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0. Introduction. Let k be an imaginary abelian number field with
exactly two ramified primes. The letters E and C denote the group of units
and the group of circular units in k respectively. Sinnott’s index formula for
this case is the following (see Proposition 4.1, Theorem 4.1 and Theorem 5.1
in [6]).

Theorem A (Sinnott). Let k be an imaginary abelian number field with
conductor m = pe1

1 pe2
2 , where p1 and p2 are distinct prime numbers and

both e1 and e2 are positive integers. Denote by ki (i = 1, 2) the maximal
subfield of k which is unramified outside pi∞. Let G be the Galois group of
k over Q. Further , Tpi and Dpi denote the inertia group and the decompo-
sition group of pi in G (i = 1, 2). Then the group C has finite index in E,
and

(1) [E : C] =
[k1 : Q][k2 : Q]

[k : Q]
· 2−g′ · 2ε1[G:Dp1 ]+ε2[G:Dp2 ]+δ1+δ2−1 ·Qh+,

where Q is the unit index of k, h+ the class number of the maximal real
subfield of k and g′ some rational integer. Moreover , εi and δi are defined
by

εi =
{

0 if k3−i is imaginary ,
1 otherwise,

δi =
{

0 if k3−i is real and [Dpi : Tpi ] is odd ,
1 otherwise,

for i = 1, 2. Finally , the rational integer g′ satisfies µ ≤ g′ ≤ ν, where

µ = ]{1 ≤ i ≤ 2 : ki is imaginary},
ν = ]{1 ≤ i ≤ 2 : [ki : Q] is even}.

In general, the formula (1) contains the unknown factor 2−g′ . But if
both k1 and k2 are imaginary, then we have µ = ν = 2 and g′ = 2. Hence,
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in this case, (1) reads

(2) [E : C] =
[k1 : Q][k2 : Q]

[k : Q]
· 2−1 ·Qh+.

In a previous paper [1], we gave another proof of (2) by constructing a
system of fundamental circular units (i.e., a basis of the free part of C) of k.
It is the main purpose of this note to prove the following completely explicit
version of Theorem A.

Theorem B. Let the notation be as in Theorem A. Then

(3) [E : C] =
[k1 : Q][k2 : Q]

[k : Q]
· 2ε1[G:Dp1 ]+ε2[G:Dp2 ]−1 ·Qh+.

The proof includes the explicit construction of a system of fundamental
circular units of k. By the way, comparing (1) with (3), we obtain

(4) g′ = δ1 + δ2.

Kučera kindly wrote me a direct proof of the inequality g′ ≥ δ1 + δ2. But I
have never found any direct proof of (4) .

In the last section, we also mention our result on a real abelian number
field with exactly two ramified primes.

1. Notation. Let k be an imaginary abelian number field of conductor
m = pe1

1 pe2
2 . We note that k is a subfield of the mth cyclotomic field K =

Q(ζm), where ζm = e2π
√
−1/m. Let N be the subgroup of T = (Z/mZ)×

which corresponds to Gal(K/k) under the natural isomorphism

(Z/mZ)× 3 t mod m 7→ (t, K) ∈ Gal(K/Q),

where the automorphism (t, K) maps ζm to ζt
m. Throughout this paper, we

use the following symbols:

• q1 = pe1
1 , q2 = pe2

2 ;
• ζ = ζm;
• K1 = Q(ζq1), K2 = Q(ζq2);
• k1 = k ∩K1, k2 = k ∩K2;
• W is the group of roots of unity in k;
• D(q1) = 〈−1,NK1/k1(1− ζaq2) : 1 ≤ a < q1 ∧ (a, p1) = 1〉;
• D(q2) = 〈−1,NK2/k2(1− ζq1b) : 1 ≤ b < q2 ∧ (b, p2) = 1〉;
• D(m) = 〈−1,NK/k(1− ζx) : 1 ≤ x < m ∧ (x, p1) = (x, p2) = 1〉;
• D = D(q1)D(q2)D(m);
• C = D ∩ E is the group of circular units in k;
• T1 = {a (= a mod m) ∈ T : a ≡ 1 mod q2};
• T2 = {b (= b mod m) ∈ T : b ≡ 1 mod q1};
• T ′1 = {a ∈ T1 : there exists b ∈ T2 such that ab ∈ N};
• T ′2 = {b ∈ T2 : there exists a ∈ T1 such that ab ∈ N};
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• J = −1 mod m ∈ T ;
• J1 ≡ −1 mod q1 ∧ J1 ≡ 1 mod q2;
• J2 ≡ 1 mod q1 ∧ J2 ≡ −1 mod q2.

Lemma 1. With the above notation we have:

(1) Gal(K1/k1) = T ′1,
(2) Gal(K2/k2) = T ′2,
(3) Gal(k/k1) = T ′1T2/N ,
(4) Gal(k/k2) = T1T

′
2/N .

P r o o f. Easy.

R e m a r k. By the statements (1) and (2) of Lemma 1, we can see that
ki is imaginary if and only if Ji 6∈ T ′i (i = 1, 2).

In order to prove the theorem, we have to consider the following four
cases separately:

I. Both k1 and k2 are imaginary (⇔ J1 6∈ T ′1 ∧ J2 6∈ T ′2);
II. k1 is imaginary and k2 is real (⇔ J1 6∈ T ′1 ∧ J2 ∈ T ′2);
II′. k1 is real and k2 is imaginary (⇔ J1 ∈ T ′1 ∧ J2 6∈ T ′2);
III. Both k1 and k2 are real (⇔ J1 ∈ T ′1 ∧ J2 ∈ T ′2).

But case I was treated in [1], and cases II and II′ are similar. So it
is sufficient to consider cases II and III. In case II, we use the following
symbols:

• a1(= 1), a2, . . . , ar1 a system of representatives for T1/〈J1〉T ′1;
• b1(= 1), b2, . . . , br2 a system of representatives for T2/T ′2;
• d1(= 1), d2, . . . , ds a system of representatives for T ′1T

′
2/N ;

• Y = {ai1bi2dj : 1 ≤ i1 ≤ r1 ∧ 1 ≤ i2 ≤ r2 ∧ 1 ≤ j ≤ s};
• Y ′ = Y − {1, a2, . . . , ar1 , b2, . . . , br2};
• M = {ai1q2 : 2 ≤ i1 ≤ r1} ∪ {q1bi2 : 2 ≤ i2 ≤ r2} ∪ Y ′;
• M ′ = M ∪ {0}.
And, in case III, we use the following ones:

• a1(= 1), a2, . . . , ar1 a system of representatives for T1/T ′1;
• b1(= 1), b2, . . . , br2 a system of representatives for T2/T ′2;
• d1(= 1), d2, . . . , ds a system of representatives for T ′1T

′
2/〈J〉N ;

• Y = {ai1bi2dj : 1 ≤ i1 ≤ r1 ∧ 1 ≤ i2 ≤ r2 ∧ 1 ≤ j ≤ s};
• Y ′ = Y − {1, a2, . . . , ar1 , b2, . . . , br2};
• M = {ai1q2 : 2 ≤ i1 ≤ r1} ∪ {q1bi2 : 2 ≤ i2 ≤ r2} ∪ Y ′;
• M ′ = M ∪ {0}.
R e m a r k. We note that Y is a system of representatives for T/〈J〉N .

Further, the cardinality of M is equal to 1
2 [k : Q]−1, which is the unit rank

of k.
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Now let l : k× → R[G] be the G-module homomorphism defined by

l : k× 3 α 7→
∑
σ∈G

log |ασ| · σ−1 ∈ R[G].

It is easy to see that Ker l ∩ E = Ker l ∩ C = W . Hence

[E : C] = [l(E) : l(C)].

Furthermore, any finite subset {v1, . . . , vr} of C is a system of fundamental
circular units of k if and only if {l(v1), . . . , l(vr)} is a Z-basis of l(C).

For any a, b, y ∈ T , we define circular units vaq2 , vq1b, vy by

vaq2 =NK1/k1

(
1− ζaq2

1− ζq2

)
, vq1b =NK2/k2

(
1− ζq1b

1− ζq1

)
, vy =NK/k(1− ζy).

Then we notice the following facts:

(1) If a ≡ a′ mod T2N , then vaq2 = va′q2 .
(2) If b ≡ b′ mod T1N , then vq1b = vq1b′ .
(3) If y ≡ y′ mod N , then vy = vy′ .

Let C ′ be the subgroup of C generated by {vx : x ∈ M}. Later, we shall
see that l(C ′) has finite index in l(C) and l(E). Hence we have

[E : C] = [l(E) : l(C)] =
[l(E) : l(C ′)]
[l(C) : l(C ′)]

.

2. Computation of [l(C) : l(C ′)]. First, from the definition of C ′, we
can easily see the following lemma.

Lemma 2. l(C ′) is generated by {l(vx) : x ∈ M}.
We choose two integers l1 and l2 such that

l1 ≡ 1 mod q1, p1l1 ≡ 1 mod q2,

p2l2 ≡ 1 mod q1, l2 ≡ 1 mod q2.

Then l1 ∈ T2 and l2 ∈ T1. We define f1, g1, f2 and g2 by

f1 = [〈l1〉T ′2 : T ′2], g1 = [T2 : 〈l1〉T ′2],
f2 = [〈l2〉T ′1 : T ′1], g2 = [T1 : 〈l2〉T ′1].

Let {1, s2, . . . , sg1} and {1, t2, . . . , tg2} be systems of representatives for
T2/〈l1〉T ′2 and T1/〈l2〉T ′1 respectively.

Proposition 3. In case II, l(C) is generated by

l(vai1q2) (2 ≤ i1 ≤ r1), l(vy) (y ∈ Y ′)

and
1
2 l(vq1l1), . . . ,

1
2 l(v

q1l
f1−1
1

),
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l(vq1s), 1
2 (l(vq1s)− l(vq1sl1)), . . . ,

1
2 (l(v

q1sl
f1−2
1

)− l(v
q1sl

f1−1
1

))

(s = s2, . . . , sg1).

Moreover , [l(C) : l(C ′)] = 2r2−g1 .

Proposition 4. In case III, l(C) is generated by

l(vy) (y ∈ Y ′)

and
1
2 l(vq1l1), . . . ,

1
2 l(v

q1l
f1−1
1

),

l(vq1s), 1
2 (l(vq1s)− l(vq1sl1)), . . . ,

1
2 (l(v

q1sl
f1−2
1

)− l(v
q1sl

f1−1
1

))

(s = s2, . . . , sg1)

and
1
2 l(vl2q2), . . . ,

1
2 l(v

l
f2−1
2 q2

),

l(vtq2),
1
2 (l(vtq2)− l(vtl2q2)), . . . ,

1
2 (l(v

tl
f2−2
2 q2

)− l(v
tl

f2−1
2 q2

))

(t = t2, . . . , tg2).

Moreover , [l(C) : l(C ′)] = 2r1+r2−g1−g2 .

R e m a r k. In the next section, we shall see that l(C ′) has finite index
in l(E). Hence

rankZ l(C ′) = rankZ l(C) = rankZ l(E).

On the other hand, we notice that the cardinality of every system of gener-
ators for l(C ′) or l(C) stated in the above propositions is equal to the unit
rank of k. This implies that these systems of generators are bases.

We can prove Propositions 3 and 4 in a similar fashion. So we only prove
Proposition 3. Let L be the subgroup of R[G] generated by the elements
stated in the proposition.

First we prove L ⊂ l(C). Fix a bi2 (1 ≤ i2 ≤ r2). Then∑
1≤i1≤r1
1≤j≤s

l(vai1bi2dj
)

=
∑

1≤i1≤r1
1≤j≤s

l(NK/k(1− ζai1bi2dj ))

=
1
2

∑
1≤i1≤r1
1≤j≤s

l(NK/k(1− ζai1bi2dj )) +
1
2

∑
1≤i1≤r1
1≤j≤s

l(NK/k(1− ζJ1ai1bi2dj ))
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=
1
2

∑
0≤h1≤1
1≤i1≤r1
1≤j≤s

l(NK/k(1− ζJ
h1
1 ai1bi2dj ))

=
1
2
l
( ∏

0≤h1≤1
1≤i1≤r1
1≤j≤s

NK/k(1− ζJ
h1
1 ai1bi2dj )

)
.

Now, by Lemma 1(4), we have∏
0≤h1≤1
1≤i1≤r1
1≤j≤s

NK/k(1− ζJ
h1
1 ai1bi2dj ) = Nk/k2(NK/k(1− ζbi2 )).

So we get∑
1≤i1≤r1
1≤j≤s

l(vai1bi2dj
)

=
1
2
l(Nk/k2(NK/k(1− ζbi2 )))

=
1
2
l(NK2/k2(NK/K2(1− ζbi2 )))

=
1
2
l

(
NK2/k2

(
1− ζq1bi2

1− ζq1l1bi2

))
=

1
2
l

(
NK2/k2

(
1− ζq1bi2

1− ζq1

))
− 1

2
l

(
NK2/k2

(
1− ζq1l1bi2

1− ζq1

))
=

1
2
(l(vq1bi2

)− l(vq1l1bi2
)).

Hence
1
2
(l(vq1bi2

)− l(vq1l1bi2
)) ∈ l(C).

From this, we can easily deduce that L ⊂ l(C).
Next we prove l(C) ⊂ L. For this purpose, it is sufficient to prove

that l(vy) ∈ L for y ∈ Y − Y ′, because it is obvious that l(vq1bi2
) ∈ L for

2 ≤ i2 ≤ r2. Fix an ai1 (2 ≤ i1 ≤ r1). Then∑
1≤i2≤r2
1≤j≤s

l(vai1bi2dj ) = l(Nk/k1(NK/k(1− ζai1 )))

= l(NK1/k1(NK/K1(1− ζai1 )))

= l

(
NK1/k1

(
1− ζai1q2

1− ζai1q2l2

))
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= l

(
NK1/k1

(
1− ζai1q2

1− ζq2

))
− l

(
NK1/k1

(
1− ζai1q2l2

1− ζq2

))
= l(vai1q2)− l(vai1q2l2) ∈ L.

If ai1bi2dj 6= ai1 , then ai1bi2dj ∈ Y ′ by the definition of Y ′. Hence l(vai1
) ∈

L. Now we fix a bi2 (1 ≤ i2 ≤ r2). Then, as we have seen above,∑
1≤i1≤r1
1≤j≤s

l(vai1bi2dj ) =
1
2
(l(vq1bi2

)− l(vq1l1bi2
)).

If ai1bi2dj 6= bi2 , then l(vai1bi2dj
) ∈ L. Hence l(vbi2

) ∈ L. We have thus
proved that l(C) ⊂ L.

Finally, by computing the determinant of the transition matrix, we can
see that

[l(C) : l(C ′)] =
1(

1
2

)f1−1 ·
((

1
2

)f1−1)g1−1
= 2f1g1−g1 = 2r2−g1 .

This completes the proof of Proposition 3.

3. Computation of [l(E) : l(C ′)]. For each t ∈ T , we let

c0 = 1,

ctq2 =
{

1 if t ∈ T2N,
0 otherwise,

ctq1 =
{

1 if t ∈ T1N,
0 otherwise,

ct =
{ 1 if t ∈ N ,

0 otherwise.
Further, we define

b0,t = 2,
baq2,t = (c(aq2)t + cJ(aq2)t)− (ctq2 + cJtq2) (a ∈ T ),

bq1b,t = (c(q1b)t + cJ(q1b)t)− (ctq1 + cJtq1) (b ∈ T ),

by,t = (cyt + cJyt)−
1

[k : k2]
(cytl1q1 + cJytl1q1)

− 1
[k : k1]

(cytl2q2 + cJytl2q2) +
2

[k : Q]
(y ∈ T ).

We denote by σt (t ∈ T ) the automorphism of k over Q which is the image
of (t, K) under the canonical surjection

Gal(K/Q) → G = Gal(k/Q).
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We omit the proof of the next lemma because it is just the same as those of
Lemmas 3.5 and 3.6 in [1].

Lemma 5. Let Q be the unit index of k and h+ the class number of k+.
Then

[l(E) : l(C ′)] =
1

[k : Q]
· |det(bx,t)x∈M ′,t∈Y | ·Qh+.

In what follows, we compute the determinant of the matrix (bx,t)x∈M ′,t∈Y .
We define

A = {Jh1
1 ai1q2 : 0 ≤ h1 ≤ 1 ∧ 1 ≤ i1 ≤ r1}, B = {q1bi2 : 1 ≤ i2 ≤ r2}

in case II, and

A = {ai1q2 : 1 ≤ i1 ≤ r1}, B = {q1bi2 : 1 ≤ i2 ≤ r2}

in case III. Then it is easy to see that∑
y∈A

cyt =
∑
y∈B

cyt = 1

for any t ∈ T .

Lemma 6. (1) For any x ∈ A, there exist rational numbers αi1 (1 ≤ i1
≤ r1) such that

cxt + cJxt = α1(c0 + c0) +
r1∑

i1=2

αi1(c(ai1q2)t + cJ(ai1q2)t)

for any t ∈ T .
(2) For any x ∈ B, there exist rational numbers βi2 (1 ≤ i2 ≤ r2) such

that

cxt + cJxt = β1(c0 + c0) +
r2∑

i2=2

βi2(c(q1bi2 )t + cJ(q1bi2 )t)

for any t ∈ T .

P r o o f. As cases II and III are similar, we prove the lemma for case II.
If x ∈ M , there is nothing to prove. So we suppose that x 6∈ M .

(1) Since

c(J1ai1q2)t + cJ(J1ai1q2)t = c(J1ai1q2)t + c(ai1q2)t = c(ai1q2)t + cJ(ai1q2)t,

it suffices to consider the case x = q2. Let us define

A0 = {ai1q2 : 1 ≤ i1 ≤ r1}, A1 = {J1ai1q2 : 1 ≤ i1 ≤ r1}.

Then ∑
y∈A0

(cyt + cJyt) =
∑
y∈A

(cyt + cJyt)−
∑

y∈A1

(cyt + cJyt).
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On the other hand, we can see that∑
y∈A1

(cyt + cJyt) =
∑

y∈A1

(c(Jy)t + cJ(Jy)t) =
∑

y∈A0

(cyt + cJyt).

Hence ∑
y∈A0

(cyt + cJyt) =
1
2

∑
y∈A

(cyt + cJyt) =
1
2
(1 + 1) =

1
2
(c0 + c0).

Consequently, we obtain

cq2t + cJq2t =
1
2
(c0 + c0)−

r1∑
i1=2

(c(ai1q2)t + cJ(ai1q2)t).

(2) From x 6∈ M , we have x = q1. Since
r2∑

i2=1

(c(q1bi2 )t + cJ(q1bi2 )t) = 1 + 1 = c0 + c0,

we get

cq1t + cJq1t = (c0 + c0)−
r2∑

i2=2

(c(q1bi2 )t + cJ(q1bi2 )t).

Using the above lemma, we can deduce that

|det(bx,t)x∈M ′,t∈Y | = r1r2 · |det(cxt + cJxt)x∈M ′,t∈Y |

by the same argument as in the proof of Lemma 3.8 in [1]. So, in order to
accomplish our purpose, we have to compute the determinant of the matrix
(cxt + cJxt)x∈M ′,t∈Y .

For each t ∈ Y , there exists exactly one u ∈ Y such that tu ∈ 〈J〉N ,
because Y is a system of representatives for T/〈J〉N . We denote this u by
t′. Then the map Y 3 t 7→ t′ ∈ Y is bijective.

Lemma 7. Suppose x ∈ M , t ∈ Y and cxt′ + cJxt′ 6= 0. Then:

(1) if x ∈ Y ′, then t = x;
(2) if x = ai1q2 (2 ≤ i1 ≤ r1), then t ∈ Y ′ or t = ai1 ;
(3) if x = q1bi2 (2 ≤ i2 ≤ r2), then t ∈ Y ′ or t = bi2 .

P r o o f. (1) Straightforward.
(2) If c(ai1q2)t′ + cJ(ai1q2)t′ 6= 0, then ai1t

′ ∈ 〈J〉T2N . Hence there is
a y = bi2J

hdj such that ai1yt′ = ai1bi2J
hdjt

′ ∈ 〈J〉N , and so we have
ai1bi2djt

′ ∈ 〈J〉N . Therefore t = ai1bi2dj , and we obtain t = ai1 or t ∈ Y ′.
(3) In case III, the proof is similar to (2). So we consider case II. If

c(q1bi2 )t′+cJ(q1bi2 )t′ 6= 0, then bi2t
′ ∈ 〈J〉T1N . Hence there is a w = Jh1

1 ai1dj

such that wbi2t
′ = Jh1

1 ai1bi2djt
′ ∈ 〈J〉N , and so ai1bi2J

h1
2 djt

′ ∈ 〈J〉N . As
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J2 ∈ T ′2, there exists a dj′ such that Jh1
2 dj ≡ dj′ mod 〈J〉N , and then

ai1bi2dj′t
′ ∈ 〈J〉N . Therefore t = bi2 or t ∈ Y ′.

From this, we can obtain the following conclusion.

Proposition 8. Let Q be the unit index of k and h+ the class number
of k+.

(1) In case II, we have

[l(E) : l(C ′)] =
[k1 : Q][k2 : Q]

[k : Q]
· 2r2−1 ·Qh+.

(2) In case III, we have

[l(E) : l(C ′)] =
[k1 : Q][k2 : Q]

[k : Q]
· 2r1+r2−1 ·Qh+.

In particular , l(C ′) and l(C) have finite indices in l(E).

4. Proof of Theorem B. First we consider case II. By Propositions 3
and 8(1), we have

[E : C] =
[l(E) : l(C ′)]
[l(C) : l(C ′)]

=
[k1 : Q][k2 : Q]

[k : Q]
· 2r2−1

2r2−g1
·Qh+

=
[k1 : Q][k2 : Q]

[k : Q]
· 2g1−1 ·Qh+.

Now, since σl1 is the inverse of the Frobenius automorphism for p1 in k, we
have

g1 = [T : 〈l1〉T1N ] = [G : Dp1 ].
Therefore

[E : C] =
[k1 : Q][k2 : Q]

[k : Q]
· 2[G:Dp1 ]−1 ·Qh+.

Next we consider case III. By Propositions 4 and 8(2), we have

[E : C] =
[k1 : Q][k2 : Q]

[k : Q]
· 2g1+g2−1 ·Qh+.

As also g1 = [G : Dp1 ] and g2 = [G : Dp2 ], we obtain

[E : C] =
[k1 : Q][k2 : Q]

[k : Q]
· 2[G:Dp1 ]+[G:Dp2 ]−1 ·Qh+.

This completes the proof of the theorem.

5. The real case. Let k be a real abelian number field with con-
ductor pe1

1 pe2
2 . Let T1, T2, T ′1, T ′2, N be the same as in Section 1, and
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{ai1}, {bi2}, {dj} be systems of representatives for T1/T ′1, T2/T ′2, T
′
1T

′
2/N re-

spectively. Then

{vai1q2 : 2 ≤ i1 ≤ r1} ∪ {vq1bi2
: 2 ≤ i2 ≤ r2} ∪ {vy : y ∈ Y ′}

is a system of fundamental circular units of k, where

Y ′ = {ai1bi2dj : 1 ≤ i1 ≤ r1 ∧ 1 ≤ i2 ≤ r2 ∧ 1 ≤ j ≤ s}
− {1, a2, . . . , ar1 , b2, . . . , br2}.

We can deduce Sinnott’s index formula

[E : C] =
[k1 : Q][k2 : Q]

[k : Q]
· 2[k:Q]−1 · h

by computing the regulator of the system of fundamental units. We omit
the proof because it is very similar to that of the imaginary case.
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