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Double transitivity of Galois groups of trinomialsbyS. D. Cohen (Glasgow), A. Movahhedi (Limoges) andA. Salinier (Limoges)1. Introdution. In this paper we study the Galois group G(f) ofan irreduible trinomial f(X) = Xn + aXs + b with integral oeÆients(1 � s � n�1; ab 6= 0). Irreduibility has the e�et that G(f) is a transitivesubgroup of the full symmetri group ating on the zeros of f(X). If n ands are not oprime, then f(X) = g(Xd), say, where d > 1 is the greatestommon divisor of n and s. Thus f(X) is funtionally deomposable over Qand, easily, G(f) is imprimitive as a permutation group. We shall show thatin fairly general irumstanes, when n and s are o-prime, G(f) is not onlyprimitive but even doubly transitive. As we shall see, our results extend atheorem of Osada [18℄ who proved, under stronger onditions, that G(f) isthe full symmetri group Sn itself. See also [17℄ for a related result.We denote by (u; v) the greatest ommon divisor of two integers u andv. For any prime p and non-zero integer , we use vp() to denote the p-adivaluation of . Our �rst result is as follows.Theorem 1.1. Let f(X) = Xn + aXs + b be an irreduible trinomialwith integral oeÆients where (n; as) = (a(n � s); b) = 1: Suppose there isa prime divisor p of b suh that (s; vp(b)) = 1. Then the Galois group G(f)of f(X) over Q is doubly transitive.A doubly transitive group of degree n whih ontains a transposition isthe full symmetri group Sn. Aordingly, under the hypotheses of The-orem 1.1, for G(f) to be Sn, it suÆes to guarantee the existene of atransposition in G(f). In partiular, this is the ase when there exists aprime p not dividing (b; s) suh that vp(D0(f)) is odd, whereD0(f) = nnbn�s + (�1)n�1ss(n� s)n�san:Indeed, the disriminant D(f) of f is given [21℄ byD(f) = (�1)n(n�1)=2bs�1D0(f):1991 Mathematis Subjet Classi�ation: 11R32, 11S15, 12F10.[1℄



2 S. D. Cohen et al.Thus, the above prime p, not dividing b, divides D(f) to an odd power,whih shows that p is rami�ed in the splitting �eld L of f(X). Hene, asshown in Lemma 2.1 below, the group G(f) ontains a transposition.We omment on the relationship of Theorem 1.1 to Osada's work. Firstly,there is the minor observation that he allowed the existene of an integer suh that (a; b) = n and b=n oprime to , but, then, replaing f(X) byf(X)=n we may suppose that  = 1.Next, Theorem 1.1 signi�antly extends Theorem 1 of [18℄; its state-ment is similar exept that our hypothesis about the existene of a primedivisor p of b suh that (s; vp(b)) = 1 is replaed by the stronger ondition(b; s) = 1 and vp(b) = 1 for a prime p. Moreover, in [18℄, it was assumedthat jD0(f)j is a non-square integer, whih, as remarked above, ensures theexistene of a transposition in G(f). Thus, we reover Theorem 1 of [18℄ un-der lesser onstraints. Furthermore, whereas the weakening of \vp(b) = 1"to \(s; vp(b)) = 1" may not rank as a major improvement, we laim thatthe omission of the hypothesis (b; s) = 1 is of some signi�ane. For, as weshall see, a prime p suh that p divides (b; s) and (s; vp(b)) = 1 is wildlyrami�ed in the splitting �eld L of f(X); whereas, to our knowledge, wildrami�ation has been exluded in preeding works on this subjet. Thus thedemonstration that G(f) is doubly transitive, even though several primesare wildly rami�ed in L, appears to represent signi�ant progress.Further, it is useful to be able to derive double transitivity withoutpresribing jD0(f)j be a non-square, sine it is possible to �nd examples oftrinomials satisfying the hypotheses of Theorem 1.1 for whih jD0(f)j is asquare (see Example 8 in Setion 5).We remark that, when no prime p satis�es the ondition (s; vp(b)) = 1, itis still possible in some irumstanes to obtain the primitivity of the Galoisgroup G(f) as in [13℄.In Theorem 1.1 although the hypotheses do not prelude wild rami�a-tion, we have, however, assumed that p -n� s for every prime p dividing b.The possibility that p j (n� s; b) is partiularly diÆult to treat. Neverthe-less, in our other main result (whih we now state) we allow this to ourfor a single prime p in the ase in whih n� s = pt (t � 0).Theorem 1.2. Let f(X) = Xn + aXs + b be an irreduible trinomialwith integral oeÆients where (n; s) = 1. Suppose that there exists a primedivisor p of b, but not of a, suh that(i) n = s+ pt; t � 0,(ii) vp(f(�a)) = 1,(iii) (s; vp(b)) = 1.Then G(f) is doubly transitive.



Galois groups of trinomials 3Note that when vp(b) = 1, then the ondition \vp(f(�a)) = 1" is auto-matially satis�ed ifa = + 1 or � 1 (mod p2) for p odd;a = � 1 (mod 4) for p = 2:Next, we state some results whih are used in the proofs of Theorems 1.1and 1.2 and also may be employed in onjuntion with these theorems toprovide yet stronger onlusions.For a subset (e.g. a subgroup) H of G(f) we denote by suppH (thesupport ofH) the set of roots � of f(X) suh that �(�) 6= � for some � 2 H.Our results assert that, under appropriate onditions, there are subgroupsH of G(f) transitive on suppH.Theorem 1.3. Let f(X)= Xn+aXs+b be an irreduible trinomial withintegral oeÆients with (n; s) = 1. Suppose there exists a prime p dividingb but not a(n� s) suh that (s; vp(b)) = 1. Then G(f) ontains a subgroupH ating transitively on s roots of f(X) and �xing eah of the other roots.Furthermore, if p - s, then the subgroup H is generated by an s-yle.Theorem 1.4. Let f(X)= Xn+aXs+b be an irreduible trinomial withintegral oeÆients with (n; s) = 1. Suppose there exists a prime p dividingb, but not a, suh that(i) n� s = pt; t � 1,(ii) vp(f(�a)) = 1.Then G(f) ontains a subgroup H ating transitively on pt roots of f(X)and �xing eah of the other roots.Theorems 1.3 and 1.4 may sometimes be used together. For example, fora trinomial satisfying the hypotheses of Theorem 1.2, Theorem 1.4 alwaysapplies, but for the same trinomial there may exist another prime p0 suhthat (s; vp0(b)) = 1 and then the onlusion of Theorem 1.3 is also valid.More generally, by ombining the onlusions of Theorems 1.1 and 1.2 withsuh fats as Theorems 1.3 and 1.4 and the lassi�ation of doubly transitivegroups [2℄, we an show that in most of the ases desribed in Theorems 1.1and 1.2 (without assuming that jD0(f)j orD(f) is a non-square), G(f) = Anor Sn (see Theorems 4.3 and 4.4). We leave the details of this proedureto a further paper but give some examples whih illustrate our result inSetion 5.Finally, we omment briey on some of the literature on the Galoisgroups of trinomials other than that whih limaxed in Osada's papers.In [13℄ it is proved that G(f) is primitive in ertain ases under onditionslike those of Theorem 1.1 exept that b is assumed to be oprime to s but,on the other hand, (vp(b); s) may be greater than 1 for eah prime p.



4 S. D. Cohen et al.Usually, if d = (a; b) > 1, rami�ation of a prime divisor of d is of arather di�erent nature than that onsidered here and in [13℄. Thus, forexample, Komatsu [6{8℄ and Movahhedi [12℄ have studied trinomials of theform Xn + aX + a.An interesting example of Trinks [22℄ with (n; a) > 1 is G(X7�7X+3) =PSL2(7), where PSL2(7) is the projetive speial linear group of degree 2over the �nite �eld of 7 elements. But generally not many trinomials forwhih An 6� G(f) are known; perhaps the results of the paper and its sequelmay help to narrow the searh for suh examples to a smaller area. Thepaper [4℄ ontains serious errors (e.g. the laim to establish primitivity inLemma 3 is false); therefore the examples given there are not justi�ed. Thepresent paper establishes modi�ed results in a similar diretion. The maindi�erene in the proof is that, instead of onentrating on the rami�ationof a single prime p dividing b as there, in Theorem 1.1 all rami�ation istaken into aount. The only e�et of these additional onsiderations in thehypotheses of Theorem 1.1 is the inlusion of the assumption that (a; b) = 1.2. Inertia groups. Let f(X) = Xn+aXs+b be an irreduible trinomialwith integral oeÆients (1 � s � n � 1; ab 6= 0). Let � := �1; �2; : : : ; �nbe the di�erent roots of f(X) in an algebrai losure of Q . We denote byK = Q(�) the �eld obtained by adjoining the root � to the �eld Q , and byL := Q(�; �2 ; : : : ; �n) the splitting �eld of f(X).For a given prime p, we hoose a �xed prime ideal p of L dividing pand denote by Lp the orresponding ompletion with respet to the p-adivaluation. Write Ip for the inertia group of p and LI the inertia �eld of p:we have Ip = Gal(Lp=LI).In this setion we �rst desribe the fatorization of f(X) in the p-adi�eld Qp and in some of the sub-extensions of Lp, and then prove Theo-rems 1.3 and 1.4.Lemma 2.1. Suppose (n; as) = 1. Let p be a prime whih does notdivide b but is rami�ed in K. Then the inertia group Ip is generated by atransposition.P r o o f. We neessarily have p jD0(f) and p - a. So, by Theorem 2 of[11℄, the prime p divides the absolute disriminant of the �eld K = Q(�)exatly one. The rest of the proof is similar to that of Lemma 5 of [13℄.Next, let p be a prime divisor of b but not of a. By Hensel's Lemma,f(X) = g(X)h(X) over Zp;where g(X) � Xs (mod p) and h(X) � Xn�s + a (mod p):



Galois groups of trinomials 5Throughout the rest of the paper, this notation will be retained for thefators of f(X) over Zp.Lemma 2.2. Suppose (n; s) = 1 and p is a prime dividing b but nota(n � s). Then h(X) splits ompletely over the inertia �eld LI and thesupport of the inertia group Ip has at most s elements.P r o o f. Let � be a root of h(X) having h1(X) as minimal polynomialover Qp . The redution h1(X) of h1(X) modulo p is, by Hensel's Lemma, apower of an irreduible polynomial. On the other hand, sine by hypothesisp - a(n � s), h(X), the redution of h(X) modulo p, has no multiple root.So the same is true of h1(X). Thus h1(X) is irreduible, showing that theloal extension Qp (�)=Qp is unrami�ed. Hene the splitting �eld of h(X)is an unrami�ed extension of Qp whih therefore must be ontained in themaximal unrami�ed extension LI .Lemma 2.3. Let p be a prime divisor of b but not of a suh that(s; vp(b)) = 1. Then, for eah root � of g(X), the extension Qp (�)=Qp istotally rami�ed. Furthermore, g(X) is irreduible over the inertia �eld LI .P r o o f. Let w be the normalized valuation of the loal �eld Qp (�). Thenw(p) = e, where e is the rami�ation index of the extension Qp (�)=Qp . Sineg(X) � Xs (mod p), we have w(�) > 0 and, sine f(�) = �n+a�s+ b = 0,we neessarily have sw(�) = w(b) = evp(b):Now, sine (s; vp(b)) = 1 by hypothesis, s must divide e. Ase � [Qp (�) : Qp ℄ � s = degree of g(X);we obtain simultaneously that the extension Qp (�)=Qp is totally rami�edand the polynomial g(X) is irreduible over Qp . The unrami�ed extensionLI being linearly disjoint over Qp with the totally rami�ed extension Qp (�),the polynomial g(X) remains irreduible over LI .P r o o f o f Th e o r em 1.3. By the preeding two lemmas, over the �eldLI , g(X) is irreduible while h(X) splits ompletely. Hene Ip=Gal(Lp=LI)is transitive on its support whih onsists of the roots of g(X). This provesthe �rst part of Theorem 1.3. If, additionally, we suppose that p - s, thenLp = LI(�) for any root � of g(X). Indeed, let � be another root of g(X).Then by Lemma 2.3, and Abhyankar's lemma [14, Chapter 5, Corollary 4to Theorem 5.11℄ the extension LI(�; �)=LI (�) is unrami�ed. Sine Lp=LIis totally rami�ed, we must have LI(�; �) = LI(�). Thus Lp=LI is a totallyand tamely rami�ed extension of degree s. So its Galois group Ip is yli[3, Chapter I, Setion 8, Proposition 1℄ of order s ating transitively on thes roots of g(X), and as suh must neessarily be generated by an s-yle.



6 S. D. Cohen et al.P r o o f o f Th e o r em 1.4. Let g0(X) = g(X � a); h0(X) = h(X � a).Then h0(X) � Xpt + (�a)pt + a � Xpt (mod p);and 1 = vp(f(�a)) = vp(h0(0)g0(0)). Hene vp(h0(0)) = 1 and so h0 is anEisenstein polynomial of degree pt with respet to p. Thus the polynomialh(X) is irreduible of degree pt over Qp and the �eld Qp (), obtained byadjuntion of a root  of h(X) to Qp , is a totally and wildly rami�ed ex-tension of Qp . Hene Qp () is linearly disjoint over Qp with the maximaltamely rami�ed extension LT of Qp ontained in Lp. This proves that thepolynomial h(X) is irreduible over LT .Now we apply results of Ore (see the Appendix below) to �nd the primedeomposition of p in K. The fatorization of f(X) mod p isf(X) � Xs(X + a)pt (mod p):The prinipal part of the (p;X)-polygon of f(X) is made up of a unique sideS whih joins the point (n� s; 0) to the point (n; vp(b)), and the assoiatedpolynomial of it is FS(Y ) = Y r + bp�vp(b)a1;where r := (s; vp(b)) and a1 is an integer suh that aa1 � 1 (mod p). Like-wise, sine vp(f(�a)) = 1 and f(X) � Xs(X + a)pt (mod p), the prinipalpart of the (p;X+a)-polygon of f(X) is made up of a unique side Sa joiningthe point (s; 0) to the point (n; 1), hene with a linear assoiated polynomialFSa(Y ). Now by Theorem A.2, it follows thatp = Aq1Apt2 ;where q := s=r and A1;A2 are two integral ideals of K whih are relativelyprime and whih have absolute normsNK(A1) = pr; NK(A2) = p:Moreover, sine the polynomials FS(Y ) and FSa(Y ) are separable modulop, Theorem A.2 also yields A1 = P1P2 : : :Pm;where the Pi's are distint prime ideals of K, and A2 is a prime ideal Q.Hene the exat prime deomposition of p in K is the followingp = QptPq1Pq2 : : :Pqm:To eah prime ideal Pi orresponds an irreduible fator gi(X) whih is theminimal polynomial of � in the tamely rami�ed extension KPi=Qp , whereKPi is the ompletion of K with respet to the Pi-adi valuation. Theprodut Qni=1 gi(X) is neessarily g(X) sine eah gi(X) is di�erent fromthe irreduible polynomial h(X). This implies that g(X) splits ompletely



Galois groups of trinomials 7over LT . Now, in this situation, the �rst rami�ation group G(Lp=LT ) atstransitively on the pt roots of h(X) and �xes the roots of g(X).When (s; vp(b)) = 1, the preeding proof an be arried out withoutusing Ore's result as it follows from Lemma 2.3 that g(X) splits ompletelyover LT .A doubly transitive group with a subgroup like those desribed in The-orems 1.3 and 1.4 has been alled a Jordan group, and these have beenlassi�ed (see [15℄). This is the starting point for our sequel.3. Primitivity of G(f). The ruial part of our method is to show that,in the situation of Theorems 1.1 and 1.2, G(f) is primitive. We assume thenotation of the previous setions.Lemma 3.1. Let f(X) = Xn+ aXs+ b be an irreduible trinomial withintegral oeÆients suh that (n; as) = (a(n� s); b) = 1: Suppose there is aprime divisor p of b suh that (s; vp(b)) = 1. Then G(f) is primitive.P r o o f. Suppose G(f) is imprimitive. Let A1; : : : ; Al be a system ofimprimitivity of G(f) with k := n=l the ardinality of eah of the bloks Ai.By Theorem 1.3 there exists a subgroup H of G(f) whih ats transitivelyon a set S onsisting of s roots of f(X) and �xes eah of the other roots.Sine (k; s) = 1, we see that S is not a union of some of the bloks. Henethere is a blok A1 suh that A1 has a non-empty intersetion with S butis not ontained in S. Beause it ontains a point �xed by H, the blok A1is �xed by H. On the other hand, sine A1 ontains a point of S and H istransitive on S, we see that A1 must atually (stritly) ontain S. Henes < k.Sine G(f) is transitive, and, ruially, generated by all inertia groups,there exists a prime ideal p of L suh that for an element � 2 Ip we have�(A1) 6= A1. In partiular, jsupp Ipj � jA1 [ �(A1)j = 2k � 4. This learlyimplies that � annot be a transposition and so by Lemma 2.1, neessarilyp j b. Therefore, by Lemma 2.2,jsupp Ipj � s:Thus 2k � s < k, whih is impossible.Lemma 3.2. Let f(X) be an irreduible trinomial satisfying all theonditions of Theorem 1.2. Then G(f) is primitive.P r o o f. Suppose G(f) is imprimitive. Let A1; : : : ; Al be a system ofimprimitivity of G(f) with k := n=l the ardinality of eah of the bloks Ai.We onsider two ases.First suppose that t � 1. Let f(X) = g(X)h(X) be the fatorization off(X) in Qp and p a prime ideal of L dividing p as in Setion 2. As shown



8 S. D. Cohen et al.in the proof of Theorem 1.4, there exists a subgroup H of G(f) whih atstransitively on the set Rh of the pt roots of h(X) and �xes eah of the otherroots. Sine p - k, the set Rh is not a union of bloks and so the set Rg ofthe s roots of g(X) also annot be a union of bloks.Now let A1 be a blok that has a non-empty intersetion with Rh butis not ontained in Rh. Beause A1 ontains a point �xed by H (a rootof g(X)), the blok A1 is �xed by H. Further, beause it ontains a pointof Rh and H is transitive on Rh, the blok A1 stritly ontains Rh. Let�1 2 A1nRh and �2 62 A1 be two roots of g(X). By Lemma 2.3 we knowthat g(X) remains irreduible over the inertia �eld LI , so that there exists� in the inertia group Ip for whih �(�1) = �2. But this is impossible, sine�(Rh) = Rh and onsequently �(A1) = A1.Suppose �nally that t = 0. In that ase, using Theorem 1.3, we see thatG(f) is not only primitive but even doubly transitive.N o t e. If s < n=2, a ontradition is already reahed in the above proofat the point where it is shown that Rh � A1. Thus, in this situation,Lemma 2.3, and so the assumption that (s; vp(b)) = 1, are not needed.4. Double transitivity. We quote the following theorem of Jordan ([5℄or expliitly in [23, Theorem 13.1℄).Lemma 4.1. Let G be a primitive group of degree n suh that thestabilizer of some set of m points (where 1 � m � n�2) is transitive on theremaining n�m points. Then G is doubly transitive.P r o o f o f Th e o r em 1.1. When s = 1, Lemmas 2.1 and 2.2 showthat the Galois group G(f) is generated by transpositions, so G(f) is notonly doubly transitive but the full symmetri group Sn [19, Lemma 4.4.4,p. 40℄. For s > 1, the proof follows by applying Lemma 4.1 to the Galoisgroup G(f) (whih is primitive by Lemma 3.1) and the subgroup H withjsuppHj = s whose existene was shown in Theorem 1.3.P r o o f o f Th e o r em 1.2. When t = 0, the double transitivity ofG(f) is a onsequene of Theorem 1.3. When t � 1, the proof followsby applying Lemma 4.1 to the Galois group G(f) (whih is primitive byLemma 3.2) and the subgroup H of Theorem 1.4.N o t e s. 1. By the note following Lemma 3.2, in Theorem 1.2 as analternative to (iii), it suÆes to assume that s < n=2.2. As the following example shows, if the hypothesis (ii) of Theorem 1.2is dropped, then we no longer get the double transitivity of G(f) in general.Take f(X) = X5 � 5X + 12 and p = 2. The hypotheses of Theorem 1.2are satis�ed exept that v2(f(5)) = 3. Aording to [20, Table II℄, G(f)is the dihedral group D5 of order 10. For this example the polynomial



Galois groups of trinomials 9h(X) = f(X)=g(X) is not irreduible over Q2 (as was the ase in the proofof Theorem 1.4). Indeed, the Newton polygon of f(X + 5) with respet top = 2 has three sides (see diagram).
Therefore f(X) has at least three fators over Q2 .As we have already observed, the main di�erene between the proofs ofTheorems 1.1 and 1.2 is that, for the former, inertia groups orrespondingto all rami�ed primes have to be taken into aount to establish primitivity,whereas for the latter only those relating to a single prime divisor of b needbe onsidered. In fat, by imposing a suitable ondition on a, we an showthat, even if the onditions (a; n) = (a(n� s); b) = 1 are not met but theredoes exist a prime divisor p of b (with p - a(n� s)) suh that (s; vp(b)) = 1,then G(f) is doubly transitive. We illustrate this with one kind of onditionon a.Theorem 4.2. Let f(X) = Xn + aXs + b be an irreduible trinomialwith integral oeÆients where (n; s) = 1. Suppose there exists a primedivisor p of b suh that(i) p - a(n� s),(ii) (s; vp(b)) = 1,(iii) Xn�s + a is irreduible modulo p.Then G(f) is doubly transitive.P r o o f. With p a prime divisor of p in L, onsider, as in Setion 2, thefatorization f(X) = g(X) h(X) in Zp. The ase s = 1 is straightforward,sine by hypothesis (iii), the polynomial h(X) is irreduible over Qp and,the stabilizer in Gal(Lp=Qp ) of the root of g(X) ats transitively on theroots of h(X). Now assume that s > 1. By Lemma 2.3, the polynomialg(X) is irreduible over the inertia �eld LI , whereas the polynomial h(X)splits ompletely over LI by Lemma 2.2. We may apply a similar argumentto the proof of Lemma 3.2 with Gal(Lp=Qp ) and Ip in plae of Ip andGal(Lp=LT ), respetively, and the roles of g(X) and h(X) interhanged toyield a ontradition to the supposition that G(f) is imprimitive. Finally,applying Lemma 4.1 with Ip, we obtain the double transitivity of G(f).



10 S. D. Cohen et al.No t e s. 1. If s > n=2, a ontradition is already reahed in the aboveproof on showing that Rg is ontained in a blok of imprimitivity. Hene,in the statement of Theorem 4.2, it suÆes to assume s > n=2 in plae ofthe ondition (iii).2. The hypothesis \Xn�s + a is irreduible modulo p" in Theorem 4.2an be replaed by the three following:� 4 - (p+ 1; n� s),� �p�1r ; n� s� = 1, where r is the order of �a modulo p,� eah prime divisor of n� s divides r,whih are its equivalent beause p does not divide a [10, Theorem 3.75℄.Another modi�ation to Theorem 1.1 is to assume that p - s for at leastone prime p suh that (s; vp(b)) = 1. Then, by Theorem 1.3, G(f) ontainsan s-yle and so, sine it is primitive, provided s � 2 we have that G(f) is(n � s + 1)-transitive by Marggra�'s theorem ([1℄ or [9℄). In partiular, if2 � s � n� 3, then G(f) is at least 4-transitive and so, if An 6� G(f) , thenusing the lassi�ation of �nite simple groups (see [2℄), G(f) must be one ofthe Mathieu groupsMn, n = 11; 12; 23; 24 with s = n�3 or n�4. SineM11and M23 are not 5-transitive, the only possibilities for this (having in mindthat n and s are oprime) are (n; s) = (11; 8) or (23; 20). But the Mathieugroups M11 and M23 onsisting of even permutations do not possess ylesof length 8 and 20 respetively. Thus, granted the lassi�ation of �nitesimple groups, we have the following onsequene of Theorem 1.1 (note thatwhen s = 1, by Lemmas 2.1 and 2.2, G(f) is generated by transpositionsand G(f) = Sn [19, Lemma 4.4.4, p. 40℄).Theorem 4.3. Let f(X) = Xn + aXs + b be an irreduible trinomialwith integral oeÆients where (n; as) = (a(n � s); b) = 1 and s � n � 3.Suppose there is a prime divisor p of b but not of s suh that (s; vp(b)) = 1.Then G(f) is either An or Sn.It is not hard to see that for s � n� 3, the preeding theorem improvesTheorem 1 of [18℄.There is a similar onsequene of Theorem 1.2 (or Lemma 3.2) whent = 1.Theorem 4.4. Let f(X) = Xn + aXs + b be an irreduible trinomialwith integral oeÆients with (n; s) = 1. Suppose that n� s = p is a primesatisfying p j b, p - a, vp(f(�a)) = 1 and (s; vp(b)) = 1. If s � 3 then G(f)ontains An.P r o o f. Follows from Lemma 3.2, Theorem 1.4 and Theorem 13.9of [23℄.



Galois groups of trinomials 115. Examples1. If (n; s) = 1, we see from Lemma 9 of [17℄ that the trinomial Xn �Xs � p is irreduible for a prime p, unless p = 2 and X � 1 is a fator (thisfat is also used in Examples 3 and 8 below). Exept in this last situation,it follows from our results that G(Xn�Xs�p) is doubly transitive providedthe two following onditions are satis�ed:� (n; s) = 1,� p -n� s or n = s+ pt.In partiular, if n is odd, then Xn +X2 + 2 is irreduible and G(Xn +X2 + 2) is the full symmetri group sine it ontains a transposition byTheorem 1.3. Similarly, if n is odd, G(Xn �Xn�2 + 2) = Sn.Atually, when (n; s) = 1 and X � 1 is not a fator of Xn �Xs � p forp = 2, the Galois group G(Xn�Xs�p) ontains An in eah of the followingases:(a) s � n� 3, p - s(n� s),(b) s � n� 3 and p = s,() s � 3 and p = n� s.It is easy to see that (a) follows from Theorem 4.3; (b) follows fromTheorem 13.9 of [23℄ and Theorem 1.3 whih guarantees the existene of ayle of length p in the Galois group (take any element of order p in thesubgroup H ourring in Theorem 1.3); and () follows from Theorem 4.4.2. Let (n; s) = 1 and s � n� 3. Take two distint prime numbers p andq suh that (p; s) = (pq; n� s) = 1:If f(X) = Xn � Xs � pq is irreduible over Q , then G(f) = An or Sn byTheorem 4.3.3. If p - s, then the trinomialXpt+s �Xs + pis irreduible over Q , and its Galois group is doubly transitive by Theo-rem 1.2.4. Let p and q be two distint primes. Then by Theorem 1.2 the Galoisgroup G(Xpt+qr � Xqr + pq) is doubly transitive provided the polynomialis irreduible. Indeed, by Theorems 1.3 and 1.4, the Galois group ontainssubgroups H1 and H2 transitive on their supports whih have sizes qr, pt.By using the lassi�ation of doubly transitive groups and the nature ofthese groups, it an be shown that suh subgroups H1 and H2 annot existsimultaneously unless the Galois group is An or Sn. We leave the details



12 S. D. Cohen et al.of this, as suh group theoretial arguments will form the substane of ourensuing paper.5. Let n be odd and p a prime � 3 (mod 4). By Theorem 4.2 the Galoisgroup of the trinomial Xn + Xn�2 + 2p is doubly transitive provided it isirreduible.6. Let n = s + 2t (s odd, t � 1) and p; q be distint primes with p � 1(mod 4) and q a quadrati non-residue (mod p). By Theorem 4.2 and theEisenstein riterion, G(Xn � qXs + qp) is doubly transitive. For example,G(X143 � qX15 + 5q), q = 2 or 13, is doubly transitive.7. Let p be a prime and a a rational integer suh that p - a. Then byTheorem 4.2 the Galois group of Xn + aXn�1 + ap is doubly transitiveprovided it is irreduible. For instane, G(Xn + qXn�1 + qp) is doublytransitive if p and q are two distint primes.8. Let f(X) = X8 + X7 + p where p := 246767749 is a prime. ByTheorem 1.1 its Galois group G is doubly transitive. In fat, G = A8, sineD0(f) is a square and the fatorization of f(X) modulo 19 shows that Gontains a 3-yle.6. Appendix on Ore's theorem. This setion has been added at thesuggestion of the referee. Sine a areful reading of [16℄ is required to extratthe preise version of the theorem of Ore needed in the proof of Theorem 1.4,we give here a formulation of the appropriate result.Let p be a �xed prime number and let '(X) 2 Z[X℄ be a moni poly-nomial of degree m � 1 suh that ' mod p is irreduible. Given a monipolynomial f(X) 2 Qp [X℄, by Eulidean division we expand f(X) aordingto powers of '(X); that is, we write(1) f(X) = tXj=0 p�jQj(X)'(X)t�jwith polynomials Qj(X) 2 Zp[X℄ and degree Qj < m for eah j. In thisequality (1), p does not divide all the oeÆients of Qj , exept when Qj � 0,in whih ase we omit the orresponding term. Sine f and ' are moni,the polynomial Q0 is moni and �0 = 0. The integer t is the largest integer� n=m, where n = deg(f). This expansion will be alled the anonialdeomposition of f(X).Definition A.1. The (p; ')-polygon of f(X) is the boundary of theupper onvex envelope of the set of points (j; �j) minus the two vertial sides.The (p; ')-polygon, minus the (possible) horizontal part, is, by de�nition,the prinipal part of it.



Galois groups of trinomials 13Let S1; : : : ; Sk be the sides of the prinipal part of the (p; ')-polygon off(X) with inreasing slopes. De�nel0 := the length of the horizontal side;li := the length of the projetion of Si to the x-axis;hi := the length of the projetion of Si to the y-axis.Set "i := (li; hi); �i := li="i and �i := hi="i:We �x a side Si of the (p; ')-polygon of f(X). In the anonial deom-position of f(X), onsider the sum of the terms p�jQj(X)'(X)t�j orre-sponding to the points (j; �j) 2 Si: In this sum, we separate'(X)t�l0�:::�liph1+:::+hi�1 ;thus making apparent a fatorRi;0(X)'(X)li +Ri;1(X)p�i'(X)li��i+Ri;2(X)p2�i'(X)li�2�i + : : : +Ri;"i(X)phi ;where the polynomials Ri;0(X); : : : ; Ri;"i(X) are of degree < m: In parti-ular Ri;0 and '(X) (onsidered as polynomials of Fp [X℄) are o-prime. Sothere exists Ai(X) 2 Z[X℄ suh thatRi;0(X)Ai(X) � 1 mod (p; '(X)):De�ne Si;j(X) := Ai(X)Ri;j(X):The assoiated polynomial of the ith side is by de�nitionFi(X;Y ) = Y "i + Si;1(X)Y "i�1 + : : :+ Si;"i(X):Fi(X;Y ) depends on the hoie of Ai, but its lass modulo the ideal(p; '(X)) does not.Theorem 5, Chapter 2 of [16℄ and the paragraph following this theoreman now be stated as follows.Theorem A.2 (Ore). Let f(X) = Xn + a1Xn�1 + : : : + an 2 Z[X℄ bean irreduible polynomial , and let � be a root of f(X) in a �xed algebrailosure of Q : Assume that f(X) � '1(X)a1 : : : 's(X)as mod p, where eah'�(X) 2 Z[X℄, is the fatorization of f(X) modulo p: Denote by m� thedegree of '�(X): Then p = a1 : : : aswhere a� are oprime integer ideals of K := Q(�), with NK(a�) = pa�m�(NK stands for the absolute norm of the number �eld K ).In order to fatorize eah ideal a := a� , orresponding to the irreduiblefator ' := '� , we onstrut the (p; ')-polygon of f(X). For eah side Si
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