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1. Introduction. Let r ≥ 2 be a fixed integer and let θ = 0.a1a2 . . . be
the r-adic expansion of a real number θ with 0 < θ < 1. Then θ is said to
be normal to base r if, for any block b1 . . . bl ∈ {0, 1, . . . , r − 1}l,

n−1N(θ; b1 . . . bl;n) = r−l + o(1)

as n → ∞, where N(θ, b1 . . . bl;n) is the number of indices i ≤ n − l + 1
such that ai = b1, ai+1 = b2, . . . , ai+l−1 = bl. Let (m)r denote the r-
adic expansion of an integer m ≥ 1. For any infinite sequence {m1,m2, . . .}
of positive integers, we consider the number 0.(m1)r(m2)r . . . whose r-adic
expansion is obtained by the concatenation of the strings (m1)r, (m2)r, . . .
of r-adic digits, which will be written simply as 0.m1m2 . . . (r).

Copeland and Erdős [1] proved that the number 0.m1m2 . . . (r) is normal
to base r for any increasing sequence {m1,m2, . . .} of positive integers such
that, for every positive % < 1, the number ofmi’s up to x exceeds x% provided
x is sufficiently large. In particular, the normality of the number

0.23571113 . . . (r)

defined by the primes was established. Davenport and Erdős [2] proved that
the number

0.f(1)f(2) . . . f(n) . . . (r)
is normal to base r, where f(x) is any nonconstant polynomial taking posi-
tive integral values at all positive integers.

In this paper, we prove the following

Theorem. Let f(x) be as above. Then the number

α(f) = 0.f(2)f(3)f(5)f(7)f(11)f(13) . . . (r)
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defined by the values of f(x) at primes is normal to base r. More precisely ,
for any block b1 . . . bl ∈ {0, 1, . . . , r − 1}l, we have

(1) n−1N(α(f); b1 . . . bl;n) = r−l +O

(
1

log n

)

as n→∞, where the implied constant depends possibly on r, f , and l.

2. Preliminary of the proof of the Theorem. Let α(f) =
0.a1a2 . . . an . . . be the r-adic expansion of the number α(f) given in the
Theorem. Then each an belongs to the corresponding string (f(pν))r, where
pν is the νth prime and ν = ν(n) is defined by

ν−1∑

i=1

([logr f(pi)] + 1) < n ≤
ν∑

i=1

([logr f(pi)] + 1).

Here [t] denotes the greatest integer not exceeding the real number t. We
put x = x(n) = pν(n), so that

n =
∑

p≤x
logr f(p) +O(π(x)) +O(logr f(x))(2)

=
dx

log r
+O

(
x

log x

)
,

where d ≥ 1 is the degree of the polynomial f(t), p runs through prime
numbers, and π(x) is the number of primes not exceeding x. We used here
the prime number theorem:

π(x) = Lix+O

(
x

(log x)G

)
,

where G is a positive constant given arbitrarily and

Lix =
x\
2

dt

log t
.

Then we have

N(α(f); b1 . . . bl;n) =
∑

p≤x
N(f(p); b1 . . . bl) +O(π(x)) +O(logr f(x))

=
∑

p≤x
N(f(p); b1 . . . bl) +O

(
n

log n

)

with x = x(n) = pν(n).
Let j0 be a large constant. Then for each integer j ≥ j0, there is an

integer nj such that

rj−2 ≤ f(nj) < rj−1 ≤ f(nj + 1) < rj .
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We note that

nj �� rj/d

and that nj < n ≤ nj+1 if and only if the r-adic expansion of f(n) is of
length j; namely,

(3) (f(n))r = cj−1 . . . c1c0 ∈ {0, 1, . . . , r − 1}j , cj−1 6= 0.

For any x > rj0 , we define an integer J = J(x) by

nJ < x ≤ nJ+1,

so that

(4) J = logr f(x) +O(1)�� log x.

Let n be an integer with nj < n ≤ nj+1 and j0 < j ≤ J , so that (f(n))r
can be written as in (3). We denote by N∗(f(n); b1 . . . bl) the number of
occurrences of the block b1 . . . bl appearing in the string 0 . . . 0︸ ︷︷ ︸

J−j
cj−1 . . . c1c0

of length J . Then we have

0 ≤
∑

p≤x
N∗(f(p); b1 . . . bl)−

∑

p≤x
N(f(p); b1 . . . bl)

≤
J−1∑

j=j0+1

(J − j)(π(nj+1)− π(nj)) +O(1)

≤
J−1∑

j=j0+1

π(nj+1) +O(1)�
J−1∑

j=1

rj/d

J
� x

log x

and so

(5) N(α(f); b1 . . . bl;n) =
∑

p≤x
N∗(f(p); b1 . . . bl) +O

(
n

log n

)

with x = x(n) = pν(n).

We shall prove in Sections 4 and 5 that

(6)
∑

p≤x
N∗(f(p); b1 . . . bl) = r−lπ(x) logr f(x) +O

(
x

log x

)

which, combined with (5) and (2), yields (1).
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3. Lemmas

Lemma 1 ([9; 4.19]). Let F (x) be a real function, k times differentiable,
and satisfying |F (k)(x)| ≥ λ > 0 throughout the interval [a, b]. Then

∣∣∣
b\
a

e(F (x)) dx
∣∣∣ ≤ c(k)λ−1/k.

Lemma 2 ([3; p. 66, Theorem 10]). Let

F (t) =
h

q
td + α1t

d−1 + . . .+ αk,

where h, q are coprime integers and αi’s are real. Suppose that

(log x)σ ≤ q ≤ xd(log x)−σ,

where σ > 26d(σ0 + 1) with σ0 > 0. Then∣∣∣
∑

p≤x
e(F (p))

∣∣∣ ≤ c(d)x(log x)−σ0

as x→∞, where p runs through the primes.

Lemma 3 ([3; p. 2, Lemma 1.3 and p. 5, Lemma 1.6]). Let

F (x) = b0x
d + b1x

d−1 + . . .+ bd−1x+ bd

be a polynomial with integral coefficients and let q be a positive integer. Let
D be the greatest common divisor of q, b0, b1, . . . , and bd−1. Then

∣∣∣∣
q∑

n=1

e

(
F (n)
q

)∣∣∣∣ ≤ d3ω(q/D)D1/dq1−1/d

as q →∞, where ω(n) is the number of distinct prime divisors of n.

Lemma 4 ([6; Corollary of Lemma]). Let F (x) be a polynomial with real
coefficients with leading term Axd, where A 6= 0 and d ≥ 2. Let a/q be a
rational number with (a, q) = 1 such that |A− a/q| < q−2. Assume that

(logQ)H ≤ q ≤ Qd/(logQ)H ,

where H > d2 + 2dG with G ≥ 0. Then∣∣∣
∑

1≤n≤Q
e(F (n))

∣∣∣� Q(logQ)−G.

Lemma 5 ([7; Theorem], cf. [8; Theorem 1]). Let f(t) and b1 . . . bl be as
in Theorem. Then∑

n≤y
N(f(n); b1 . . . bl) = r−ly logr f(y) +O(y)

as y →∞, where the implied constant depends possibly on r, f , and l.
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4. Proof of the Theorem. We have to prove the inequality (6). We
write

∑

p≤x
N∗(f(p); b1 . . . bl) =

∑

p≤x

J∑

m=l

I

(
f(p)
rm

)
,

where

I(t) =





1 if
l∑

k=1

bkr
−k ≤ t− [t] <

l∑

k=1

bkr
−k + r−l,

0 otherwise.

There are functions I−(t) and I+(t) such that I−(t) ≤ I(t) ≤ I+(t), having
Fourier expansion of the form

I±(t) = r−l ± J−1 +
∞∑

ν=−∞
ν 6=0

A±(ν)e(νt)

with
|A±(ν)| � min(|ν|−1, Jν−2),

where e(x) = e2πix ([10; Chap. 2, Lemma 2]). We choose a large constant
c0 and put

(7) M = [c0 logr J ].

Then it follows that

(8)
∑

p≤x
N∗(f(p); b1 . . . bl)

Q
( ∑

l≤m≤dM
+

∑

dM<m≤J−M
+

∑

J−M<m≤J

)∑

p≤x
I±

(
f(p)
rm

)

=
∑

1 +
π(x)
rl

(J − dM) +
∑

2 +
∑

3 +O(π(x)),

where d is the degree of the polynomial f(x),

∑
1 =

∑
1(±) =

∑

l≤m≤dM

∑

p≤x
I±

(
f(p)
rm

)
,

∑
2 =

∑
2(±) =

∑

dM<m≤J−M

∑

1≤|ν|≤J2

A±(ν)
∑

p≤x
e

(
ν

rm
f(p)

)
,

∑
3 =

∑
3(±) =

∑

J−M<m≤J

∑

1≤|ν|≤J2

A±(ν)
∑

p≤x
e

(
ν

rm
f(p)

)
.

We first estimate
∑

2. Suppose that dM ≤ m ≤ J −M . Then, writing
the leading coefficient of the polynomial νr−mf(t) as a/q with (a, q) = 1,
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we have

(log x)σ ≤ q ≤ xd(log x)−σ

with a large constant σ, so that by Lemma 2,

∑

p≤x
e

(
ν

rm
f(p)

)
� x(log x)−σ0 ,

where σ0 > 3 is a constant. Therefore we obtain

(9)
∑

2 � x(log x)2−σ0 � x

log x
.

Next we estimate
∑

3. We appeal to the prime number theorem of the
form referred to in Section 2. Then it follows that

∑

p≤x
e

(
ν

rm
f(p)

)
=

x\
2

e

(
ν

rm
f(t)

)
dπ(t) +O(1)

=
x\
2

e

(
ν

rm
f(t)

)
dt

log t
+O

(
x

(log x)G

)

=
x\

x(log x)−G

e

(
ν

rm
f(t)

)
dt

log t
+O

(
x

(log x)G

)

� 1
log x

sup
ξ

∣∣∣∣
ξ\

x(log x)−G

e

(
ν

rm
f(t)

)
dt

∣∣∣∣+O

(
x

(log x)G

)

� 1
log x

( |ν|
rm

)−1/d

+O

(
x

(log x)G

)
,

using the second mean-value theorem and Lemma 1 with |νr−mf (d)(t)| �
|ν|r−m. Therefore we have

∑
3 �

∑

1≤|ν|≤J2

|ν|−1
∑

J−M≤m≤J

(
1

log x

( |ν|
rm

)−1/d

+O

(
x

(log x)G

))
(10)

� 1
log x

∑

1≤|ν|≤J2

1
|ν|1+1/d

∑

m≤J
r−m/d +O

(
x

(log x)G−2

)

� x

log x
.

To prove the Theorem, it remains to show that

(11)
∑

1 =
π(x)
rl

dM +O

(
x

log x

)
,
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since this together with (4), (8), (9), and (10) implies
∑

p≤x
N∗(f(p); b1 . . . bl) =

π(x)
rl

J +O(π(x))

=
π(x)
rl

logr f(x) +O

(
x

log x

)
,

which is the inequality (6).

5. Proof of Theorem (continued). We shall prove the inequality (11)
in three steps.

F i r s t s t e p. Suppose that l ≤ m ≤ dM , where M is given by (7)
with (4). We appeal to the prime number theorem for arithmetic progres-
sions of the following form ([4; Sect. 17]): Let π(x; q, a) be the number of
primes p ≤ x in an arithmetic progression p ≡ a (mod q) with (a, q) = 1
and let ϕ(n) be the Euler function. Then

π(x; q, a) =
1

ϕ(q)
Lix+O(xe−c

√
log x)

uniformly in 1 ≤ q ≤ (log x)H , where c > 0 is a constant which depends
on a constant H > 0 given arbitrary. (A weaker result O(x(log x)−G) is
enough for our purpose.) Let B denote the least common multiple of all
denominators of the coefficients, other than the constant term, of f(t). Then
∑

p≤x
I±

(
f(p)
rm

)
=

∑

p≤x
(p,Br)=1

I±

(
f(p)
rm

)
+O(1)

=
∑

amodBrm
(a,Br)=1

I±

(
f(a)
rm

)
π(x;Brm, a) +O(1)

=
∑

amodBrm
(a,Br)=1

I±

(
f(a)
rm

)(
1

ϕ(Brm)
Lix+O

(
x

(log x)G

))

+O(1)

=
π(x)

ϕ(Brm)

∑

amodBrm
(a,Br)=1

I±

(
f(a)
rm

)
+O

(
rm

x

(log x)G

)
.

Hence we have

(12)
∑

1 Q
∑

l≤m≤dM

π(x)
ϕ(Brm)

∑

amodBrm
(a,Br)=1

I±

(
f(a)
rm

)
+O

(
MrdM

x

(log x)G

)
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=
∑

l≤m≤dM

π(x)
ϕ(Brm)

∑

amodBrm
I±

(
f(a)
rm

) ∑

b|(a,Br)
µ(b) +O

(
x

log x

)

=
∑

b|Br
µ(b)

∑

l≤m≤dM

π(x)
ϕ(Brm)

∑

amodBrm
b|a

I±

(
f(a)
rm

)
+O

(
x

log x

)

= π(x)
Br

ϕ(Br)

∑

b|Br
µ(b)

∑

l≤m≤dM

1
Brm

∑

1≤n≤Brm/b
I±

(
f(bn)
rm

)

+O

(
x

log x

)
,

where µ(n) is the Möbius function. Note that Br = O(1).

S e c o n d s t e p. We shall prove that, for each b |Br,

(13)
∑

l≤m≤dM

1
Brm

∑

1≤n≤Brm/b
I±

(
f(bn)
rm

)

=
∑

l≤m≤dM

1
BrM

∑

1≤n≤BrM/b
I±

(
f(bn)
rm

)
+O(1).

If l ≤ m ≤M , then we have

1
Brm

∑

1≤n≤Brm/b
I±

(
f(bn)
rm

)
=

1
BrM

∑

1≤n≤BrM/b
I±

(
f(bn)
rm

)
,

so that

(14)
∑

l≤m<M

1
Brm

∑

1≤n≤Brm/b
I±

(
f(bn)
rm

)

=
∑

l≤m≤M

1
BrM

∑

1≤n<BrM/b
I±

(
f(bn)
rm

)
.

If d = 1, (14) implies (13). So in what follows we assume d ≥ 2 and M ≤
m ≤ dM . We have

∑

1≤n≤Brm/b
I±

(
f(bn)
rm

)

Q Brm

b
· 1
rl

+O

(
rm

J

)
+O

( ∑

1≤|ν|≤J2

1
|ν|

∣∣∣∣
∑

1≤n≤Brm/b
e

(
ν

rm
f(bn)

)∣∣∣∣
)

=
Brm

b
· 1
rl

+O

(
rm

J

)
+O(rm(1−1/d)J2/d log J),
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since, by Lemma 3,
∣∣∣∣

∑

1≤n≤Brm/b
e

(
ν

rm
f(bn)

)∣∣∣∣� (rm, ν)1/drm(1−1/d).

Hence we get

(15)
∑

M≤m≤dM

1
Brm

∑

1≤n≤Brm/b
I±

(
f(bn)
rm

)
=

(d− 1)M
brl

+O(1).

In the rest of this step, we shall prove the inequality

(16)
∑

M≤m≤dM

1
BrM

∑

1≤n≤BrM/b
I±

(
f(bn)
rm

)
=

(d− 1)M
brl

+O(1),

which together with (15) and (14) yields (13).

P r o o f o f (16). It is easily seen that

(17)
∑

M≤m≤dM

1
BrM

∑

1≤n≤BrM/b
I±

(
f(bn)
rm

)

Q 1
BrM

∑

M≤m≤dM

∑

1≤n≤BrM/b

(
1
rl

+O

(
1
J

)

+
∑

1≤|ν|≤J2

A±(ν)e
(
ν

rm
f(bn)

))

=
(d− 1)M

brl
+O(1)

+O

( ∑

1≤|ν|≤J2

1
|ν| ·

1
BrM

∑

M≤m≤dM

∣∣∣∣
∑

1≤n≤BrM/b
e

(
ν

rm
f(bn)

)∣∣∣∣
)
.

We estimate the last sum. Let H be a large constant. For any ν, m, b, we
can choose, by Dirichlet’s theorem, coprime integers a and q = q(ν,m, b)
such that

1 ≤ q ≤ Qd/(logQ)H , Q = BrM/b

and ∣∣∣∣
ν

rm
bd − a

q

∣∣∣∣ <
(logQ)H

qQd
(≤ 1/q2).

If

(logQ)H ≤ q ≤ Qd/(logQ)H ,
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then by Lemma 4,
∣∣∣∣

∑

1≤n≤BrM/b
e

(
ν

rm
f(bn)

)∣∣∣∣�
Q

(logQ)G
� rM

(log J)2 .

Hence the contribution of these sums in the last term in (17) is

� 1
BrM

(d− 1)M log J · rM

(log J)2 = O(1).

Otherwise, we have

1 ≤ q ≤ (logQ)H (��MH).

In particular, (ν/rm)bd 6= a/q, since m ≥M . Hence

1
qrm

≤
∣∣∣∣
ν

rm
bd − a

q

∣∣∣∣�
MH

qrdM
,

so that

(dM ≥) m ≥ dM −H1 logM,

with a large constant H1. From this it follows that

d

dt
· ν
rm

f(bt)�� ν

rm
td−1 � J2r−M+H1 logM = o(1)

throughout the interval [1, BrM/b]. Thus by a van der Corput’s lemma ([9;
Lemma 4.8]) we have

∑

1≤n≤BrM/b
e

(
ν

rm
f(bn)

)
=

BrM/b\
1

e

(
ν

rm
f(bt)

)
dt+O(1)

�
∣∣∣∣
ν

rm
f (d)(t)

∣∣∣∣
−1/d

+O(1)�
( |ν|
rm

)−1/d

,

using again Lemma 1. Hence the contribution of these sums to the last term
in (17) is

� 1
BrM

∑

M≤m≤dM

∑

1≤|ν|≤J2

1
|ν|
( |ν|
rm

)−1/d

= O(1).

Combining these results, we obtain (16).
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T h i r d s t e p. It follows from (12) with (13) that

∑
1 Q π(x)

Br

ϕ(Br)

∑

b|Br
µ(b)

1
BrM

∑

l≤m≤dM

∑

1≤n≤BrM/b
I±

(
f(bn)
rm

)

+O

(
x

log x

)

Q π(x)
Br

ϕ(Br)

∑

b|Br
µ(b)

1
BrM

∑

l≤m≤dM

∑

1≤n≤BrM/b
I

(
f(bn)
rm

)

+O

(
x

log x

)
.

We put, in Lemma 5, y = BrM/b, so that logr f(by) = dM + O(1). Then
we have

∑

l≤m≤dM

∑

1≤n≤BrM/b
I

(
f(bn)
rm

)
=
∑

n≤y
N(f(bn); b1 . . . bl) +O(rM )

= r−ly logr f(by) +O(rM )

= r−l
BrM

b
dM +O(rM ).

Therefore we obtain
∑

1 R Br

ϕ(Br)

∑

b|Br

µ(b)
b
· dM
rl

π(x) +O

(
x

log x

)

= r−ldMπ(x) +O

(
x

log x

)
,

which is (11). The proof of the Theorem is now complete.
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