to
accomplish our purpose, we have to compute the determinant of the matrix
(Cat + Crat)zeM tey -
For each t € Y, there exists exactly one u € Y such that tu € (J)N,

because Y is a system of representatives for T7'/(J)N. We denote this u by
t’. Then the map Y 3t — t’' € Y is bijective.

LEMMA 7. Suppose x € M, t € Y and czp + cyppr # 0. Then:

(1) if z €Y', thent = x;

(2) if x=uai,q2 (2<i1 <ry), thent €Y’ ort=a;;

(3) Zf r = qlbi2 (2 § i2 S 7“2), then t c Y/ ort= biQ.

Proof. (1) Straightforward.

(2) If c(a;, gyt + Ci(as, gy # 0, then a;, t' € (J)ToN. Hence there is
ay = b, J"d; such that a;,yt’ = a;,b;,J"d;t’ € (J)N, and so we have
a; bi,d;t" € (J)N. Therefore t = a;,b;,d;, and we obtain t = a;, ort € Y.

(3) In case III, the proof is similar to (2). So we consider case II. If
Clgrbiy )t TCI(qubiy )t 7# 0, then bi,t' € (J)T1N. Hence there is aw = Jl}“aildj
such that wb,t’ = J"a; b;,d;t" € (JYN, and so a;,bi, Jy d;t' € (J)N. As
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Jo € T}, there exists a d; such that JJ'd;

= dj mod (J)N, and then
a;, bi,djt" € (J)N. Therefore t =b;, ort € Y'. m

From this, we can obtain the following conclusion.
PROPOSITION 8. Let Q be the unit index of k and h™* the class number
of k.

(1) In case 11, we have

iy ki Qlke 1 Q) g n
[l(E).l(C)]—WQ -Qh™.
(2) In case 111, we have
[k1 : Ql[k2 : Q]
[k : Q]
In particular, [(C") and 1(C) have finite indices in [(E).

I(E) : 1[(C")] = g2l opt

4. Proof of Theorem B. First we consider case II. By Propositions 3
and 8(1), we have

[((E):1(C)]  [ky:Q|ks:Q] 2721

B = o) = eq zew O
_ [k QR 2 QL g,
= g 2O

Now, since oy, is the inverse of the Frobenius automorphism for p; in k, we
have

g1 = [T <l1>T1N] == [G : Dpl]'
Therefore
[k1: Ql[k2: Q] Jieip,, |-
E: ()=t = = ol =1 opt,
B g
Next we consider case III. By Propositions 4 and 8(2), we have
(k1 : Q][k2 : Q]
[k : Q]
As also g1 =[G : D,,] and g2 = [G : D,,], we obtain

[E:C] = . 9911921 -Qh+.

[F1: Qllk2 : Q] 16y, 416Dy, )
B = 82 - e o[GiDy [+H[G:Dpo ] -1 ot
This completes the proof of the theorem.

5. The real case. Let k be a real abelian number field with con-
ductor p{'ps®. Let Ty, Ts, T, T3, N be the same as in Section 1, and
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{a;, },{bi,},{d;} be systems of representatives for T /T, T> /T, T{T5/N re-
spectively. Then
{Va;, 0 12 <in S} U{vge,, 12 <ip <} U{v, :y €Y'}
is a system of fundamental circular units of &k, where
Y/:{ailbizdj21§Z'1§T1A1§’L'2§T2/\1§j§8}
- {1,0,2,. "aar1vb27' "ab'I’Q}'
We can deduce Sinnott’s index formula
(k1 : Q][k2 : Q] k:Q)—
E.C) =122 e okl
N )
by computing the regulator of the system of fundamental units. We omit
the proof because it is very similar to that of the imaginary case.

h
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